FEATURES

Two Normally Open and Two Normally Closed SPST

Switches with Disable

Switches Can Be Easily Configured as a Dual SPDT or a DPDT
Highly Resistant to Static Discharge Destruction
Higher Resistance to Radiation than Analog Switches
Designed with MOS Devices
Guaranteed Row Matching: 10\% max
Guaranteed Switching Speeds
$\mathrm{T}_{\mathrm{ON}}=500$ ns max
$T_{\text {OFF }}=400$ ns max
Guaranteed Break-Before-Make Switching
Low "ON" Resistance: 80Ω max
Low R_{ON} Variation from Analog Input Voltage: 5\%
Low Total Harmonic Distortion: 0.01\%
Low Leakage Currents at High Temperature
$\mathrm{T}_{\mathrm{A}}=+\mathbf{1 2 5 ^ { \circ }} \mathrm{C}$: $\mathbf{1 0 0} \mathrm{nA}$ max
$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$: $30 \mathrm{nA} \max$
Digital Inputs TTL/CMOS Compatible and Independent of V+
Improved Specifications and Pin Compatible to LF-11333/ 13333
Dual or Single Power Supply Operation
Available in Die Form

GENERAL DESCRIPTION

The SW 06 is a four channel single-pole, single-throw analog switch that employs both bipolar and ion-implanted FET devices. The SW 06 FET switches use bipolar digital logic inputs which are more resistant to static electricity than CM OS devices. Ruggedness and reliability are inherent in the SW 06 design and construction technology.
Increased reliability is complemented by excellent electrical specifications. Potential error sources are reduced by minimizing "ON" resistance and controlling leakage currents at high temperatures. T he switching FET exhibits minimal Ron variation over a 20 V analog signal range and with power supply voltage changes. O peration from a single positive power supply voltage is possible. With $\mathrm{V}+=36 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$, the analog signal range will extend from ground to +32 V .
PN P logic inputs are T T L and CM OS compatible to allow the SW06 to upgrade existing designs. The logic " 0 " and logic " 1 " input currents are at microampere levels reducing loading on CM OS and TTL logic.

