3.3 V -Powered, $\pm 15 \mathrm{kV}$ ESD-Protected, 12Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers

General Description
Devices in the MAX3483E family (MAX3483E/MAX3485E/ MAX3486E/MAX3488E/MAX3490E/MAX3491E) are $\pm 15 \mathrm{kV}$ ESD-protected, +3.3 V , low-power transceivers for RS-485 and RS-422 communications. Each device contains one driver and one receiver. The MAX3483E and MAX3488E feature slew-rate-limited drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission at data rates up to 250 kbps . The partially slew-rate-limited MAX3486E transmits up to 2.5Mbps. The MAX3485E, MAX3490E, and MAX3491E transmit at up to 12Mbps.
All devices feature enhanced electrostatic discharge (ESD) protection. All transmitter outputs and receiver inputs are protected to $\pm 15 \mathrm{kV}$ using IEC 1000-4-2 AirGap Discharge, $\pm 8 \mathrm{kV}$ using IEC 1000-4-2 Contact Discharge, and $\pm 15 \mathrm{kV}$ using the Human Body Model.
Drivers are short-circuit current limited and are protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs into a high-impedance state. The receiver input has a fail-safe feature that guarantees a logic-high output if both inputs are open circuit.
The MAX3488E, MAX3490E, and MAX3491E feature full-duplex communication, while the MAX3483E, MAX3485E, and MAX3486E are designed for halfduplex communication.

Applic ations
Telecommunications
Industrial-Control Local Area Networks
Transceivers for EMI-Sensitive Applications Integrated Services Digital Networks
Packet Switching

ESD Protection for RS-485 I/O Pins $\pm 15 \mathrm{kV}$ —Human Body Model $\pm 8 \mathrm{kV}$ —IEC 1000-4-2, Contact Discharge $\pm 15 k V-I E C$ 1000-4-2, Air-Gap Discharge		
- Operate from a Single +3.3V SupplyNo Charge Pump Required		
- Interoperable with +5V Logic		
Guaranteed 12Mbps Data Rate (MAX3485E/MAX3490E/MAX3491E)		
Slew-Rate Limited for Errorless Data Transmission (MAX3483E/MAX3488E)		
- 2nA Low-Current Shutdown Mode (MAX3483E/MAX3485E/MAX3486E/MAX3491E)		
- 7 V to +12V Common-Mode Input Voltage Range		
- Full-Duplex and Half-Duplex Versions Available		
Industry-Standard 75176 Pinout (MAX3483E/MAX3485E/MAX3486E)		
Current-Limiting and Thermal Shutdown for Driver Overload Protection		
Ordering Informatio		
PART	TEMP. RANGE	PIN-PA
MAX3483ECSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
AXX3483ECPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic
MAX3483EESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX3483EEPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3485ECSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX3485ECPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DI
MAX3485EESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX3485EEPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP

Ordering Information continued at end of data sheet.

Selector Guide

PART NUMBER	GUARANTEED DATA RATE (Mbps)	SUPPLY VOLTAGE (V)	HALF/FULL DUPLEX	SLEW-RATE LIMITED	DRIVER/ RECEIVER ENABLE	SHUTDOWN CURRENT (nA)	$\begin{gathered} \pm 15 \mathrm{kV} \\ \text { ESD } \\ \text { PROTECTION } \end{gathered}$	PIN COUNT
MAX3483E	0.25	3.0 to 3.6	Half	Yes	Yes	2	Yes	8
MAX3485E	12		Half	No	Yes	2	Yes	8
MAX3486E	2.5		Half	Yes	Yes	2	Yes	8
MAX3488E	0.25		Full	Yes	No	-	Yes	8
MAX3490E	12		Full	No	No	-	Yes	8
MAX3491E	12		Full	No	Yes	2	Yes	14

For free samples \& the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

3.3V-Powered, +15 kV ESD-Protected, 12Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC) C)....+7V
Control Input Voltage ($\overline{\mathrm{RE}}, \mathrm{DE}$).................................-0.3V to +7 V
Driver Input Voltage (DI)... 0.3 V to +7 V
Driver Output Voltage (A, B, Y, Z)-7.5V to +12.5 V
Receiver Input Voltage (A, B)..............................7.5V to +12.5 V
Receiver Output Voltage (RO)....................-0.3V to (VCC +0.3 V)
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
8-Pin SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$). \qquad
8 -Pin Plastic DIP (derate $9.09 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots . . .727 \mathrm{~mW}$
14-Pin SO (derate $8.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)................ 667 mW 14-Pin Plastic DIP (derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 800 mW Operating Temperature Ranges

