## Quad-Channel, 2.5 kV Isolators with Integrated DC-to-DC Converter

## Data Sheet

## FEATURES

isoPower integrated, isolated dc-to-dc converter
Regulated 3.3 V or 5.0 V output
Up to 500 mW output power
Quad dc-to-25 Mbps (NRZ) signal isolation channels
16-lead SOIC package with 7.6 mm creepage
High temperature operation: $105^{\circ} \mathrm{C}$ maximum
High common-mode transient immunity: > $\mathbf{2 5} \mathbf{~ k V / \mu s}$
Safety and regulatory approvals
UL recognition
2500 V rms for 1 minute per UL 1577
CSA Component Acceptance Notice 5A
VDE certificate of conformity
IEC 60747-5-2 (VDE 0884, Part 2)
$V_{\text {IORM }}=560 \mathrm{~V}$ peak
CQC certification per GB4943.1-2011

## APPLICATIONS

RS-232/RS-422/RS-485 transceivers
Industrial field bus isolation
Power supply start-up bias and gate drives
Isolated sensor interfaces
Industrial PLCs

## GENERAL DESCRIPTION

The ADuM5401/ADuM5402/ADuM5403/ADuM5404 ${ }^{1}$ are quadchannel digital isolators with isoPower ${ }^{\oplus}$, an integrated, isolated dc-to-dc converter. Based on the Analog Devices, Inc., iCoupler ${ }^{\oplus}$ technology, the dc-to-dc converter provides up to 500 mW of regulated, isolated power at either 5.0 V or 3.3 V from a 5.0 V input supply, or at 3.3 V from a 3.3 V supply at the power levels shown in Table 1. These devices eliminate the need for a separate, isolated dc-to-dc converter in low power, isolated designs. The iCoupler chip scale transformer technology is used to isolate the logic signals and for the power and feedback paths in the dc-to-dc converter. The result is a small form factor, total isolation solution.
The ADuM5401/ADuM5402/ADuM5403/ADuM5404 isolators provide four independent isolation channels in a variety of channel configurations and data rates (see the Ordering Guide for more information).
isoPower uses high frequency switching elements to transfer power through its transformer. Special care must be taken during printed circuit board (PCB) layout to meet emissions standards. See the AN-0971 Application Note for board layout recommendations.

FUNCTIONAL BLOCK DIAGRAMS


Figure 1.


Figure 2. ADuM5401


Figure 3. ADuM5402


Figure 4. ADuM5403


Figure 5. ADuM5404
Table 1. Power Levels

| Input Voltage (V) | Output Voltage (V) | Output Power (mW) |
| :--- | :--- | :--- |
| 5.0 | 5.0 | 500 |
| 5.0 | 3.3 | 330 |
| 3.3 | 3.3 | 200 |

## TABLE OF CONTENTS

Features ..... 1
Applications .....  1
General Description .....  1
Functional Block Diagrams .....  1
Revision History ..... 3
Specifications ..... 4
Electrical Characteristics-5 V Primary Input Supply/5 VSecondary Isolated Supply4
Electrical Characteristics-3.3 V Primary Input Supply/3.3 V Secondary Isolated Supply ..... 6
Electrical Characteristics-5 V Primary Input Supply/3.3 V Secondary Isolated Supply ..... 8
Package Characteristics ..... 10
Regulatory Information ..... 10
Insulation and Safety-Related Specifications ..... 10
IEC 60747-5-2 (VDE 0884, Part 2):2003-01 Insulation Characteristics ..... 11
Recommended Operating Conditions ..... 11
Absolute Maximum Ratings ..... 12
ESD Caution ..... 12
Pin Configurations and Function Descriptions ..... 13
Truth Table ..... 16
Typical Performance Characteristics ..... 17
Terminology. ..... 20
Applications Information ..... 21
PCB Layout ..... 21
Thermal Analysis ..... 21
Propagation Delay-Related Parameters ..... 22
Start-Up Behavior ..... 22
EMI Considerations ..... 22
DC Correctness and Magnetic Field Immunity ..... 22
Power Consumption ..... 23
Power Considerations ..... 24
Increasing Available Power ..... 24
Insulation Lifetime ..... 26
Outline Dimensions. ..... 27
Ordering Guide ..... 27

## REVISION HISTORY

6/2020—Rev. D to Rev. E
Change to Features Section 1
Changes to Table 15 ..... 10
Changes to PCB Layout Section ..... 21
Changes to Start-Up Behavior Section ..... 22
3/2019—Rev. C to Rev. D
Change to Features Section .....  1
Change to Table 15 ..... 10
6/2012—Rev. B to Rev. C
Created Hyperlink for Safety and Regulatory Approvals
Entry in Features Section .....  1
Updated Outline Dimensions ..... 26
9/2011-Rev. A to Rev. B
Changes to Product Title, Features Section, and General Description Section .....  1
Added Table 1; Renumbered Sequentially .....  1
Changes to Specifications Section .....  3
Changes to Table 19 and Table 20 ..... 11
Changes to Table 21 ..... 12
Changes to Table 22 ..... 13
Changes to Table 23 ..... 14
Changes to Table 24 and Table 25 ..... 15
Changes to Figure 11 to Figure 13 ..... 16
Changes to Figure 11, Figure 12 Caption, Figure 14 Caption, and Figure 16 Caption. ..... 16
Added Figure 19 and Figure 20; Renumbered Sequentially ..... 17
Changes to Figure 21 and Figure 22. ..... 17
Changes to Terminology Section. ..... 19
Changes to Applications Information Section ..... 20
Deleted Increasing Available Power, Figure 15, and Figure 16;
Renumbered Sequentially ..... 20
Changes to PCB Layout Section ..... 20
Added Start-Up Behavior Section ..... 21
Moved and Changes to EMI Considerations Section ..... 21
Changes to DC Correctness and Magnetic Field Immunity Section .....  21
Changes to Power Consumption Section and Figure 29 ..... 22
Changes to Power Considerations ..... 23
Added Increasing Available Power Section and Table 26. ..... 23
Added Table 27 ..... 24
Changes to Insulation Lifetime Section ..... 24
11/2008—Rev. 0 to Rev. A Changes to Figure 1 and General Description Section ..... 1
Changes to Table 1 ..... 3
Changes to Table 2 ..... 5
Changes to Table 4. ..... 7
Changes to Table 6 and Table 7. .....  .8
Changes to Table 8 and Table 9 . .....  .9
Changes to Figure 7 and Table 10 ..... 10
Changes to Figure 8 and Table 11 ..... 11
Changes to Figure 9 and Table 12 ..... 12
Changes to Figure 10 and Table 13 ..... 13
Moved Truth Table Section ..... 13
Changes to Applications Information Section and PCB Layout Section ..... 17
Changes to DC Correctness and Magnetic Field Immunity Section ..... 18
Changes to Power Considerations Section ..... 20
Added Increasing Available Power Section, Table 15, and Table 16 ..... 20
5/2008—Revision 0: Initial Version

## SPECIFICATIONS

## ELECTRICAL CHARACTERISTICS—5 V PRIMARY INPUT SUPPLY/5 V SECONDARY ISOLATED SUPPLY

Typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DDI}}=\mathrm{V}_{\text {SEL }}=\mathrm{V}_{\text {ISO }}=5 \mathrm{~V}$. Minimum/maximum specifications apply over the entire recommended operation range which is $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DDI}}, \mathrm{V}_{\text {SEL }}, \mathrm{V}_{\text {ISO }} \leq 5.5 \mathrm{~V}$; and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$, unless otherwise noted. Switching specifications are tested with $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and CMOS signal levels, unless otherwise noted.

Table 2. DC-to-DC Converter Static Specifications

| Parameter | Symbol | Min | Typ | Max | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DC-TO-DC CONVERTER SUPPLY |  |  |  |  |  |  |
| Setpoint | $V_{\text {ISO }}$ | 4.7 | 5.0 | 5.4 | V | $\mathrm{I}_{\text {SO }}=0 \mathrm{~mA}$ |
| Line Regulation | VISO (LINE) |  | 1 |  | $\mathrm{mV} / \mathrm{V}$ | $\mathrm{I}_{\text {Iso }}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD} 1}=4.5 \mathrm{~V}$ to 5.5 V |
| Load Regulation | VISO (LOAD) |  |  | 5 | \% | $\mathrm{I}_{\text {SO }}=10 \mathrm{~mA}$ to 90 mA |
| Output Ripple | $\mathrm{V}_{\text {ISO (RIP) }}$ |  | 75 |  | mV p-p | 20 MHz bandwidth, $\mathrm{C}_{\text {BO }}=0.1 \mu \mathrm{~F} \\| 10 \mu \mathrm{~F}$, $\mathrm{I}_{\text {SO }}=90 \mathrm{~mA}$ |
| Output Noise | VISO (NOISE) |  | 200 |  | mV p-p | $\mathrm{C}_{\text {BO }}=0.1 \mu \mathrm{~F} \\| 10 \mu \mathrm{~F}$, liso $=90 \mathrm{~mA}$ |
| Switching Frequency | fosc |  | 180 |  | MHz |  |
| PWM Frequency | $\mathrm{f}_{\text {PWM }}$ |  | 625 |  | kHz |  |
| Output Supply Current | IIso (max) | 100 |  |  | mA | $\mathrm{V}_{\text {ISO }}>4.5 \mathrm{~V}$ |
| Efficiency at liso (max) |  |  | 34 |  | \% | $\mathrm{I}_{\text {so }}=100 \mathrm{~mA}$ |
| $\mathrm{I}_{\text {DD }}$, No Viso Load | $\mathrm{ILD1}_{\text {(0) }}$ |  | 19 | 30 | mA |  |
| $\mathrm{I}_{\text {DD1 }}$, Full V ISO $^{\text {Load }}$ | $1 \mathrm{IDPI}_{\text {(max) }}$ |  | 290 |  | mA |  |