REV. A

[^0]FUNCTIONAL BLOCK DIAGRAM

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700

Fax: 617/326-8703

SWO6- SPECIFICATONS

Parameter	Symbol	Conditions	SW06B			SW06F			SW06G			Units
			Min	Typ	Max	Min		Max	Min	Typ	Max	
"ON" RESISTANCE	$\mathrm{R}_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \end{aligned}$			$\begin{aligned} & 80 \\ & 80 \end{aligned}$			$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	Ω
Ron MATCH BETWEEN SWITCHES	$\mathrm{R}_{\text {ON }} \mathrm{M}$ atch	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}^{1}$			10			20			20	\%
Analog voltage range	$V_{\text {A }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}^{2} \\ & \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}^{2} \end{aligned}$	$\begin{aligned} & +10 \\ & -10 \end{aligned}$	$\begin{aligned} & +11 \\ & -15 \end{aligned}$			$\begin{aligned} & +11 \\ & -15 \end{aligned}$		$\begin{aligned} & +10 \\ & -10 \end{aligned}$	$\begin{aligned} & +11 \\ & -15 \end{aligned}$		V
ANALOG CURRENT RANGE	I_{A}	$\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$		15		7	12		5	10		mA
$\Delta \mathrm{R}_{\text {ON }} \mathrm{VS}$. APPLIED VOLTAGE	$\Delta \mathrm{R}_{\text {ON }}$	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1.0 \mathrm{~mA}$			15			20		10	20	\%
SOURCE CURRENT IN "OFF" CONDITION	$\mathrm{I}_{\text {S }}$	$\mathrm{V}_{S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}^{3}$		0.3	2.0		0.3	2.0		0.3	10	nA
drain current in "OFF" CONDITION	$\mathrm{I}_{\text {D(OFF) }}$	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}^{3}$		0.3	2.0		0.3	2.0		0.3	10	nA
SOURCE CURRENT IN "ON" CONDITION	$\begin{aligned} & I_{\text {S(ON)+ }} \\ & I_{\mathrm{D}(\mathrm{ON})} \end{aligned}$	$\mathrm{V}_{S}=\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}^{3}$		0.3	2.0		0.3	2.0		0.3	10	nA
LOGICAL "1" INPUT VOLTAGE	$\mathrm{V}_{\text {INH }}$	Full T emperature Range ${ }^{2,4}$	2.0			2.0			2.0			V
LOGICAL "0" INPUT VOLTAGE	$\mathrm{V}_{\text {INL }}$	Full T emperature R ange ${ }^{2,4}$			0.8			0.8			0.8	V
LOGICAL "1" INPUT CURRENT	$\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$ to $15.0 \mathrm{~V}^{5}$			5			5			10	$\mu \mathrm{A}$
LOGICAL "0" INPUT	$\mathrm{I}_{\text {INL }}$	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$		1.5	5.0		1.5	5.0		1.5	10.0	$\mu \mathrm{A}$
TURN-ON TIME	t_{ON}	See Switching Time Test Circuit ${ }^{4}$, 6		340	500		340	600		340	700	ns
TURN-OFF TIME	$\mathrm{t}_{\text {OfF }}$	See Switching Time Test Circuit ${ }^{4}$, 6		200	400		200	400		200	500	ns
BREAK-BEFORE-MAKE TIME	$\mathrm{t}_{\text {ON }}-\mathrm{t}_{\text {OFF }}$	N ote 7	50	140			140			140		ns
SOURCE CAPACITANCE	$\mathrm{C}_{\text {S(OFF) }}$	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}^{3}$		7.0			7.0			7.0		pF
DRAIN CAPACITANCE	$\mathrm{C}_{\text {D (OFF) }}$	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}^{3}$		5.5			5.5			5.5		pF
CHANNEL "ON" CAPACITANCE	$\mathrm{C}_{\mathrm{D} \text { (ON)+ }}$ $\mathrm{C}_{\mathrm{S}(\mathrm{ON})}$	$\mathrm{V}_{S}=\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}^{3}$		15			15			15		pF
"OFF"ISOLATION	$\mathrm{I}_{\text {SO(OFF) }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=5 \mathrm{Vrms}, \mathrm{R}_{\mathrm{L}}=680 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=7 \mathrm{pF}, \mathrm{f}=500 \mathrm{kH}^{3} \end{aligned}$		58			58			58		dB
CROSSTALK	$\mathrm{C}_{\text {T }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=5 \mathrm{Vrms}, \mathrm{R}_{\mathrm{L}}=680 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=7 \mathrm{pF}, \mathrm{f}=500 \mathrm{kH}^{3} \end{aligned}$		70			70			70		dB
POSITIVE SUPPLY CURRENT	I+	All C hannels "OFF", DIS ="0" ${ }^{3}$		5.0	6.0		5.0	9.0		6.0	9.0	mA
NEGATIVE SUPPLY CURRENT	I-	All Channels "OFF", DIS = " 0 " ${ }^{3}$		3.0	5.0		4.0	7.0		4.0	7.0	mA
GROUND CURRENT	I_{G}	All C hannels "ON" or "OFF" ${ }^{3}$		3.0	4.0			4.0		3.0	5.0	mA

ELECTRICAL CHARACTERISTICS

(@ $\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for SW06BQ, $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ for SW06FQ and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ for SW06GP/GS, unless otherwise noted)