MAX34_-EC	${ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX34-EE	-40 ${ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10sec) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
DC ELECTRICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

3.3V-Powered, $\pm 15 \mathrm{kV}$ ESD-Protected, 12Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers

DC ELECTRICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Driver Short-Circuit Output Current	IOSD	Vout $=-7 \mathrm{~V}$			-250	mA
		VOUT $=12 \mathrm{~V}$			250	
Receiver Short-Circuit Output Current	IOSR	$0 \leq \mathrm{V}_{\mathrm{RO}} \leq \mathrm{V}_{\mathrm{CC}}$	± 8		± 60	mA
ESD Protection for Y, Z, A, B		IEC 1000-4-2 Air Discharge		± 15		kV
		IEC 1000-4-2 Contact Discharge (MAX3483E, MAX3485E, MAX3486E, MAX3491E)		± 8		
		IEC 1000-4-2 Contact Discharge (MAX3490E, MAX3488E)*		± 6		
		Human Body Model		± 15		

*MAX3488E and MAX3491E will be compliant to $\pm 8 k V$ per IEC 1000-4-2 Contact Discharge by September 1999.
DRIVER SWITCHING CHARACTERISTICS—MAX3485E/MAX3490E/MAX3491E
$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Maximum Data Rate			12	15		Mbps	
Driver Differential Output Delay	tDD	$\mathrm{R}_{\mathrm{L}}=60 \Omega$, Figure 7	1	22	35	ns	
Driver Differential Output Transition Time	tTD	$\mathrm{R}_{\mathrm{L}}=60 \Omega$, Figure 7	3	11	25	ns	
Driver Propagation Delay, Low-to-High Level	tplh	$R_{L}=27 \Omega$, Figure 8	7	23	35	ns	
Driver Propagation Delay, High-to-Low Level	tPHL	$R_{L}=27 \Omega$, Figure 8	7	23	35	ns	
\|tPLH - tPHL	Driver Propagation-Delay Skew (Note 2)	tpDS	$R_{L}=27 \Omega$, Figure 8		-1.4	± 8	ns
DRIVER-OUTPUT ENABLE/DISABLE TIMES (MAX3485E/MAX3491E only)							
Driver-Output Enable Time to Low Level	tPZL	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 10		42	90	ns	
Driver-Output Enable Time to High Level	tPZH	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 9		42	90	ns	
Driver-Output Disable Time from High Level	tPHZ	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 9		35	80	ns	
Driver-Output Disable Time from Low Level	tpLZ	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 10		35	80	ns	
Driver-Output Enable Time from Shutdown to Low Level	tpSL	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 10		650	900	ns	
Driver-Output Enable Time from Shutdown to High Level	tPSH	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 9		650	900	ns	

DRIVER SWITCHING CHARACTERISTICS—MAX3486E
$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}.\right)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Maximum Data Rate			2.5			Mbps
Driver Differential Output Delay	tDD	$\mathrm{R}_{\mathrm{L}}=60 \Omega$, Figure 7	20	42	70	ns
Driver Differential Output Transition Time	tTD	$\mathrm{R}_{\mathrm{L}}=60 \Omega$, Figure 7	15	28	60	ns
Driver Propagation Delay, Low-to-High Level	tPLH	$\mathrm{R}_{\mathrm{L}}=27 \Omega$, Figure 8	20	42	75	ns
Driver Propagation Delay, High-to-Low Level	tPHL	$\mathrm{R}_{\mathrm{L}}=27 \Omega$, Figure 8	20	42	75	ns
$\mid \mathrm{tPLH}$ - tPHL\| Driver Propagation-Delay Skew (Note 2)	tPDS	$R_{L}=27 \Omega$, Figure 8		-6	± 12	ns
DRIVER-OUTPUT ENABLE/DISABLE TIMES						
Driver-Output Enable Time to Low Level	tPZL	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 10		52	100	ns
Driver-Output Enable Time to High Level	tPZH	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 9		52	100	ns
Driver-Output Disable Time from High Level	tPHZ	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 9		40	80	ns
Driver-Output Disable Time from Low Level	tPLZ	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 10		40	80	ns
Driver-Output Enable Time from Shutdown to Low Level	tPSL	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 10		700	1000	ns
Driver-Output Enable Time from Shutdown to High Level	tPSH	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 9		700	1000	ns