Table 3. DC-to-DC Converter Dynamic Specifications

| Parameter | Symbol | 1 Mbps-A Grade, C Grade |  |  | 25 Mbps-C Grade |  |  | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max |  |  |
| SUPPLY CURRENT |  |  |  |  |  |  |  |  |  |
| Input | IDD1 |  |  |  |  |  |  |  |  |
| ADuM5401 |  |  | 19 |  |  | 68 |  | mA | No Viso load |
| ADuM5402 |  |  | 19 |  |  | 71 |  | mA | No Viso load |
| ADuM5403 |  |  | 19 |  |  | 75 |  | mA | No Viso load |
| ADuM5404 |  |  | 19 |  |  | 78 |  | mA | No Viso load |
| Available to Load | IISO (LOAD) |  |  |  |  |  |  |  |  |
| ADuM5401 |  |  | 100 |  |  | 87 |  | mA |  |
| ADuM5402 |  |  | 100 |  |  | 85 |  | mA |  |
| ADuM5403 |  |  | 100 |  |  | 83 |  | mA |  |
| ADuM5404 |  |  | 100 |  |  | 81 |  | mA |  |

Table 4. Switching Specifications

| Parameter | Symbol | A Grade |  |  | C Grade |  |  | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max |  |  |
| SWITCHING SPECIFICATIONS |  | 1000 | 55 |  | 40 | 45 | $\begin{aligned} & 25 \\ & 60 \end{aligned}$ | Mbps <br> ns | Within PWD limit 50\% input to 50\% output \|tPLH - tpHL $^{\text {\| }}$ |
| Data Rate |  |  |  | 1 |  |  |  |  |  |
| Propagation Delay | $\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$ |  |  | 100 |  |  |  |  |  |
| Pulse Width Distortion Change vs. Temperature | PWD |  |  | 40 |  |  | 6 | ns $\mathrm{ps} /{ }^{\circ} \mathrm{C}$ |  |
| Change vs. Temperature Pulse Width | PW |  |  | 50 |  |  | 15 | $\mathrm{ps} /{ }^{\circ} \mathrm{C}$ ns | Within PWD limit Between any two units |
| Propagation Delay Skew | tpsk |  |  |  |  |  |  | ns |  |
| Channel Matching |  |  |  |  |  |  |  |  |  |
| Codirectional ${ }^{1}$ | $\mathrm{t}_{\text {PSKco }}$ |  |  | 50 |  |  | 6 | ns |  |
| Opposing Directional ${ }^{2}$ | $\mathrm{t}_{\text {PSKod }}$ |  |  | 50 |  |  | 15 | ns |  |

[^0]ADuM5401/ADuM5402/ADuM5403/ADuM5404

Table 5. Input and Output Characteristics

| Parameter | Symbol | Min | Typ | Max | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DC SPECIFICATIONS |  |  |  |  |  |  |
| Logic High Input Threshold | $\mathrm{V}_{\mathrm{IH}}$ | $0.7 \times \mathrm{V}_{\text {ISO }}$ or $0.7 \times \mathrm{V}_{\text {DD } 1}$ |  |  | V |  |
| Logic Low Input Threshold | VIL |  |  | $\begin{aligned} & 0.3 \times V_{\text {ISO }} \text { or } 0.3 \times \\ & V_{D D 1} \end{aligned}$ | V |  |
| Logic High Output Voltages | V OH | $\begin{aligned} & V_{D D 1}-0.3 \text { or } V_{\text {ISO }}-0.3 \\ & V_{D D 1}-0.5 \text { or } V_{\text {ISO }}-0.5 \end{aligned}$ | 5.0 |  | V | $\mathrm{l}_{\text {Ox }}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {lx }}$ |
|  |  |  | 4.8 |  | V | $\mathrm{l}_{\mathrm{ox}}=-4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {IXH }}$ |
| Logic Low Output Voltages | VoL |  | 0.0 | 0.1 | V | $\mathrm{l}_{\text {ox }}=20 \mu \mathrm{~A}, \mathrm{~V}_{\text {lx }}=\mathrm{V}_{\text {lxL }}$ |
|  |  |  | 0.2 | 0.4 | V | $\mathrm{I}_{\mathrm{Ox}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\text {IxL }}$ |
| Undervoltage Lockout | UVLO |  |  |  |  | $\mathrm{V}_{\mathrm{DDI}}, \mathrm{V}_{\text {DDL }}, \mathrm{V}_{\text {ISO }}$ supplies |
| Positive Going Threshold | Vuv+ |  | 2.7 |  | V |  |
| Negative Going Threshold | Vuv- |  | 2.4 |  | V |  |
| Hysteresis | Vuvh |  | 0.3 |  | V |  |
| Input Currents per Channel | 1 | -20 | +0.01 | +20 | $\mu \mathrm{A}$ | $0 \mathrm{~V} \leq \mathrm{V}_{\text {IX }} \leq \mathrm{V}_{\mathrm{DDX}}$ |
| AC SPECIFICATIONS |  |  |  |  |  |  |
| Output Rise/Fall Time | $\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$ |  | 2.5 |  | ns | 10\% to 90\% |
| Common-Mode Transient Immunity ${ }^{1}$ | \|CM| | 25 | 35 |  | kV/ $\mu \mathrm{s}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD} 1} \text { or } \mathrm{V}_{\mathrm{ISO},} \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$ |
| Refresh Rate | $\mathrm{fr}_{\mathrm{r}}$ |  | 1.0 |  | Mbps |  |

${ }^{1}|C M|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $V_{O}>0.7 \times V_{D D 1}$ or $0.7 \times V_{\text {ISO }}$ for a high output or $V_{O}<0.3 \times V_{D D 1}$ or $0.3 \times V_{150}$ for a low output. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

## ADuM5401/ADuM5402/ADuM5403/ADuM5404

## ELECTRICAL CHARACTERISTICS—3.3 V PRIMARY INPUT SUPPLY/3.3 V SECONDARY ISOLATED SUPPLY

Typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DDI}}=\mathrm{V}_{\text {ISO }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {SEL }}=\mathrm{GND}_{\text {ISO }}$. Minimum/maximum specifications apply over the entire recommended operation range which is $3.0 \mathrm{~V} \leq \mathrm{V}_{\text {DDI }}, \mathrm{V}_{\text {sEL }}, \mathrm{V}_{\text {ISO }} \leq 3.6 \mathrm{~V}$; and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$, unless otherwise noted. Switching specifications are tested with $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and CMOS signal levels, unless otherwise noted.

Table 6. DC-to-DC Converter Static Specifications

| Parameter | Symbol | Min | Typ | Max | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DC-TO-DC CONVERTER SUPPLY |  |  |  |  |  |  |
| Setpoint | Viso | 3.0 | 3.3 | 3.6 | V | $\mathrm{l}_{\text {ISO }}=0 \mathrm{~mA}$ |
| Line Regulation | VISO (LINE) |  | 1 |  | $\mathrm{mV} / \mathrm{V}$ | $\mathrm{I}_{150}=30 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD} 1}=3.0 \mathrm{~V}$ to 3.6 V |
| Load Regulation | VISO (LOAD) |  | 1 | 5 | \% | $\mathrm{l}_{\text {iso }}=6 \mathrm{~mA}$ to 54 mA |
| Output Ripple | $\mathrm{V}_{\text {ISO (RIP) }}$ |  | 50 |  | $m V p-p$ | 20 MHz bandwidth, $\mathrm{C}_{\text {BO }}=0.1 \mu \mathrm{~F} \\| 10 \mu \mathrm{~F}$, $\mathrm{l}_{\text {ISO }}=54 \mathrm{~mA}$ |
| Output Noise | VISO (NOISE) |  | 130 |  | mV p-p | $\mathrm{C}_{\text {BO }}=0.1 \mu \mathrm{~F} \\| 10 \mu \mathrm{~F}, \mathrm{l}_{\text {ISO }}=54 \mathrm{~mA}$ |
| Switching Frequency | fosc |  | 180 |  | MHz |  |
| PWM Frequency | $\mathrm{f}_{\text {PWM }}$ |  | 625 |  | kHz |  |
| Output Supply Current | $\mathrm{I}_{\text {SO }}$ (max) | 60 |  |  | mA | $\mathrm{V}_{\text {ISo }}>3 \mathrm{~V}$ |
| Efficiency at IIso (max) |  |  | 33 |  | \% | $\mathrm{l}_{\text {Iso }}=60 \mathrm{~mA}$ |
| ldD1, No Viso Load | l DD1 (Q) |  | 14 | 20 | mA |  |
| IDD1, Full Viso Load | IDD1 (MAX) |  | 175 |  | mA |  |

Table 7. DC-to-DC Converter Dynamic Specifications

| Parameter | Symbol | 1 Mbps-A or C Grade |  |  | 25 Mbps-C Grade |  |  | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max |  |  |
| SUPPLY CURRENT |  |  |  |  |  |  |  |  |  |
| Input | IDD1 |  |  |  |  |  |  |  |  |
| ADuM5401 |  |  | 14 |  |  | 44 |  | mA | No Viso load |
| ADuM5402 |  |  | 14 |  |  | 46 |  | mA | No Viso load |
| ADuM5403 |  |  | 14 |  |  | 47 |  | mA | No Viso load |
| ADuM5404 |  |  | 14 |  |  | 51 |  | mA | No Viso load |
| Available to Load | IISO (LOAD) |  |  |  |  |  |  |  |  |
| ADuM5401 |  |  | 60 |  |  | 52 |  | mA |  |
| ADuM5402 |  |  | 60 |  |  | 51 |  | mA |  |
| ADuM5403 |  |  | 60 |  |  | 49 |  | mA |  |
| ADuM5404 |  |  | 60 |  |  | 48 |  | mA |  |

Table 8. Switching Specifications

| Parameter | Symbol | A Grade |  |  | C Grade |  |  | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max |  |  |
| SWITCHING SPECIFICATIONS |  | 1000 | 60 | 1 | 40 | 45 | $\begin{aligned} & 25 \\ & 60 \\ & 6 \end{aligned}$ | Mbps <br> ns <br> ns <br> $\mathrm{ps} /{ }^{\circ} \mathrm{C}$ | Within PWD limit 50\% input to 50\% output \|tpLH - tpHL| |
| Data Rate | tphL, tPLHPWD |  |  |  |  |  |  |  |  |
| Propagation Delay |  |  |  | 100 |  |  |  |  |  |
| Pulse Width Distortion |  |  |  | 40 |  |  |  |  |  |
| Change vs. Temperature |  |  |  |  |  |  |  |  |  |
| Pulse Width | PW |  |  |  |  |  |  |  | Within PWD limit |
| Propagation Delay Skew | tpsk |  |  | 50 |  |  | 45 | ns | Between any two units |
| Channel Matching |  |  |  |  |  |  |  |  |  |
| Codirectional ${ }^{1}$ | tpskco |  |  | 50 |  |  | 6 | ns |  |
| Opposing Directional ${ }^{2}$ | tpskod |  |  | 50 |  |  | 15 | ns |  |