Parameter	Symbol	Conditions	SW06B		SW06F		SW06G			Units
			Min Typ	Max	Min Typ	Max	Min	Typ	Max	
TEM PERATURE RANGE	$\mathrm{T}_{\text {A }}$	Operating	-55	+125	-25	+85	0		70	${ }^{\circ} \mathrm{C}$
"ON" RESISTANCE	$\mathrm{R}_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1.0 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 110 \\ & 110 \end{aligned}$	$\begin{aligned} & 75 \\ & 80 \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \end{aligned}$			$\begin{aligned} & 175 \\ & 175 \end{aligned}$	Ω
$\triangle \mathrm{R}_{\text {ON }}$ M ATCH BETWEEN SWITCHES	Ron M atch	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}^{1}$	6	20	6	25		10		\%
ANALOG VOLTAGE RANGE	V_{A}	$\begin{aligned} & \mathrm{I}_{\mathrm{S}}=1.0 \mathrm{~mA}^{2} \\ & \mathrm{I}_{\mathrm{S}}=1.0 \mathrm{~mA}^{2} \end{aligned}$	$\left\lvert\, \begin{array}{cc} +10 & +11 \\ -10 & -15 \end{array}\right.$		$\begin{array}{ll} +10 & +11 \\ -10 & -15 \end{array}$		$\left\lvert\, \begin{aligned} & +10 \\ & -10 \end{aligned}\right.$	$\begin{aligned} & +11 \\ & -15 \end{aligned}$		V
ANALOG CURRENT RANGE	I_{A}	$\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$	$7 \quad 12$		$5 \quad 11$			11		mA
$\Delta \mathrm{R}_{\text {ON }}$ WITH APPLIED VOLTAGE	$\Delta \mathrm{R}_{\text {ON }}$	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1.0 \mathrm{~mA}$	10		12			15		\%
SOURCE CURRENT IN "OFF" CONDITION	$\mathrm{I}_{\text {S(OFF) }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{M} \text { ax Operating } \mathrm{T} \mathrm{emp}^{3,9} \end{aligned}$		60		30			60	nA
DRAIN CURRENT IN "OFF" CONDITION	$\mathrm{I}_{\text {(} \text { OFF }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{M} \text { ax O perating } \mathrm{T} \mathrm{emp}^{3,9} \end{aligned}$		60		30			60	nA
LEAKAGE CURRENT IN "ON" CONDITION	$\begin{aligned} & \mathrm{I}_{\mathrm{S}(\mathrm{ON})+} \\ & \mathrm{I}_{\mathrm{D}(\mathrm{ON})} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{M} \text { ax Operating } \mathrm{T} \mathrm{emp}^{3,9} \end{aligned}$		100		30			60	nA
LOGICAL "1" INPUT CURRENT	$\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$ to $15.0 \mathrm{~V}^{5}$		10		10			15	$\mu \mathrm{A}$
LOGICAL "0" INPUT CURRENT	$\mathrm{I}_{\text {INL }}$	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$	4	10		10		5	15	$\mu \mathrm{A}$
TURN-ON TIME	t_{ON}	See Switching Time T est Circuit ${ }^{4}$, 8	440	900	500	900			1000	ns
TURN-OFF TIME	$\mathrm{t}_{\text {OfF }}$	See Switching Time T est Circuit ${ }^{4,8}$	300	500	330	500			500	ns
BREAK-BEFORE-MAKE TIME	$\mathrm{t}_{\text {ON }}-\mathrm{t}_{\text {OFF }}$	Note 7	70		70			50		ns
POSITIVE SUPPLY CURRENT	1+	All Channels "OFF," $\text { DIS }=" 0{ }^{3}$		9.0		13.5			13.5	mA
NEGATIVE SUPPLY CURRENT	I-	All Channels "OFF," $\text { DIS }=" 0 " 3$		7.5		10.5			10.5	mA
GROUND CURRENT	I_{G}	All Channels "ON" or "OFF" ${ }^{3}$		6.0		7.5			7.5	mA

NOTES

${ }^{1} V_{S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$. Specified as a percentage of $\mathrm{R}_{\text {AVERAGE }}$ where: $\mathrm{R}_{\text {AVERAGE }}=\frac{R_{O N 1}+R_{O N 2}+R_{O N 3}+R_{O N 4}}{4}$.
${ }^{2}$ Guaranteed by R_{ON} and leakage tests. For normal operation maximum analog signal voltages should be restricted to less than ($\mathrm{V}+$) -4 V .
${ }^{3}$ Switch being tested ON or OFF as indicated, $\mathrm{V}_{\text {INH }}=2.0 \mathrm{~V}$ or $\mathrm{V}_{\text {INL }}=0.8 \mathrm{~V}$, per logic truth table.
${ }^{4}$ Also applies to disable pin.
${ }^{5} \mathrm{C}$ urrent tested at $\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$. This is worst case condition.
${ }^{6}$ Sample tested.
${ }^{7}$ Switch is guaranteed by design to provide break-before-make operation.
${ }^{8}$ Guaranteed by design.
${ }^{9}$ Parameter tested only at $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$ for military grade device.
Specifications subject to change without notice.

SW06

WAFER TEST LIMITS (@ $\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted)