3.3V-Powered, +15 kV ESD-Protected, 12Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers

DRIVER SWITCHING CHARACTERISTICS—MAX3483E/MAX3488E
$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$. $)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Maximum Data Rate			250			kbps
Driver Differential Output Delay	tDD	$\mathrm{R}_{\mathrm{L}}=60 \Omega$, Figure 7	600	900	1400	ns
Driver Differential Output Transition Time	tTD	$\mathrm{R}_{\mathrm{L}}=60 \Omega$, Figure 7	400	740	1200	ns
Driver Propagation Delay, Low-to-High Level	tPLH	$\mathrm{R}_{\mathrm{L}}=27 \Omega$, Figure 8	700	930	1500	ns
Driver Propagation Delay, High-to-Low Level	tphL	$\mathrm{R}_{\mathrm{L}}=27 \Omega$, Figure 8	700	930	1500	ns
\|tplH - tphL ${ }^{\text {D }}$ Driver Propagation-Delay Skew (Note 2)	tpDS	$\mathrm{R}_{\mathrm{L}}=27 \Omega$, Figure 8		± 50		ns
DRIVER-OUTPUT ENABLE/DISABLE TIMES (MAX3483E only)						
Driver-Output Enable Time to Low Level	tPZL	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 10		900	1300	ns
Driver-Output Enable Time to High Level	tPZH	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 9		600	800	ns
Driver-Output Disable Time from High Level	tPHZ	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 9		50	80	ns
Driver-Output Disable Time from Low Level	tpLZ	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 10		50	80	ns
Driver-Output Enable Time from Shutdown to Low Level	tPSL	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 10		1.9	2.7	$\mu \mathrm{s}$
Driver-Output Enable Time from Shutdown to High Level	tPSH	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 9		2.2	3.0	$\mu \mathrm{s}$

RECEIVER SWITCHING CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$. $)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Time to Shutdown	tSHDN	MAX3483E/MAX3485E/MAX3486E/MAX3491E only (Note 3)	80	190	300	ns	
Receiver Propagation Delay, Low-to-High Level	trpLH	$\mathrm{V}_{\mathrm{ID}}=0$ to $3.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, Figure 11	25	62	90	ns	
		MAX3483E/MAX3488E	25	75	120		
Receiver Propagation Delay, High-to-Low Level	trPHL	$\mathrm{V}_{\mathrm{ID}}=0$ to $3.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, Figure 11	25	62	90	ns	
		MAX3483E/MAX3488E	25	75	120		
\|tpLH - tphl	Receiver Propagation-Delay Skew	tRPDS	$\mathrm{V}_{\mathrm{ID}}=0$ to $3.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, Figure 11		6	± 10	ns
		MAX3483E/MAX3488E		12	± 20		
Receiver-Output Enable Time to Low Level	tPRZL	$C_{L}=15 p F$, Figure 12, MAX3483E/85E/86E/91E only		25	50	ns	
Receiver-Output Enable Time to High Level	tpRZH	$C_{L}=15 p F$, Figure 12, MAX3483E/85E/86E/91E only		25	50	ns	
Receiver-Output Disable Time from High Level	tPRHZ	$C_{L}=15 p F$, Figure 12, MAX3483E/85E/86E/91E only		25	45	ns	
Receiver-Output Disable Time from Low Level	tPRLZ	$C_{L}=15 p F$, Figure 12, MAX3483E/85E/86E/91E only		25	45	ns	
Receiver-Output Enable Time from Shutdown to Low Level	tPRSL	$C_{L}=15 p F$, Figure 12, MAX3483E/85E/86E/91E only		720	1400	ns	
Receiver-Output Enable Time from Shutdown to High Level	tPRSH	$C_{L}=15 p F$, Figure 12, MAX3483E/85E/86E/91E only		720	1400	ns	

Note 1: $\Delta V_{O D}$ and $\Delta V_{O C}$ are the changes in $V_{O D}$ and $V_{O C}$, respectively, when the DI input changes state.
Note 2: Measured on |tpLH (Y) - tphL (Y)| and |tpLH (Z) - tphl (Z)|.
Note 3: The transceivers are put into shutdown by bringing $\overline{R E}$ high and DE low. If the inputs are in this state for less than 80 ns, the devices are guaranteed not to enter shutdown. If the inputs are in this state for at least 300 ns , the devices are guaranteed to have entered shutdown. See Low-Power Shutdown Mode section.