[^1]ADuM5401/ADuM5402/ADuM5403/ADuM5404

Table 9. Input and Output Characteristics

| Parameter | Symbol | Min | Typ | Max | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DC SPECIFICATIONS |  |  |  |  |  |  |
| Logic High Input Threshold | $\mathrm{V}_{\mathrm{IH}}$ | $0.7 \times \mathrm{V}_{\text {ISO }}$ or $0.7 \times \mathrm{V}_{\text {DD } 1}$ |  |  | V |  |
| Logic Low Input Threshold | VIL |  |  | $\begin{aligned} & 0.3 \times V_{\text {ISO }} \text { or } 0.3 \times \\ & V_{D D 1} \end{aligned}$ | V |  |
| Logic High Output Voltages | $\mathrm{V}_{\text {OH }}$ | $\begin{aligned} & V_{D D 1}-0.3 \text { or } V_{\text {ISO }}-0.3 \\ & V_{D D 1}-0.5 \text { or } V_{\text {ISO }}-0.5 \end{aligned}$ | 3.3 |  | V |  |
|  |  |  | 3.1 |  | V | $\mathrm{I}_{\mathrm{ox}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{lx}}=\mathrm{V}_{\mathrm{lxH}}$ |
| Logic Low Output Voltages | Vol |  | 0.0 | 0.1 | V | $\mathrm{I}_{\mathrm{Ox}}=20 \mu \mathrm{~A}, \mathrm{~V}_{\text {Ix }}=\mathrm{V}_{\text {IxL }}$ |
|  |  |  | 0.0 | 0.4 | V | $\mathrm{l}_{\mathrm{Ox}}=4 \mathrm{~mA}, \mathrm{~V}_{\text {Ix }}=\mathrm{V}_{\text {IxL }}$ |
| Undervoltage Lockout | UVLO |  |  |  |  | $\mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {DDL, }} \mathrm{V}_{\text {ISO }}$ supplies |
| Positive Going Threshold | Vuv+ |  | 2.7 |  | V |  |
| Negative Going Threshold | Vuv- |  | 2.4 |  | V |  |
| Hysteresis | Vuvh |  | 0.3 |  | V |  |
| Input Currents per Channel | 1 | -10 | +0.01 | +10 | $\mu \mathrm{A}$ | $0 \mathrm{~V} \leq \mathrm{V}_{1 \mathrm{x}} \leq \mathrm{V}_{\mathrm{DDx}}$ |
| AC SPECIFICATIONS |  |  |  |  |  |  |
| Output Rise/Fall Time | $\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$ |  | 2.5 |  | ns | 10\% to 90\% |
| Common-Mode Transient Immunity ${ }^{1}$ | \|CM| | 25 | 35 |  | kV/ $\mu \mathrm{s}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{IX}}=\mathrm{V}_{\mathrm{DD} 1} \text { or } \mathrm{V}_{\mathrm{ISO},} \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$ |
| Refresh Rate | $\mathrm{fr}_{\mathrm{r}}$ |  | 1.0 |  | Mbps |  |

${ }^{1}|C M|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $V_{O}>0.7 \times V_{D D 1}$ or $0.7 \times V_{\text {ISO }}$ for a high output or $V_{O}<0.3 \times V_{D D 1}$ or $0.3 \times V_{\text {ISO }}$ for a low output. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

## ADuM5401/ADuM5402/ADuM5403/ADuM5404

## ELECTRICAL CHARACTERISTICS—5 V PRIMARY INPUT SUPPLY/3.3 V SECONDARY ISOLATED SUPPLY

Typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DDI}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {ISO }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {SEL }}=\mathrm{GND}_{\text {ISo. }}$. Minimum/maximum specifications apply over the entire recommended operation range which is $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DDI}} \leq 5.5 \mathrm{~V}, 3.0 \mathrm{~V} \leq \mathrm{V}_{\text {ISO }} \leq 3.6 \mathrm{~V}$; and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$, unless otherwise noted. Switching specifications are tested with $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and CMOS signal levels, unless otherwise noted.

Table 10. DC-to-DC Converter Static Specifications

| Parameter | Symbol | Min | Typ | Max | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DC-TO-DC CONVERTER SUPPLY |  |  |  |  |  |  |
| Setpoint | Viso | 3.0 | 3.3 | 3.6 | V | $\mathrm{l}_{\text {ISO }}=0 \mathrm{~mA}$ |
| Line Regulation | $V_{\text {ISO (LINE) }}$ |  | 1 |  | $\mathrm{mV} / \mathrm{V}$ | $\mathrm{I}_{\text {ISO }}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD} 1}=3.0 \mathrm{~V}$ to 3.6 V |
| Load Regulation | VISO (LOAD) |  | 1 | 5 | \% | $\mathrm{l}_{\text {iso }}=6 \mathrm{~mA}$ to 54 mA |
| Output Ripple | $\mathrm{V}_{\text {ISO (RIP) }}$ |  | 50 |  | $m V \mathrm{p}-\mathrm{p}$ | 20 MHz bandwidth, $\mathrm{C}_{\text {BO }}=0.1 \mu \mathrm{~F} \\| 10 \mu \mathrm{~F}$, $\mathrm{l}_{\text {ISO }}=90 \mathrm{~mA}$ |
| Output Noise | VISO (NOISE) |  | 130 |  | $m V p-p$ | $\mathrm{C}_{\text {BO }}=0.1 \mu \mathrm{~F} \\| 10 \mu \mathrm{~F}, \mathrm{l}_{\text {ISO }}=90 \mathrm{~mA}$ |
| Switching Frequency | fosc |  | 180 |  | MHz |  |
| PWM Frequency | $\mathrm{f}_{\text {PWM }}$ |  | 625 |  | kHz |  |
| Output Supply Current | IISO (MAX) | 100 |  |  | mA | $\mathrm{V}_{\text {ISO }}>3 \mathrm{~V}$ |
| Efficiency at IIso (MAX) |  |  | 30 |  | \% | $\mathrm{l}_{\text {iso }}=90 \mathrm{~mA}$ |
| $I_{\text {DD1 }}$, No Viso Load | $\mathrm{I}_{\text {DD1 (Q) }}$ |  | 14 | 20 | mA |  |
| IDD1, Full Viso Load | IDD1 (MAX) |  | 230 |  | mA |  |

Table 11. DC-to-DC Converter Dynamic Specifications

| Parameter | Symbol | 1 Mbps-A or C Grade |  |  | 25 Mbps-C Grade |  |  | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max |  |  |
| SUPPLY CURRENT |  |  |  |  |  |  |  |  |  |
| Input | $\mathrm{I}_{\mathrm{D} 1}$ |  |  |  |  |  |  |  |  |
| ADuM5401 |  |  | 9 |  |  | 44 |  | mA | No Viso load |
| ADuM5402 |  |  | 9 |  |  | 45 |  | mA | No Viso load |
| ADuM5403 |  |  | 9 |  |  | 46 |  | mA | No Viso load |
| ADuM5404 |  |  | 9 |  |  | 47 |  | mA | No Viso load |
| Available to Load | IISO (LOAD) |  |  |  |  |  |  |  |  |
| ADuM5401 |  |  | 100 |  |  | 92 |  | mA |  |
| ADuM5402 |  |  | 100 |  |  | 91 |  | mA |  |
| ADuM5403 |  |  | 100 |  |  | 89 |  | mA |  |
| ADuM5404 |  |  | 100 |  |  | 88 |  | mA |  |

Table 12. Switching Specifications

| Parameter | Symbol | A Grade |  |  | C Grade |  |  | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max |  |  |
| SWITCHING SPECIFICATIONS |  | 1000 | 60 | 1 | 40 | 45 | $\begin{aligned} & 25 \\ & 60 \end{aligned}$ | Mbps <br> ns <br> ns <br> $\mathrm{ps} /{ }^{\circ} \mathrm{C}$ | Within PWD limit 50\% input to 50\% output \|tPLH - $\mathrm{t}_{\text {PHL }} \mid$ |
| Data Rate | $\mathrm{t}_{\text {PHL }}, \mathrm{tPLH}$ PWD |  |  |  |  |  |  |  |  |
| Propagation Delay |  |  |  | 100 |  |  |  |  |  |
| Pulse Width Distortion |  |  |  | 40 |  |  | 6 |  |  |
| Change vs. Temperature |  |  |  |  |  |  |  |  |  |
| Pulse Width | PW |  |  |  |  |  |  | ns | Within PWD limit |
| Propagation Delay Skew | $t_{\text {PSK }}$ |  |  | 50 |  |  | 15 | ns | Between any two units |
| Channel Matching |  |  |  |  |  |  |  |  |  |
| Codirectional ${ }^{1}$ | tPSKCD |  |  | 50 |  |  | 6 | ns |  |
| Opposing Directional ${ }^{2}$ | tPSKOD |  |  | 50 |  |  | 15 | ns |  |

[^2]Table 13. Input and Output Characteristics

| Parameter | Symbol | Min | Typ | Max | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DC SPECIFICATIONS <br> Logic High Input Threshold | $\mathrm{V}_{\mathrm{IH}}$ | $\begin{aligned} & 0.7 \times V_{\text {ISO }} \text { or } 0.7 \times \\ & V_{\text {DD1 }} \end{aligned}$ |  |  | V |  |
| Logic Low Input Threshold | VIL |  |  | $\begin{aligned} & 0.3 \times V_{\text {ISO }} \text { or } 0.3 \times \\ & V_{\text {DD1 }} \end{aligned}$ | V |  |
| Logic High Output Voltages | Vor | $\begin{aligned} & V_{D D 1}-0.2, V_{I S O}-0.2 \\ & V_{D D 1}-0.5 \text { or } \\ & V_{I S O}-0.5 \end{aligned}$ | $V_{D D 1}$ or $V_{\text {ISO }}$ <br> $V_{D D 1}-0.2$ or <br> $V_{\text {ISO }}-0.2$ |  | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ | $\begin{aligned} & l_{o x}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \times \mathrm{H}} \\ & \mathrm{I}_{\mathrm{xx}}=-4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \times \mathrm{H}} \end{aligned}$ |
| Logic Low Output Voltages | Vol |  | $\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$ | $\begin{aligned} & 0.1 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ | $\begin{aligned} & I_{\text {ox }}=20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxL}} \\ & \mathrm{I}_{\mathrm{ox}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxL}} \end{aligned}$ |
| Undervoltage Lockout | UVLO |  |  |  |  | $\mathrm{V}_{\mathrm{DDI}}, \mathrm{V}_{\text {DLL }}, \mathrm{V}_{\text {ISO }}$ supplies |
| Positive Going Threshold | Vuv+ |  | 2.7 |  | V |  |
| Negative Going Threshold | Vuv- |  | 2.4 |  | V |  |
| Hysteresis | Vuvi |  | 0.3 |  | V |  |
| Input Currents per Channel | 1 | -10 | +0.01 | +10 | $\mu \mathrm{A}$ | $0 \mathrm{~V} \leq \mathrm{V}_{\text {Ix }} \leq \mathrm{V}_{\text {DDx }}$ |
| AC SPECIFICATIONS |  |  |  |  |  |  |
| Output Rise/Fall Time | $\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$ |  | 2.5 |  | ns | 10\% to 90\% |
| Common-Mode Transient Immunity ${ }^{1}$ | \|CM| | 25 | 35 |  | kV/ $/ \mathrm{s}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD} 1} \text { or } \mathrm{V}_{I S O} \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$ |
| Refresh Rate | $\mathrm{fr}_{\mathrm{r}}$ |  | 1.0 |  | Mbps |  |

${ }^{1}|C M|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $V_{O}>0.7 \times V_{D D 1}$ or $0.7 \times V_{\text {ISO }}$ for a high output or $V_{O}<0.3 \times V_{D D 1}$ or $0.3 \times V_{\text {ISO }}$ for a low output. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

## ADuM5401/ADuM5402/ADuM5403/ADuM5404

## PACKAGE CHARACTERISTICS

Table 14.

| Parameter | Symbol | Min | Typ | Max | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RESISTANCE AND CAPACITANCE |  |  |  |  |  |  |
| Resistance (Input-to-Output) ${ }^{1}$ | R.-O |  | $10^{12}$ |  | $\Omega$ |  |
| Capacitance (Input-to-Output) ${ }^{1}$ | $\mathrm{Cl}_{1-\mathrm{O}}$ |  | 2.2 |  | pF | $\mathrm{f}=1 \mathrm{MHz}$ |
| Input Capacitance ${ }^{2}$ | $\mathrm{Cl}_{1}$ |  | 4.0 |  | pF |  |
| IC Junction-to-Ambient Thermal Resistance | $\theta_{\text {JA }}$ |  | 45 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | Thermocouple located at center of package underside, test conducted on 4-layer board with thin traces ${ }^{3}$ |

${ }^{1}$ This device is considered a 2-terminal device; Pin 1 through Pin 8 are shorted together, and Pin 9 through Pin 16 are shorted together.
${ }^{2}$ Input capacitance is from any input data pin to ground.
${ }^{3}$ See the Thermal Analysis section for thermal model definitions.

## REGULATORY INFORMATION

The ADuM5401/ADuM5402/ADuM5403/ADuM5404 are approved by the organizations listed in Table 15. Refer to Table 20 and the Insulation Lifetime section for more information about the recommended maximum working voltages for specific cross-insulation waveforms and insulation levels.

Table 15.

| UL ${ }^{1}$ | CSA | VDE ${ }^{2}$ | CQC |
| :---: | :---: | :---: | :---: |
| Recognized Under 1577 Component Recognition Program ${ }^{1}$ | Approved under CSA Component Acceptance Notice 5A | Certified according to IEC 60747-5-2 (VDE 0884 Part 2):2003-01 ${ }^{2}$ | Certified by CQC11- <br> 471543-2012, <br> GB4943.1-2011 |
| Single Protection, 2500 V rms Isolation Voltage | Testing was conducted per CSA 60950-1-07 and IEC 60950-1 $2^{\text {nd }}$ Ed. at 2.5 kV rated voltage | Basic insulation, 560 V peak | Basic insulation at 820 V rms <br> (1159 V peak) |
|  | Basic insulation at 600 V rms ( 848 V peak) working voltage |  | Reinforced insulation at $420 \mathrm{~V} \mathrm{rms}(578 \mathrm{~V}$ peak), tropical climate, altitude $\leq$ 5000 meters |
|  | Reinforced insulation at 250 V rms ( 353 V peak) working voltage |  |  |
| File E214100 | File 205078 | File 2471900-4880-0001 | File CQC16001151347 |

${ }^{1}$ In accordance with UL 1577, each ADuM5401/ADuM5402/ADuM5403/ADuM5404 is proof tested by applying an insulation test voltage $\geq 3000 \mathrm{~V}$ rms for 1 second (current leakage detection limit $=10 \mu \mathrm{~A}$ ).
${ }^{2}$ In accordance with IEC 60747-5-2 (VDE 0884 Part 2):2003-01, each ADuM5401/ADuM5402/ADuM5403/ADuM5404 is proof tested by applying an insulation test voltage $\geq$ 1590 V peak for 1 second (partial discharge detection limit $=5 \mathrm{pC}$ ). The asterisk ( ${ }^{*}$ ) marking branded on the component designates IEC 60747-5-2 (VDE 0884 Part 2):2003-01 approval.

## INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 16. Critical Safety-Related Dimensions and Material Properties

| Parameter | Symbol | Value | Unit | Test Conditions/Comments |
| :--- | :--- | :--- | :--- | :--- |
| Rated Dielectric Insulation Voltage | L(IO1) | 2500 | V rms | 1-minute duration |
| Minimum External Air Distance | L(IO2) | 7.6 | mm | Measured from input terminals to output <br> terminals, shortest distance through air |
| Minimum External Tracking (Creepage) |  | mm | Measured from input terminals to output <br> terminals, shortest distance path along body |  |
| Minimum Internal Gap (Internal Clearance) | 0.017 min | mm | Distance through insulation |  |
| Tracking Resistance (Comparative Tracking Index) <br> Material Group | CTI | $>175$ | V | DIN IEC 112/VDE 0303, Part 1 1 <br> Material Group (DIN VDE 0110, 1/89, Table 1) |

## IEC 60747-5-2 (VDE 0884, PART 2):2003-01 INSULATION CHARACTERISTICS

These isolators are suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by the protective circuits. The asterisk (*) marking branded on the package denotes IEC 60747-5-2 (VDE 0884, Part 2) approval.

Table 17. VDE Characteristics

| Description | Conditions | Symbol | Characteristic | Unit |
| :---: | :---: | :---: | :---: | :---: |
| Installation Classification per DIN VDE 0110 |  |  |  |  |
| For Rated Mains Voltage $\leq 150 \mathrm{~V}$ rms |  |  | I to IV |  |
| For Rated Mains Voltage $\leq 300 \mathrm{~V}$ rms |  |  | I to III |  |
| For Rated Mains Voltage $\leq 400 \mathrm{~V}$ rms |  |  | I to II |  |
| Climatic Classification |  |  | 40/105/21 |  |
| Pollution Degree per DIN VDE 0110, Table 1 |  |  | 2 |  |
| Maximum Working Insulation Voltage |  | Viorm | 560 | $\checkmark$ peak |
| Input-to-Output Test Voltage, Method b1 | $V_{\text {IORM }} \times 1.875=V_{\text {PR, }}, 100 \%$ production test, $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$ | $V_{\text {PR }}$ | 1050 | $\checkmark$ peak |
| Input-to-Output Test Voltage, Method a |  | $V_{\text {PR }}$ |  |  |
| After Environmental Tests Subgroup 1 | $\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\text {PR, }} \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$ |  | 896 | $\checkmark$ peak |
| After Input and/or Safety Test Subgroup 2 and Subgroup 3 | $\mathrm{V}_{\text {IORM }} \times 1.2=\mathrm{V}_{\text {PR, }} \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$ |  | 672 | $\checkmark$ peak |
| Highest Allowable Overvoltage | Transient overvoltage, $\mathrm{t}_{\text {TR }}=10 \mathrm{sec}$ | $\mathrm{V}_{\text {TR }}$ | 4000 | $\checkmark$ peak |
| Safety Limiting Values | Maximum value allowed in the event of a failure (see Figure 6) |  |  |  |
| Case Temperature |  | Ts | 150 | ${ }^{\circ} \mathrm{C}$ |
| Side 1 lod Current |  | Is1 | 555 | mA |
| Insulation Resistance at $\mathrm{T}_{\mathrm{s}}$ | $\mathrm{V}_{10}=500 \mathrm{~V}$ | Rs | $>10^{9}$ | $\Omega$ |



Figure 6. Thermal Derating Curve, Dependence of Safety Limiting Values on Case Temperature, per DIN EN 60747-5-2

## RECOMMENDED OPERATING CONDITIONS

Table 18.

| Parameter | Symbol | Min | Max | Unit |
| :--- | :--- | :--- | :--- | :--- |
| Operating Temperature $^{1}$ | $\mathrm{~T}_{\mathrm{A}}$ | -40 | +105 | ${ }^{\circ} \mathrm{C}$ |
| Supply Voltages $^{2}$ |  |  |  |  |
| $\mathrm{~V}_{\text {DD1 }} @ \mathrm{~V}_{\text {SEL }}=0 \mathrm{~V}$ | $\mathrm{~V}_{\mathrm{DD}}$ | 3.0 | 5.5 | V |
| $\mathrm{~V}_{\mathrm{DD1}} @ \mathrm{~V}_{\text {SEL }}=\mathrm{V}_{\text {ISO }}$ | $\mathrm{V}_{\mathrm{DD}}$ | 4.5 | 5.5 | V |

[^3]
## ADuM5401/ADuM5402/ADuM5403/ADuM5404

## ABSOLUTE MAXIMUM RATINGS

Ambient temperature $=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 19.

| Parameter | Rating |
| :--- | :--- |
| Storage Temperature Range $\left(\mathrm{T}_{S T}\right)$ | $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Ambient Operating Temperature | $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ |
| $\quad$ Range $\left(\mathrm{T}_{\mathrm{A}}\right)$ |  |$\quad-2.5 \mathrm{~V}$ to +7.0 V.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