3.3V-Powered, $\pm 15 \mathrm{kV}$ ESD-Protected, 12Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers

Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

RECEIVER OUTPUT LOW VOLTAGE vs. TEMPERATURE

OUTPUT CURRENT vs.
DRIVER OUTPUT LOW VOLTAGE

OUTPUT CURRENT vs. RECEIVER OUTPUT HIGH VOLTAGE

DRIVER OUTPUT CURRENT vs. DIFFERENTIAL OUTPUT VOLTAGE

RECEIVER OUTPUT HIGH VOLTAGE vs. TEMPERATURE

DRIVER DIFFERENTIAL OUTPUT VOLTAGE vs. TEMPERATURE

OUTPUT CURRENT vs. DRIVER OUTPUT HIGH VOLTAGE

3.3V-Powered, $\pm 15 \mathrm{kV}$ ESD-Protected, 12Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers

$\left(\overline{\mathrm{V} C \mathrm{C}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Pin Description

PIN			NAME	FUNCTION
MAX3483E MAX3485E MAX3486E	MAX3488E MAX3490E	MAX3491E		
1	2	2	RO	Receiver Output. If $A>B$ by $200 \mathrm{mV}, R O$ will be high; if $A<B$ by 200 mV , RO will be low.
2	-	3	$\overline{\mathrm{RE}}$	Receiver Output Enable. RO is enabled when $\overline{\mathrm{RE}}$ is low; RO is high impedance when $\overline{R E}$ is high. If $\overline{R E}$ is high and $D E$ is low, the device will enter a low-power shutdown mode.
3	-	4	DE	Driver Output Enable. The driver outputs are enabled by bringing DE high. They are high impedance when DE is low. If $\overline{R E}$ is high and DE is low, the device will enter a low-power shutdown mode. If the driver outputs are enabled, the parts function as line drivers. While they are high impedance, they function as line receivers if $\overline{\mathrm{RE}}$ is low.
4	3	5	DI	Driver Input. A low on DI forces output Y low and output Z high. Similarly, a high on DI forces output Y high and output Z low.
5	4	6, 7	GND	Ground
-	5	9	Y	Noninverting Driver Output
-	6	10	Z	Inverting Driver Output
6	-	-	A	Noninverting Receiver Input and Noninverting Driver Output
-	8	12	A	Noninverting Receiver Input
7	-	-	B	Inverting Receiver Input and Inverting Driver Output
-	7	11	B	Inverting Receiver Input
8	1	13, 14	Vcc	Positive Supply: $3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{cc}} \leq 3.6 \mathrm{~V}$. Do not operate device with $\mathrm{V}_{\mathrm{Cc}}>3.6 \mathrm{~V}$.
-	-	1, 8	N.C.	No Connection. Not internally connected.

3.3V-Powered, $\pm 15 \mathrm{kV}$ ESD-Protected, 12Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers

TOP VIEW

NイXIM

NOTE: PIN LABELS Y AND Z ON TIMING, TEST, AND WAVEFORM DIAGRAMS REFER TO PINS A AND B WHEN DE IS HIGH.

Figure 1. MAX3483E/MAX3485E/MAX3486E Pin Configuration and Typical Operating Circuit

Figure 2. MAX3488E/MAX3490E Pin Configuration and Typical Operating Circuit

Figure 3. MAX3491E Pin Configuration and Typical Operating Circuit

3.3V-Powered, $+15 k V$ ESD-Protected, 12Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers

Figure 4. Driver $V_{O D}$ and $V_{O C}$

Figure 6. Receiver $V_{O H}$ and $V_{O L}$

Figure 7. Driver Differential Output Delay and Transition Times

3.3V-Powered, $\pm 15 k V$ ESD-Protected, 12Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers

Figure 8. Driver Propagation Times

Figure 9. Driver Enable and Disable Times ($\left.t_{P Z H}, t_{P S H}, t_{P H Z}\right)$

Figure 10. Driver Enable and Disable Times ($\left.t_{P Z L}, t_{P S L}, t_{P L Z}\right)$

3.3V-Powered, $+15 k V$ ESD-Protected, 12Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers

Figure 11. Receiver Propagation Delay

Figure 12. Receiver Enable and Disable Times
Note 4: The input pulse is supplied by a generator with the following characteristics: $f=250 \mathrm{kHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}} \leq 6.0 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$. Note 5: CL includes probe and stray capacitance.

3．3V－Powered，$\pm 15 \mathrm{kV}$ ESD－Protected，12Mbps and Slew－Rate－Limited True RS－485／RS－422 Transceivers

Function Tables

Devices with Receiver／Driver Enable （MAX3483E／MAX3485E／MAX3486E／MAX3491E）

Table 1．Transmitting

INPUTS			OUTPUTS		MODE
$\overline{\mathbf{R E}}$	DE	DI	\mathbf{B}^{*}	\mathbf{A}^{\star}	
X	1	1	0	1	Normal
X	1	0	1	0	Normal
0	0	X	High－Z	High－Z	Normal
1	0	X	High－Z	High－Z	Shutdown

＊B and A outputs are Z and Y ，respectively，for full－duplex part （MAX3491E）．
$X=$ Don＇t care；High－Z＝High impedance

Table 2．Receiving

INPUTS			OUTPUTS	MODE
$\overline{\mathbf{R E}}$	DE	A，B		
0	0^{*}	$\geq+0.2 \mathrm{~V}$	1	Normal
0	0^{*}	$\leq-0.2 \mathrm{~V}$	0	Normal
0	0^{*}	Inputs Open	1	Normal
1	0	X	High－Z	Shutdown

＊DE is a＂don＇t care＂（ x ）for the full－duplex part（MAX3491E）． X＝Don＇t care；High－Z＝High impedance

Devices without Receiver／Driver Enable （MAX3488E／MAX3490E）
Table 3．Transmitting Table 4．Receiving

INPUT	OUTPUTS	
DI	Z	Y
1	0	1
0	1	0

INPUTS	OUTPUT
A, B	RO
$\geq+0.2 \mathrm{~V}$	1
$\leq-0.2 \mathrm{~V}$	0
Inputs Open	1

Figure 13．Driver Output Waveform and FFT Plot of MAX3485E／ MAX3490E／MAX3491E Transmitting a 125 kHz Signal

Applications Information

The MAX3483E／MAX3485E／MAX3486E／MAX3488E／ MAX3490E／MAX3491E are low－power transceivers for RS－485 and RS－422 communications．The MAX3483E and MAX3488E can transmit and receive at data rates up to 250 kbps ，the MAX3486E at up to 2.5 Mbps ，and the MAX3485E／MAX3490E／MAX3491E at up to 12Mbps．The MAX3488E／MAX3490E／MAX3491E are full－duplex trans－ ceivers，while the MAX3483E／MAX3485E／MAX3486E are half－duplex．Driver Enable（DE）and Receiver Enable （ $\overline{\mathrm{RE}})$ pins are included on the MAX3483E／MAX3485E／ MAX3486E／MAX3491E．When disabled，the driver and receiver outputs are high impedance．

Reduced EMI and Reflections （MAX3483E／MAX3486E／MAX3488E）

The MAX3483E／MAX3488E are slew－rate limited，mini－ mizing EMI and reducing reflections caused by improp－ erly terminated cables．Figure 13 shows the driver output waveform of a MAX3485E／MAX3490E／MAX3491E transmitting a 125 kHz signal，as well as the Fourier analysis of that waveform．High－frequency harmonics with large amplitudes are evident．Figure 14 shows the same information，but for the slew－rate－limited MAX3483E／MAX3488E transmitting the same signal．The high－frequency harmonics have much lower amplitudes， and the potential for EMI is significantly reduced．

Low－Power Shutdown Mode （MAX3483E／MAX3485E／MAX3486E／MAX3491E）
A low－power shutdown mode is initiated by bringing both $\overline{R E}$ high and DE low．The devices will not shut down unless both the driver and receiver are disabled（high impedance）．In shutdown，the devices typically draw only $2 n A$ of supply current．
For these devices，the $t_{P S H}$ and $t_{\text {PSL }}$ enable times assume the part was in the low－power shutdown mode； the $t_{P Z H}$ and $t_{P Z L}$ enable times assume the receiver or driver was disabled，but the part was not shut down．