## ESD CAUTION

|  | ESD (electrostatic discharge) sensitive device. <br> Charged devices and circuit boards can discharge <br> without detection. Although this product features <br> patented or proprietary protection circuitry, damage <br> may occur on devices subjected to high energy ESD. <br> Therefore, proper ESD precautions should be taken to <br> avoid performance degradation or loss of functionality. |
| :--- | :--- |

Table 20. Maximum Continuous Working Voltage Supporting 50-Year Minimum Lifetime ${ }^{1}$

| Parameter | Max | Unit | Applicable Certification |
| :--- | :--- | :--- | :--- |
| AC Voltage, Bipolar Waveform | 424 | V peak | All certifications, 50-year operation |
| AC Voltage, Unipolar Waveform |  |  |  |
| $\quad$ Basic Insulation | 600 | V peak | Working voltage per IEC 60950-1 |
| Reinforced Insulation | 353 | V peak | Working voltage per IEC 60950-1 |
| DC Voltage |  |  |  |
| Basic Insulation | 600 | V peak | Working voltage per IEC 60950-1 |
| Reinforced Insulation | 353 | V peak | Working voltage per IEC 60950-1 |

[^4]
## PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS



Figure 7. ADuM5401 Pin Configuration
Table 21. ADuM5401 Pin Function Descriptions

| Pin No. | Mnemonic | Description |
| :---: | :---: | :---: |
| 1 | VDD1 | Primary Supply Voltage, 3.0 V to 5.5 V. |
| 2,8 | $\mathrm{GND}_{1}$ | Ground 1. Ground reference for isolator primary. Pin 2 and Pin 8 are internally connected, and it is recommended that both pins be connected to a common ground. |
| 3 | $\mathrm{V}_{\text {IA }}$ | Logic Input A. |
| 4 | $V_{\text {IB }}$ | Logic Input B. |
| 5 | V IC | Logic Input C. |
| 6 | $\mathrm{V}_{\text {OD }}$ | Logic Output D. |
| 7 | RCout | Regulation Control Output. This pin is connected to the $R C_{\text {IN }}$ pin of a slave isoPower device to allow the ADuM5401 to control the regulation of the slave device. |
| 9,15 | GND ${ }_{\text {Iso }}$ | Ground Reference for Isolator Side 2. Pin 9 and Pin 15 are internally connected, and it is recommended that both pins be connected to a common ground. |
| 10 | $\mathrm{V}_{\text {SEL }}$ | Output Voltage Selection. When $\mathrm{V}_{\text {SEL }}=\mathrm{V}_{\text {ISO, }}$, the $\mathrm{V}_{\text {ISO }}$ setpoint is 5.0 V . When $\mathrm{V}_{\text {SEL }}=\mathrm{GND}_{\text {ISO, }}$ the $\mathrm{V}_{\text {ISO }}$ setpoint is 3.3 V . |
| 11 | VID | Logic Input D. |
| 12 | V OC | Logic Output C. |
| 13 | $\mathrm{V}_{\text {OB }}$ | Logic Output B. |
| 14 | VoA | Logic Output A. |
| 16 | Viso | Secondary Supply Voltage Output for External Loads, 3.3 V (VSEL Low) or 5.0 V (VSEL High$)$. |

## ADuM5401/ADuM5402/ADuM5403/ADuM5404

|  |  |  |
| :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{DD} 1} 1$ |  | 16 v iso |
| $\mathrm{GND}_{1} 2$ |  | $15 \mathrm{GND}_{\text {ISo }}$ |
| $\mathrm{V}_{18}{ }^{3}$ | ADuM5402 | $14.1{ }^{\text {OA }}$ |
| $\mathrm{V}_{18} 4$ | ADOP VIEW | ${ }^{13} \mathrm{v}_{\text {OB }}$ |
| $\mathrm{v}_{\mathrm{oc}} 5$ | (Not to Scale) | 12 v IC |
| $\mathrm{v}_{00} 6$ |  | ${ }^{11} \mathrm{v}_{10}$ |
| $\mathrm{RC}_{\text {out }} 7$ |  | 10 v SEL |
| $\mathrm{GND}_{1} 8$ |  | $9 \mathrm{GND}_{\text {Iso }}$ |

Figure 8. ADuM5402 Pin Configuration
Table 22. ADuM5402 Pin Function Descriptions

| Pin No. | Mnemonic | Description |
| :---: | :---: | :---: |
| 1 | $V_{\text {DD1 }}$ | Primary Supply Voltage, 3.0 V to 5.5 V . |
| 2,8 | GND ${ }_{1}$ | Ground 1. Ground reference for isolator primary. Pin 2 and Pin 8 are internally connected, and it is recommended that both pins be connected to a common ground. |
| 3 | $V_{\text {IA }}$ | Logic Input A. |
| 4 | $V_{\text {IB }}$ | Logic Input B. |
| 5 | Voc | Logic Output C. |
| 6 | Vod | Logic Output D. |
| 7 | RCout | Regulation Control Output. This pin is connected to the $R C_{\text {IN }}$ pin of a slave isoPower device to allow the ADuM5402 to control the regulation of the slave device. |
| 9,15 | GNDiso | Ground Reference for Isolator Side 2. Pin 9 and Pin 15 are internally connected, and it is recommended that both pins be connected to a common ground. |
| 10 | $\mathrm{V}_{\text {SEL }}$ | Output Voltage Selection. When $\mathrm{V}_{\text {SEL }}=\mathrm{V}_{\text {ISO, }}$, the $\mathrm{V}_{\text {ISO }}$ setpoint is 5.0 V . When $\mathrm{V}_{\text {SEL }}=\mathrm{GND}_{\text {ISO, }}$, the $\mathrm{V}_{\text {ISO }}$ setpoint is 3.3 V . |
| 11 | VID | Logic Input D. |
| 12 | VIC | Logic Input C. |
| 13 | $\mathrm{V}_{\text {OB }}$ | Logic Output B. |
| 14 | $\mathrm{V}_{\text {OA }}$ | Logic Output A. |
| 16 | $\mathrm{V}_{\text {ISO }}$ | Secondary Supply Voltage Output for External Loads, 3.3 V (VseL Low) or 5.0 V (VseL High). |



Figure 9. ADuM5403 Pin Configuration
Table 23. ADuM5403 Pin Function Descriptions

| Pin No. | Mnemonic | Description |
| :---: | :---: | :---: |
| 1 | VD1 | Primary Supply Voltage, 3.0 V to 5.5 V. |
| 2,8 | GND 1 | Ground 1. Ground reference for isolator primary. Pin 2 and Pin 8 are internally connected, and it is recommended that both pins be connected to a common ground. |
| 3 | $V_{\text {IA }}$ | Logic Input A. |
| 4 | $\mathrm{V}_{\text {OB }}$ | Logic Output B. |
| 5 | Voc | Logic Output C. |
| 6 | $V_{\text {OD }}$ | Logic Output D. |
| 7 | RCout | Regulation Control Output. This pin is connected to the $\mathrm{RC}_{\mathrm{IN}}$ pin of a slave isoPower device to allow the ADuM5403 to control the regulation of the slave device. |
| 9,15 | GND ${ }_{\text {Iso }}$ | Ground Reference for Isolator Side 2. Pin 9 and Pin 15 are internally connected, and it is recommended that both pins be connected to a common ground. |
| 10 | $V_{\text {SEL }}$ | Output Voltage Selection. When $\mathrm{V}_{\text {SEL }}=\mathrm{V}_{\text {ISO, }}$, the $\mathrm{V}_{\text {ISO }}$ setpoint is 5.0 V . When $\mathrm{V}_{\text {SEL }}=\mathrm{GND}_{\text {ISO, }}$ the $\mathrm{V}_{\text {ISO }}$ setpoint is 3.3 V . |
| 11 | VID | Logic Input D. |
| 12 | VIC | Logic Input C. |
| 13 | $V_{\text {IB }}$ | Logic Input B. |
| 14 | $\mathrm{V}_{\text {OA }}$ | Logic Output A. |
| 16 | Viso | Secondary Supply Voltage Output for External Loads, 3.3 V (Vsel Low) or 5.0 V (VseL High). |

## ADuM5401/ADuM5402/ADuM5403/ADuM5404



Figure 10. ADuM5404 Pin Configuration
Table 24. ADuM5404 Pin Function Descriptions

| Pin No | Mnemonic | Description |
| :---: | :---: | :---: |
| 1 | $\mathrm{V}_{\mathrm{DD} 1}$ | Primary Supply Voltage, 3.0 V to 5.5 V. |
| 2, 8 | $\mathrm{GND}_{1}$ | Ground 1. Ground reference for isolator primary. Pin 2 and Pin 8 are internally connected, and it is recommended that both pins be connected to a common ground. |
| 3 | $V_{\text {OA }}$ | Logic Output A. |
| 4 | $V_{\text {OB }}$ | Logic Output B. |
| 5 | Voc | Logic Output C. |
| 6 | Vod | Logic Output D. |
| 7 | RCout | Regulation Control Output. This pin is connected to the $R C_{\text {IN }}$ pin of a slave isoPower device to allow the ADuM5404 to control the regulation of the slave device. |
| 9, 15 | GNDiso | Ground Reference for Isolator Side 2. Pin 9 and Pin 15 are internally connected, and it is recommended that both pins be connected to a common ground. |
| 10 | $\mathrm{V}_{\text {SEL }}$ | Output Voltage Selection. When $\mathrm{V}_{\text {SEL }}=\mathrm{V}_{\text {ISO, }}$, the $\mathrm{V}_{\text {ISO }}$ setpoint is 5.0 V . When $\mathrm{V}_{\text {SEL }}=\mathrm{GND}_{\text {ISO, }}$, the $\mathrm{V}_{\text {ISO }}$ setpoint is 3.3 V . |
| 11 | $V_{\text {ID }}$ | Logic Input D. |
| 12 | VIC | Logic Input C. |
| 13 | $V_{\text {IB }}$ | Logic Input B. |
| 14 | $V_{\text {IA }}$ | Logic Input A. |
| 16 | VIso | Secondary Supply Voltage Output for External Loads, 3.3 V (VseL Low) or 5.0 V (VseL High). |

## TRUTH TABLE

Table 25. Truth Table (Positive Logic)

| $\mathbf{V}_{\text {SEL }}{ }^{\mathbf{1}}$ | RC $_{\text {oUT }}{ }^{\mathbf{2}}$ | $\mathbf{V}_{\text {DD1 }}(\mathbf{V})$ | $\mathbf{V}_{\text {ISO }}(\mathbf{V})$ | Notes |
| :--- | :--- | :--- | :--- | :--- |
| H | PWM | 5 | 5 | Master mode, normal operation |
| L | PWM | 5 | 3.3 | Master mode, normal operation |
| L | PWM | 3.3 | 3.3 | Master mode, normal operation |
| H | PWM | 3.3 | 5 | This supply configuration is not recommended due to extremely poor efficiency |

${ }^{1} \mathrm{H}$ refers to a high logic, and $L$ refers to a low logic.
${ }^{2}$ PWM refers to the regulation control signal. This signal is derived from the secondary side regulator and can be used to control other isoPower devices.