Figure 14．Driver Output Waveform and FFT Plot of MAX3483E／MAX3488E Transmitting a 125 kHz Signal

3.3V-Powered, $+15 k V$ ESD-Protected, 12Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers

MAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E

Figure 15. MAX3485E/MAX3490E/MAX3491E Driver Propagation Delay

Figure 17. MAX3483E/MAX3488E Driver Propagation Delay

Figure 19. MAX3483E/MAX3488E System Differential Voltage at 125 kHz Driving 4000 Feet of Cable

Figure 16. MAX3485E/MAX3490E/MAX3491E Receiver Propagation Delay Driven by External RS-485 Device

Figure 18. MAX3483E/MAX3488E Receiver Propagation Delay

Figure 20. MAX3485E/MAX3490E/MAX3491E System Differential Voltage at 125 kHz Driving 4000 Feet of Cable

3．3V－Powered，$\pm 15 \mathrm{kV}$ ESD－Protected，12Mbps and Slew－Rate－Limited True RS－485／RS－422 Transceivers

Driver－Output Protection

Excessive output current and power dissipation caused by faults or by bus contention are prevented by two mechanisms．A foldback current limit on the output stage provides immediate protection against short circuits over the whole common－mode voltage range（see Typical Operating Characteristics）．In addition，a thermal shut－ down circuit forces the driver outputs into a high－imped－ ance state if the die temperature rises excessively．

Propagation Delay

Figures 15－18 show the typical propagation delays．Skew time is simply the difference between the low－to－high and high－to－low propagation delay．Small driver／receiver skew times help maintain a symmetrical mark－space ratio（ 50% duty cycle）．
The receiver skew time，$t_{\text {PRLH }}-t_{\text {PRHL }}$ ，is under 10 ns （20ns for the MAX3483E／MAX3488E）．The driver skew times are 8ns for the MAX3485E／MAX3490E／MAX3491E， 12 ns for the MAX3486E，and typically under 50ns for the MAX3483E／MAX3488E．

Line Length vs．Data Rate

The RS－485／RS－422 standard covers line lengths up to 4000 feet．For line lengths greater than 4000 feet，see Figure 21 for an example of a line repeater．

Figures 19 and 20 show the system differential voltage for parts driving 4000 feet of 26AWG twisted－pair wire at 125 kHz into 120Ω loads．
For faster data rate transmission，please consult the fac－ tory．

Figure 21．Line Repeater for MAX3488E／MAX3490E／MAX3491E

土15kV ESD Protection

As with all Maxim devices，ESD－protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly． The driver outputs and receiver inputs of the MAX3483E family of devices have extra protection against static electricity．Maxim＇s engineers have developed state－of－ the－art structures to protect these pins against ESD of $\pm 15 \mathrm{kV}$ without damage．The ESD structures withstand high ESD in all states：normal operation，shutdown，and powered down．After an ESD event，Maxim＇s E versions keep working without latchup or damage．
ESD protection can be tested in various ways；the transmitter outputs and receiver inputs of this product family are characterized for protection to the following limits：

1）$\pm 15 \mathrm{kV}$ using the Human Body Model
2）$\pm 8 \mathrm{kV}$ using the Contact－Discharge method specified in IEC 1000－4－2

3）$\pm 15 \mathrm{kV}$ using IEC $1000-4-2$＇s Air－Gap method．

ESD Test Conditions

ESD performance depends on a variety of conditions． Contact Maxim for a reliability report that documents test setup，test methodology，and test results．

Human Body Model Figure 22a shows the Human Body Model and Figure 22b shows the current waveform it generates when dis－ charged into a low impedance．This model consists of a 100 pF capacitor charged to the ESD voltage of inter－ est，which is then discharged into the test device through a $1.5 \mathrm{k} \Omega$ resistor．

IEC 1000－4－2
The IEC 1000－4－2 standard covers ESD testing and performance of finished equipment；it does not specifi－ cally refer to integrated circuits．The MAX3483E family of devices helps you design equipment that meets Level 4 （the highest level）of IEC 1000－4－2，without the need for additional ESD－protection components．

The major difference between tests done using the Human Body Model and IEC 1000－4－2 is higher peak current in IEC 1000－4－2，because series resistance is lower in the IEC 1000－4－2 model．Hence，the ESD with－ stand voltage measured to IEC 1000－4－2 is generally lower than that measured using the Human Body Model．Figure 23a shows the IEC 1000－4－2 model，and Figure 23b shows the current waveform for the $\pm 8 \mathrm{kV}$ IEC 1000－4－2，Level 4 ESD contact－discharge test．

3.3V-Powered, $\pm 15 \mathrm{kV}$ ESD-Protected, 12Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers

Figure 22a. Human Body ESD Test Model

Figure 23a. IEC 1000-4-2 ESD Test Model

The air-gap test involves approaching the device with a charged probe. The contact-discharge method connects the probe to the device before the probe is energized.

Machine ModeI
The Machine Model for ESD tests all pins using a 200pF storage capacitor and zero discharge resistance. Its objective is to emulate the stress caused when I/O pins are contacted by handling equipment during test and assembly. Of course, all pins require this protection, not just RS-485 inputs and outputs.

Figure 22b. Human Body Current Waveform

Figure 23b. IEC 1000-4-2 ESD Generator Current Waveform

Typical Applications

The MAX3483E/MAX3485E/MAX3486E/MAX3488E/ MAX3490E/MAX3491E transceivers are designed for bidirectional data communications on multipoint bus transmission lines. Figures 24 and 25 show typical network applications circuits. These parts can also be used as line repeaters, with cable lengths longer than 4000 feet, as shown in Figure 21.
To minimize reflections, the line should be terminated at both ends in its characteristic impedance, and stub lengths off the main line should be kept as short as possible. The slew-rate-limited MAX3483E/MAX3488E and the partially slew-rate-limited MAX3486E are more tolerant of imperfect termination.

3．3V－Powered，$\pm 15 \mathrm{kV}$ ESD－Protected，12Mbps and Slew－Rate－Limited True RS－485／RS－422 Transceivers

Figure 24．MAX3483E／MAX3485E／MAX3486E Typical RS－485 Network

NOTE：$\overline{R E} A N D ~ D E O N ~ M A X 3491 E ~ O N L Y . ~$

Figure 25．MAX3488E／MAX3490E／MAX3491E Full－Duplex RS－485 Network

3.3V-Powered, $\pm 15 \mathrm{kV}$ ESD-Protected, 12Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers

_Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX3486ECSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX3486ECPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3486EESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX3486EEPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3488ECSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX3488ECPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3488EESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX3488EEPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3490ECSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX3490ECPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3490EESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX3490EEPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3491ECSD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 SO
MAX3491ECPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Plastic DIP
MAX3491EESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO
MAX3491EEPD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Plastic DIP

\qquad

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog Devices manufacturer:
Other Similar products are found below :
DC1705C-D ADSP-2183KSTZ-210 ADSP-BF533SKBC-6V LTC1147CN8-3.3 LTC3732CG LTC1706EMS-85 LTC1503CS8-2 ADR5045ARTZ-R2 LTC1430ACS LTC3833IUDC\#PBF LTC1504CS8 5962-8757101YA 5962-9176404M3A EV1HMC1113LP5 EV1HMC1160LP5 EV1HMC252AQS24 EV1HMC306AMS10 EV1HMC3716LP4 EV1HMC557ALC4 EV1HMC6146BLC5A EV1HMC6832ALP5L EV1HMC788ALP2 EV1HMC7912LP5 EV1HMC951BLP4 EV-ADUCM322IQSPZ EV-ADUCM322QSPZ EVAL01-HMC1048LC3B EVAL01-HMC1055LP2C EVAL01-HMC1063LP3 EVAL01-HMC197B EVAL01-HMC749LC3C EVAL01HMC760LC4B EVAL01-HMC995LP5GE EVAL02-HMC1034LP6G EVAL-AD5061SDZ EVAL-AD5063EBZ EVAL-AD5172SDZ EVALAD5273DBZ EVAL-AD5361EBZ EVAL-AD5363EBZ EVAL-AD5373EBZ EVAL-AD5422LFEBZ EVAL-AD5755-1SDZ EVALAD7641EDZ EVAL-AD7655EDZ EVAL-AD7674EDZ EVAL-AD7719EBZ EVAL-AD7770FMCZ EVAL-AD7877EBZ EVALAD7946SDZ