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 11. Typical Power Supply Efficiency at 5 V Input/5 V Output and 3.3 V Input/3.3 V Output


Figure 12. Typical Total Power Dissipation vs. Isolated Output Supply Current in All Supported Power Configurations


Figure 13. Typical Isolated Output Supply Current vs. Input Current in All Supported Power Configurations


Figure 14. Typical Short-Circuit Input Current and Power
vs. VDD1 Supply Voltage


Figure 15. Typical $V_{\text {Iso }}$ Transient Load Response, 5 V Output, 10\% to 90\% Load Step


Figure 16. Typical Viso Transient Load Response, 3.3 V Output, 10\% to 90\% Load Step


Figure 17. Typical $V_{\text {ISO }}=5$ V Output Voltage Ripple at $90 \%$ Load


Figure 18. Typical VISO $=3.3$ V Output Voltage Ripple at $90 \%$ Load


Figure 19. Typical Output Voltage Start-Up Transient at $10 \%$ and $90 \%$ Load, $V_{\text {ISO }}=5 \mathrm{~V}$


Figure 20. Typical Output Voltage Start-Up Transient at $10 \%$ and $90 \%$ Load, $V_{\text {ISO }}=3.3 \mathrm{~V}$


Figure 21. Typical I ${ }_{\text {CH }}$ Supply Current per Forward Data Channel (15 pF Output Load)


Figure 22. Typical Iсн Supply Current per Reverse Data Channel (15 pF Output Load)


Figure 23. Typical IISO(D) Dynamic Supply Current per Input


Figure 24. Typical IISO(D) Dynamic Supply Current per Output (15 pF Output Load)

## TERMINOLOGY

## IDD1 (Q)

$\mathrm{I}_{\mathrm{DD} 1(\mathrm{Q})}$ is the minimum operating current drawn at the $\mathrm{V}_{\mathrm{DD} 1}$ pin when there is no external load at $\mathrm{V}_{\text {ISo }}$ and the I/O pins are operating below 2 Mbps , requiring no additional dynamic supply current. $\mathrm{I}_{\mathrm{DD1}(\mathrm{Q})}$ reflects the minimum current operating condition.
$\mathbf{I}_{\mathrm{DDI}(\mathrm{D})}$
$\mathrm{I}_{\mathrm{DD1}(\mathrm{D})}$ is the typical input supply current with all channels simultaneously driven at a maximum data rate of 25 Mbps with full capacitive load representing the maximum dynamic load conditions. Resistive loads on the outputs should be treated separately from the dynamic load.

## $\mathrm{I}_{\mathrm{DDI}(\mathrm{MAX})}$

$\mathrm{I}_{\mathrm{DDI}(\text { (MAX) }}$ is the input current under full dynamic and $\mathrm{V}_{\text {ISO }}$ load conditions.

## Iso (LOAD)

ISO (LOAD) is the current available to the load.

## t $_{\text {PHL }}$ Propagation Delay

The $t_{\text {PHL }}$ propagation delay is measured from the $50 \%$ level of the falling edge of the $\mathrm{V}_{\mathrm{Ix}}$ signal to the $50 \%$ level of the falling edge of the Vox signal.

## $t_{\text {thi }}$ Propagation Delay

$t_{\text {pLi }}$ propagation delay is measured from the $50 \%$ level of the rising edge of the $\mathrm{V}_{\mathrm{Ix}}$ signal to the $50 \%$ level of the rising edge of the $V_{o x}$ signal.
Propagation Delay Skew, $\mathbf{t}_{\text {PSK }}$
$t_{\text {PSK }}$ is the magnitude of the worst-case difference in tphl and/or $t_{\text {ple }}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
Channel-to-Channel Matching, (t PSKci $/ \mathbf{t}_{\text {Psкод }}$ )
Channel-to-channel matching is the absolute value of the difference in propagation delays between two channels when operated with identical loads.

## Minimum Pulse Width

The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.

## Maximum Data Rate

The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.

## APPLICATIONS INFORMATION

The dc-to-dc converter section of the ADuM5401/ADuM5402/ ADuM5403/ADuM5404 works on principles that are common to most switching power supplies. It has a secondary side controller architecture with isolated pulse-width modulation (PWM) feedback. VDDI power is supplied to an oscillating circuit that switches current into a chip scale air core transformer. Power transferred to the secondary side is rectified and regulated to either 3.3 V or 5 V . The secondary ( $\mathrm{V}_{\text {ISO }}$ ) side controller regulates the output by creating a PWM control signal that is sent to the primary ( $\mathrm{V}_{\mathrm{DDI}}$ ) side by a dedicated iCoupler data channel. The PWM modulates the oscillator circuit to control the power being sent to the secondary side. Feedback allows for significantly higher power and efficiency.
The ADuM5401/ADuM5402/ADuM5403/ADuM5404 implement undervoltage lockout (UVLO) with hysteresis on the V $\mathrm{V}_{\text {DDI }}$ power input. This feature ensures that the converter does not enter oscillation due to noisy input power or slow power-on ramp rates.

## PCB LAYOUT

The ADuM5401/ADuM5402/ADuM5403/ADuM5404 digital isolators with 0.5 W isoPower integrated dc-to-dc converter require no external interface circuitry for the logic interfaces. Power supply bypassing is required at the input and output supply pins (see Figure 25). Note that low ESR bypass capacitors are required between Pin 1 and Pin 2 and between Pin 15 and Pin 16, as close to the chip pads as possible.

The power supply section of the ADuM5401/ADuM5402/ ADuM5403/ADuM5404 uses a 180 MHz oscillator frequency to pass power efficiently through its chip scale transformers. In addition, the normal operation of the data section of the iCoupler introduces switching transients on the power supply pins. Bypass capacitors are required for several operating frequencies. Noise suppression requires a low inductance, high frequency capacitor; ripple suppression and proper regulation require a large value capacitor. These are most conveniently connected between Pin 1 and Pin 2 for $V_{D D I}$ and between Pin 15 and Pin 16 for $V_{\text {ISo }}$.

The ADuM5401/ADuM5402/ADuM5403/ADuM5404 are optimized to run with an output capacitance of $10 \mu \mathrm{~F}$ to $33 \mu \mathrm{~F}$. Higher total load capacitance is not recommended. To suppress noise and reduce ripple, a parallel combination of at least two capacitors is required. The recommended value for the smaller capacitor is $0.1 \mu \mathrm{~F}$ with low ESR. For example, the use of a ceramic capacitor is advised. The larger capacitor can be of a lower frequency type and accounts for the remaining capacitance required to control ripple.
The total lead length between the ends of the low ESR capacitor and the input power supply pin must not exceed 2 mm . Installing the bypass capacitor with traces more than 2 mm in length may result in data corruption. Consider bypassing between Pin 1 and Pin 8 and between Pin 9 and Pin 16 unless both common ground pins are connected close to the package.


In applications involving high common-mode transients, ensure that board coupling across the isolation barrier is minimized. Furthermore, design the board layout such that any coupling that does occur affects all pins equally on a given component side. Failure to ensure this can cause voltage differentials between pins exceeding the absolute maximum ratings for the device as specified in Table 19, thereby leading to latch-up and/or permanent damage.
The ADuM5401/ADuM5402/ADuM5403/ADuM5404 are power devices that dissipate approximately 1 W of power when fully loaded and running at maximum speed. Because it is not possible to apply a heat sink to an isolation device, the devices primarily depend on heat dissipation into the PCB through the GND pins. If the devices are used at high ambient temperatures, provide a thermal path from the GND pins to the PCB ground plane. The board layout in Figure 25 shows enlarged pads for Pin 8 and Pin 9. Large diameter vias should be implemented from the pad to the ground, and power planes should be used to reduce inductance. Multiple vias should be implemented from the pad to the ground plane to significantly reduce the temperature inside the chip. The dimensions of the expanded pads are at the discretion of the designer and depend on the available board space.

## THERMAL ANALYSIS

The ADuM5401/ADuM5402/ADuM5403/ADuM5404 devices consist of four internal die attached to a split lead frame with two die attach paddles. For the purposes of thermal analysis, the die is treated as a thermal unit, with the highest junction temperature reflected in the $\theta_{J A}$ from Table 14 . The value of $\theta_{J A}$ is based on measurements taken with the devices mounted on a JEDEC standard, 4-layer board with fine width traces and still air. Under normal operating conditions, the ADuM5401/ADuM5402/ ADuM5403/ ADuM5404 devices operate at full load across the full temperature range without derating the output current. However, following the recommendations in the PCB Layout section decreases thermal resistance to the PCB, allowing increased thermal margins in high ambient temperatures.

## PROPAGATION DELAY-RELATED PARAMETERS

Propagation delay is a parameter that describes the time it takes a logic signal to propagate through a component (see Figure 26). The propagation delay to a logic low output may differ from the propagation delay to a logic high.


Figure 26. Propagation Delay Parameters
Pulse width distortion is the maximum difference between these two propagation delay values and is an indication of how accurately the input signal timing is preserved.
Channel-to-channel matching refers to the maximum amount the propagation delay differs between channels within a single ADuM5401/ADuM5402/ADuM5403/ADuM5404 component.
Propagation delay skew refers to the maximum amount the propagation delay differs between multiple ADuM5401/ ADuM5402/ADuM5403/ADuM5404 components operating under the same conditions.

## START-UP BEHAVIOR

The ADuM5401/ADuM5402/ADuM5403/ADuM5404 do not contain a soft start circuit. Therefore, the start-up current and voltage behavior must be taken into account when designing with this device.
When power is applied to $V_{D D 1}$, the input switching circuit begins to operate and draw current when the UVLO minimum voltage is reached. The switching circuit drives the maximum available power to the output until it reaches the regulation voltage where PWM control begins. The amount of current and the time required to reach regulation voltage depends on the load and the $V_{\text {DD1 }}$ slew rate.
With a fast $V_{\text {DDI }}$ slew rate ( $200 \mu$ s or less), the peak current draws up to $100 \mathrm{~mA} / \mathrm{V}$ of $\mathrm{V}_{\mathrm{DDI}}$. The input voltage goes high faster than the output can turn on, so the peak current is proportional to the maximum input voltage.
With a slow $V_{\text {DD1 }}$ slew rate (in the millisecond range), the input voltage is not changing quickly when $\mathrm{V}_{\mathrm{DD} 1}$ reaches the UVLO minimum voltage. The current surge is approximately 300 mA because $\mathrm{V}_{\mathrm{DDI}}$ is nearly constant at the 2.7 V UVLO voltage. The behavior during startup is similar to when the device load is a short circuit; these values are consistent with the short-circuit current shown in Figure 14.
When starting the device for $\mathrm{V}_{\text {ISO }}=5 \mathrm{~V}$ operation, do not limit the current available to the V ${ }_{\text {DDI }}$ power pin to less than 300 mA . The ADuM5401/ADuM5402/ADuM5403/ADuM5404 devices may not be able to drive the output to the regulation point if a current-limiting device clamps the $\mathrm{V}_{\mathrm{DDI}}$ voltage during startup.

As a result, the ADuM5401/ADuM5402/ADuM5403/ADuM5404 devices can draw large amounts of current at low voltage for extended periods of time.
The output voltage of the ADuM5401/ADuM5402/ADuM5403/ ADuM5404 devices exhibits $\mathrm{V}_{\text {Iso }}$ overshoot during startup. If this overshoot could potentially damage components attached to $\mathrm{V}_{\mathrm{Iso}}$, a voltage-limiting device such as a Zener diode can be used to clamp the voltage. Typical behavior is shown in Figure 19 and Figure 20.
Powering up $V_{\text {DDI }}$ with $V_{\text {ISO }}$ under bias is not recommended and may result in improper regulation. In a practical design, take care to avoid the existence of a parasitic path that applies voltage to $\mathrm{V}_{\text {ISO }}$ before $\mathrm{V}_{\text {DDI }}$.

## EMI CONSIDERATIONS

The dc-to-dc converter section of the ADuM5401/ADuM5402/ ADuM5403/ADuM5404 devices must operate at 180 MHz to allow efficient power transfer through the small transformers. This creates high frequency currents that can propagate in circuit board ground and power planes, causing edge emissions and dipole radiation between the primary and secondary ground planes. Grounded enclosures are recommended for applications that use these devices. If grounded enclosures are not possible, follow good RF design practices in the layout of the PCB. See the AN-0971 Application Note for board layout recommendations

## DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY

Positive and negative logic transitions at the isolator input cause narrow ( $\sim 1 \mathrm{~ns}$ ) pulses to be sent to the decoder via the transformer. The decoder is bistable and is, therefore, either set or reset by the pulses, indicating input logic transitions. In the absence of logic transitions at the input for more than $1 \mu \mathrm{~s}$, a periodic set of refresh pulses indicative of the correct input state is sent to ensure dc correctness at the output. If the decoder receives no internal pulses for more than approximately $5 \mu \mathrm{~s}$, the input side is assumed to be unpowered or nonfunctional, and the isolator output is forced to a default low state by the watchdog timer circuit. This situation should occur in the ADuM5401/ ADuM5402/ADuM5403/ ADuM5404 during power-up and power-down operations.
The limitation on the magnetic field immunity of the ADuM5401/ADuM5402/ADuM5403/ADuM5404 is set by the condition in which induced voltage in the receiving coil of the transformer is sufficiently large to either falsely set or reset the decoder. The following analysis defines the conditions under which this may occur. The 3.3 V operating condition of the ADuM5401/ADuM5402/ADuM5403/ADuM5404 is examined because it represents the most susceptible mode of operation.

The pulses at the transformer output have an amplitude greater than 1.0 V . The decoder has a sensing threshold at approximately 0.5 V , thus establishing a 0.5 V margin in which induced voltages can be tolerated. The voltage induced across the receiving coil is given by

$$
V=(-d \beta / d t) \sum \pi r_{n}^{2} ; n=1,2, \ldots, N
$$

where:
$\beta$ is the magnetic flux density (gauss).
$r_{n}$ is the radius of the $\mathrm{n}^{\text {th }}$ turn in the receiving coil ( cm ).
$N$ is the total number of turns in the receiving coil.

Given the geometry of the receiving coil in the ADuM5401/ ADuM5402/ADuM5403/ADuM5404, and an imposed requirement that the induced voltage be, at most, $50 \%$ of the 0.5 V margin at the decoder, a maximum allowable magnetic field is calculated as shown in Figure 27.


Figure 27. Maximum Allowable External Magnetic Flux Density
For example, at a magnetic field frequency of 1 MHz , the maximum allowable magnetic field of 0.2 kgauss induces a voltage of 0.25 V at the receiving coil. This voltage is approximately $50 \%$ of the sensing threshold and does not cause a faulty output transition. Similarly, if such an event occurs during a transmitted pulse (and is of the worst-case polarity), it reduces the received pulse from $>1.0 \mathrm{~V}$ to 0.75 V , still well above the 0.5 V sensing threshold of the decoder.

The preceding magnetic flux density values correspond to specific current magnitudes at given distances from the ADuM5401/ ADuM5402/ADuM5403/ADuM5404 transformers. Figure 28 expresses these allowable current magnitudes as a function of frequency for selected distances. As shown in Figure 28, the ADuM5401/ADuM5402/ADuM5403/ADuM5404 are extremely immune and can be affected only by extremely large currents operated at high frequency very close to the component. For the 1 MHz example, a 0.5 kA current placed 5 mm away from the ADuM5401/ADuM5402/ADuM5403/ADuM5404 is required to affect the operation of the device.


Figure 28. Maximum Allowable Current for Various Current-toADuM5401/ADuM5402/ADuM5403/ADuM5404 Spacings
Note that, at combinations of strong magnetic field and high frequency, any loops formed by PCB traces can induce error voltages sufficiently large to trigger the thresholds of succeeding circuitry. Exercise care in the layout of such traces to avoid this possibility.

## POWER CONSUMPTION

The $V_{\text {DD }}$ power supply input provides power to the iCoupler data channels, as well as to the power converter. For this reason, the quiescent currents drawn by the data converter and the primary and secondary input/output channels cannot be determined separately. All of these quiescent power demands have been combined into the $\mathrm{I}_{\mathrm{DDI}(\text { () })}$ current, as shown in Figure 29. The total $I_{\text {DDI }}$ supply current is the sum of the quiescent operating current; the dynamic current, $\mathrm{I}_{\mathrm{DDI}(\mathrm{D})}$, demanded by the I/O channels; and any external IISo load.


Figure 29. Power Consumption Within the ADuM5401/ADuM5402/ADuM5403/ADuM5404

Both dynamic input and output current is consumed only when operating at channel speeds higher than the refresh rate, $\mathrm{f}_{\mathrm{r}}$. Each channel has a dynamic current determined by its data rate. Figure 21 shows the current for a channel in the forward direction, which means that the input is on the primary side of the device. Figure 22 shows the current for a channel in the reverse direction, which means that the input is on the secondary side of the device. Both figures assume a typical 15 pF load. The following relationship allows the total IDD1 current to be calculated:

$$
\begin{equation*}
I_{D D I}=\left(I_{I S O} \times V_{I S O}\right) /\left(E \times V_{D D I}\right)+\sum I_{C H n} ; n=1 \text { to } 4 \tag{1}
\end{equation*}
$$

where:
$I_{D D 1}$ is the total supply input current.
$I_{\text {CHn }}$ is the current drawn by a single channel determined from Figure 21 or Figure 22, depending on channel direction. IISO is the current drawn by the secondary side external load. $E$ is the power supply efficiency at 100 mA load from Figure 11 at the $V_{\text {ISo }}$ and $V_{D D I}$ condition of interest.
The maximum external load can be calculated by subtracting the dynamic output load from the maximum allowable load.

$$
\begin{equation*}
I_{I S O(L O A D)}=I_{I S O(M A X)}-\sum I_{I S O(D) n} ; n=1 \text { to } 4 \tag{2}
\end{equation*}
$$

where:
$I_{I S O \text { (LOAD) }}$ is the current available to supply an external secondary side load.
$I_{I S O \text { (MAX) }}$ is the maximum external secondary side load current available at $\mathrm{V}_{\text {Iso. }}$
$I_{\text {ISO (D) } n}$ is the dynamic load current drawn from $V_{\text {ISO }}$ by an input or output channel, as shown in Figure 23 and Figure 24.
The preceding analysis assumes a 15 pF capacitive load on each data output. If the capacitive load is larger than 15 pF , the additional current must be included in the analysis of $\mathrm{I}_{\mathrm{DD} 1}$ and $\mathrm{I}_{\text {ISO (LOAD) }}$.

## POWER CONSIDERATIONS

The ADuM5401/ADuM5402/ADuM5403/ADuM5404 power input, data input channels on the primary side, and data channels on the secondary side are all protected from premature operation by undervoltage lockout (UVLO) circuitry. Below the minimum operating voltage, the power converter holds its oscillator inactive and all input channel drivers and refresh circuits are idle. Outputs remain in a high impedance state to prevent transmission of undefined states during power-up and power-down operations.
During application of power to $V_{D D 1}$, the primary side circuitry is held idle until the UVLO preset voltage is reached. At that time, the data channels initialize to their default low output state until they receive data pulses from the secondary side.
When the primary side is above the UVLO threshold, the data input channels sample their inputs and begin sending encoded pulses to the inactive secondary output channels. The outputs on the primary side remain in their default low state because no data comes from the secondary side inputs until secondary side
power is established. The primary side oscillator also begins to operate, transferring power to the secondary power circuits.
The secondary $\mathrm{V}_{\text {ISO }}$ voltage is below its UVLO limit at this point; the regulation control signal from the secondary side is not being generated. The primary side power oscillator is allowed to free run under these conditions, supplying the maximum amount of power to the secondary side.
As the secondary side voltage rises to its regulation setpoint, a large inrush current transient is present at $V_{\text {DDI }}$. When the regulation point is reached, the regulation control circuit produces the regulation control signal that modulates the oscillator on the primary side. The $V_{\text {DDI }}$ current is then reduced and is proportional to the load current. The inrush current is less than the short-circuit current shown in Figure 14. The duration of the inrush current depends on the VIso loading conditions and on the current and voltage available at the $V_{\text {DDI }}$ pin.
As the secondary side converter begins to accept power from the primary, the Viso voltage starts to rise. When the secondary side UVLO is reached, the secondary side outputs are initialized to their default low state until data is received from the corresponding primary side input. It can take up to $1 \mu \mathrm{~s}$ after the secondary side is initialized for the state of the output to correlate to the primary side input.
Secondary side inputs sample their state and transmit it to the primary side. Outputs are valid about $1 \mu \mathrm{~s}$ after the secondary side becomes active.
Because the rate of charge of the secondary side power supply is dependent on loading conditions, the input voltage, and the output voltage level selected, take care that the design allows the converter sufficient time to stabilize before valid data is required.
When power is removed from $V_{D D 1}$, the primary side converter and coupler shut down when the UVLO level is reached. The secondary side stops receiving power and starts to discharge.
The outputs on the secondary side hold the last state that they received from the primary side. Either the UVLO level is reached and the outputs are placed in their high impedance state, or the outputs detect a lack of activity from the primary side inputs and the outputs are set to their default low value before the secondary power reaches UVLO.

## INCREASING AVAILABLE POWER

The ADuM5401/ADuM5402/ADuM5403/ADuM5404 are designed with the capability of running in combination with other compatible isoPower devices. The RCout pin allows the ADuM5401/ADuM5402/ADuM5403/ADuM5404 to provide its PWM signal to another device acting as a master to regulate its self and slave devices. Power outputs are combined in parallel while sharing output power equally.

The ADuM5401/ADuM5402/ADuM5403/ADuM5404 can only be a master/standalone, and the ADuM5200 can only be a slave/ standalone device. The ADuM5000 can operate as either a master or slave. This means that the ADuM5000, ADuM520x, and ADuM540x can only be used in the master/slave combinations listed in Table 26.

Table 26. Allowed Combinations of isoPower Devices

| Master | Slave |  |  |
| :--- | :--- | :--- | :--- |
|  | ADuM5000 | ADuM520x | ADuM540x |
| ADuM5000 | Yes | Yes | No |
| ADuM520x | No | No | No |
| ADuM540x | Yes | Yes | No |

The allowed combinations of master and slave configured devices listed in Table 26 is sufficient to make any combination of power and channel count.

Table 27 illustrates how isoPower devices can provide many combinations of data channel count and multiples of the single unit power.
Table 27. Configurations for Power and Data Channels

| Power Unit | Number of Data Channels |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | 0 Channels | 2 Channels | 4 Channels | 6 Channels |
|  | ADuM5000 master | ADuM520x master | ADuM5401 to ADuM5404 master | ADuM5401 to ADuM5404 master <br> ADuM121x |
| 2-Unit Power | ADuM5000 master <br> ADuM5000 slave | ADuM5000 master <br> ADuM520x slave | ADuM5401 to ADuM5404 master <br> ADuM520x slave | ADuM5401 to ADuM5404 master <br> ADuM520x slave |
| 3-Unit Power | ADuM5000 master | ADuM5000 master | ADuM5401 to ADuM5404 master <br> ADuM5000 slave | ADuM5401 to ADuM5404 master <br> ADuM5000 slave <br> ADuM5000 slave |
|  | ADuM5000 slave | ADuM520x slave |  |  |
| ADuM5000 slave | ADuM520x slave | ADuM |  |  |

## INSULATION LIFETIME

All insulation structures eventually break down when subjected to voltage stress over a sufficiently long period. The rate of insulation degradation is dependent on the characteristics of the voltage waveform applied across the insulation. In addition to the testing performed by the regulatory agencies, Analog Devices carries out an extensive set of evaluations to determine the lifetime of the insulation structure within the ADuM5401/ADuM5402/ ADuM5403/ADuM5404 devices.
Analog Devices performs accelerated life testing using voltage levels higher than the rated continuous working voltage. Acceleration factors for several operating conditions are determined. These factors allow calculation of the time to failure at the actual working voltage. The values shown in Table 20 summarize the peak voltage for 50 years of service life for a bipolar ac operating condition and the maximum CSA/VDE approved working voltages. In many cases, the approved working voltage is higher than the 50 -year service life voltage. Operation at these high working voltages can lead to shortened insulation life in some cases.
The insulation lifetime of the ADuM5401/ADuM5402/ ADuM5403/ADuM5404 devices depends on the voltage waveform type imposed across the isolation barrier. The iCoupler insulation structure degrades at different rates depending on whether the waveform is bipolar ac, unipolar ac, or dc. Figure 30, Figure 31, and Figure 32 illustrate these different isolation voltage waveforms.

Bipolar ac voltage is the most stringent environment. The goal of a 50 -year operating lifetime under the bipolar ac condition determines the maximum working voltage recommended by Analog Devices.

In the case of unipolar ac or dc voltage, the stress on the insulation is significantly lower. This allows operation at higher working voltages while still achieving a 50 -year service life. The working voltages listed in Table 20 can be applied while maintaining the 50 -year minimum lifetime, provided that the voltage conforms to either the unipolar ac or dc voltage cases.
Any cross-insulation voltage waveform that does not conform to Figure 31 or Figure 32 should be treated as a bipolar ac waveform and its peak voltage limited to the 50 -year lifetime voltage value listed in Table 20.
The voltage presented in Figure 32 is shown as sinusoidal for illustration purposes only. It is meant to represent any voltage waveform varying between 0 V and some limiting value. The limiting value can be positive or negative, but the voltage cannot cross 0 V .


Figure 30. Bipolar AC Waveform


Figure 31. DC Waveform


NOTES:

1. THE VOLTAGE IS SHOWN AS SINUSOIDAL FOR ILLUSTRATION PURPOSES ONLY. IT IS MEANT TO REPRESENT ANY VOLTAGE WAVEFORM VARYING BETWEEN OV AND SOME LIMITING VALUE. THE LIMITING VALUE CAN BE POSITIVE OR NEGATIVE, BUT THE VOLTAGE CANNOT CROSS OV.

Figure 32. Unipolar AC Waveform

## OUTLINE DIMENSIONS



COMPLIANT TO JEDEC STANDARDS MS-013-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 33. 16-Lead Standard Small Outline Package [SOIC_W]
Wide Body
(RW-16)
Dimensions shown in millimeters and (inches)

## ORDERING GUIDE

| Model ${ }^{1,2}$ | Number of Inputs, VDD1 Side | Number of Inputs, Viso Side | Maximum Data Rate (Mbps) | Maximum <br> Propagation Delay, 5 V (ns) | Maximum <br> Pulse Width <br> Distortion (ns) | Temperature Range ( ${ }^{\circ} \mathrm{C}$ ) | Package Description | Package Option |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADuM5401ARWZ | 3 | 1 | 1 | 100 | 40 | -40 to +105 | 16-Lead SOIC_W | RW-16 |
| ADuM5401CRWZ | 3 | 1 | 25 | 60 | 6 | -40 to +105 | 16-Lead SOIC_W | RW-16 |
| ADuM5402ARWZ | 2 | 2 | 1 | 100 | 40 | -40 to +105 | 16-Lead SOIC_W | RW-16 |
| ADuM5402CRWZ | 2 | 2 | 25 | 60 | 6 | -40 to +105 | 16-Lead SOIC_W | RW-16 |
| ADuM5403ARWZ | 1 | 3 | 1 | 100 | 40 | -40 to +105 | 16-Lead SOIC_W | RW-16 |
| ADuM5403CRWZ | 1 | 3 | 25 | 60 | 6 | -40 to +105 | 16-Lead SOIC_W | RW-16 |
| ADuM5404ARWZ | 0 | 4 | 1 | 100 | 40 | -40 to +105 | 16-Lead SOIC_W | RW-16 |
| ADuM5404CRWZ | 0 | 4 | 25 | 60 | 6 | -40 to +105 | 16-Lead SOIC_W | RW-16 |

[^5]
## NOTES

Data Sheet ADuM5401/ADuM5402/ADuM5403/ADuM5404

NOTES

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Daughter Cards \& OEM Boards category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
ADZS-21262-1-EZEXT 27911 MPC5777C-416DS KITMPC5744DBEVM SPC56ELADPT144S TMDXRM46CNCD DM160216 EVADUCM350GPIOTHZ EV-ADUCM350-BIO3Z ATSTK521 1130 MA160015 MA240013 MA240026 MA320014 MA330014 MA330017 TMDSCNCD28054MISO MIKROE-2152 MIKROE-2154 MIKROE-2381 TSSOP20EV MIKROE-1108 MIKROE-1516 SPS-READERGEVK AC244049 AC244050 AC320004-3 2077 ATSMARTCARD-XPRO EIC-Q600-230 ATZB-212B-XPRO SPC560PADPT100S SPC560BADPT64S MA180018 EIC-Q600-220 AC164134-1 BOB-12035 BB-BONE-BATT-01 STM8/128-D/RAIS AC164127-6 AC164127-4 AC164134-3 AC164156 MA320021 MA320024 DFR0285 DFR0312 DFR0356 MA320023


[^0]:    ${ }^{1}$ Codirectional channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier.
    ${ }^{2}$ Opposing directional channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.

[^1]:    ${ }^{1}$ Codirectional channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier.
    ${ }^{2}$ Opposing directional channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.

[^2]:    ${ }^{1}$ Codirectional channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier.
    ${ }^{2}$ Opposing directional channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.

[^3]:    ${ }^{1}$ Operation at $105^{\circ} \mathrm{C}$ requires reduction of the maximum load current as specified in Table 19.
    ${ }^{2}$ Each voltage is relative to its respective ground.

[^4]:    ${ }^{1}$ Refers to the continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more information.

[^5]:    ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.
    ${ }^{2}$ Tape and reel are available. The addition of an RL suffix designates a $13^{\prime \prime}$ ( 1,000 units) tape and reel option.