Parameter	Symbol	Conditions	SW06N Limit	SW06G Limit	Units
"ON" RESISTANCE	R ${ }_{\text {ON }}$	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}} \leq 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}} \leq 1 \mathrm{~mA}$	80	100	Ω max
Ron MATCH BETWEEN SWITCHES	$\mathrm{R}_{\text {ON }} \mathrm{M}$ atch	$\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}} \leq 100 \mu \mathrm{~A}$	15	20	\% max
$\Delta \mathrm{R}_{\text {ON }}$ VS. $\mathrm{V}_{\text {A }}$	$\Delta \mathrm{R}_{\text {ON }}$	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}} \leq 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}} \leq 1 \mathrm{~mA}$	10	20	\% max
POSITIVE SUPPLY CURRENT	I+	N ote 1	6.0	9.0	mA max
NEGATIVE SUPPLY CURRENT	I-	N ote 1	5.0	7.0	mA max
GROUND CURRENT	I_{G}	N ote 1	4.0	4.0	mA max
ANALOG VOLTAGE RANGE	$\mathrm{V}_{\text {A }}$	$\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$	± 10.0	± 10.0	V min
LOGIC "1" INPUT VOLTAGE	$\mathrm{V}_{\text {INH }}$	N ote 2	2.0	2.0	V min
LOGIC "0" INPUT VOLTAGE	$\mathrm{V}_{\text {INL }}$	N ote 2	0.8	0.8	V max
LOGIC "0" INPUT CURRENT	$\mathrm{I}_{\text {INL }}$	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 0.8 \mathrm{~V}$	5.0	5.0	$\mu \mathrm{A}$ max
LOGIC "1" INPUT CURRENT	IINH	$2.0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 15 \mathrm{~V}^{3}$	5	5	$\mu \mathrm{A} \max$
ANALOG CURRENT RANGE	I_{A}	$\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{mV}$	10	7	mA min

NOTE
Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. C onsult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

TYPICAL ELECTRICAL CHARACTERISTICS (@ $\mathrm{V}+=+15 \mathrm{~V}, \mathrm{v}-=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted)

Parameter	Symbol	Conditions	SW06N Typical	SW06G Typical	Units
"ON" RESISTANCE	$\mathrm{R}_{\text {ON }}$	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}} \leq 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}} \leq 1 \mathrm{~mA}$	60	60	Ω
TURN-ONTIME	t_{ON}		340	340	ns
TURN-OFF TIME	$\mathrm{t}_{\text {OFF }}$		200	200	ns
DRAIN CURRENT IN "OFF" CONDITION	$\mathrm{I}_{\mathrm{D} \text { (} \mathrm{OFF})}$	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$	0.3	0.3	nA
"OFF"ISOLATION	$\mathrm{I}_{\text {SO(OFF) }}$	$\mathrm{f}=500 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=680 \Omega$	58	58	dB
CROSSTALK	$\mathrm{C}_{\text {T }}$	$\mathrm{f}=500 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=680 \Omega$	70	70	dB

NOTES

${ }^{1}$ Power supply and ground current specified for switch "ON" or "OFF."
${ }^{2} G$ uaranteed by $R_{\text {ON }}$ and leakage tests.
${ }^{3} \mathrm{C}$ urrent tested at $\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}$. This is worst case condition.

ABSOLUTE MAXIMUM RATINGS ${ }^{\mathbf{1}}$

O perating T emperature R ange	
SW 06BQ, BRC	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
SW 06F Q	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
SW 06GP, GS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage T emperature R ange	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
L ead T emperature (Soldering, 60	$60 \mathrm{sec}) \ldots+300^{\circ} \mathrm{C}$
M aximum Junction T emperature	e $+150^{\circ} \mathrm{C}$
V + Supply to V-Supply	+36 V
V + Supply to Ground	+36 V
Logic Input Voltage	(-4 V or V-) to V + Supply
Analog Input Voltage R ange	
Continuous V	V- Supply to V + Supply +20 V
M aximum C urrent T hrough	
Any Pin Including Switch	30 mA

Package Type	$\boldsymbol{\theta}_{\mathbf{J A}}{ }^{\mathbf{2}}$	$\boldsymbol{\theta}_{\mathbf{J C}}$	Units
16-Pin Hermetic DIP (Q)	100	16	${ }^{\circ} \mathrm{C} / \mathrm{W}$
16-Pin Plastic DIP (P)	82	39	${ }^{\circ} \mathrm{C} / \mathrm{W}$
20-Contact LCC (RC)	98	38	${ }^{\circ} \mathrm{C} / \mathrm{W}$
16-Pin SOL (S)	98	30	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES

${ }^{1}$ Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.
${ }^{2} \theta_{\mathrm{JA}}$ is specified for worst case mounting conditions, i.e., θ_{JA} is specified for device in socket for Cerdip, P-DIP, and LCC packages; θ_{JA} is specified for device soldered to printed circuit board for SO package.

DICE CHARACTERISTICS
Die Size 0.101×0.097 inch, 9797 sq. mils $(2.565 \times 2.464 \mathrm{~mm}, 6320 \mathrm{sq} . \mathrm{mm})$

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
SW 06BQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Cerdip	Q-16
SW 06BRC	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	LCC	$\mathrm{E}-20 \mathrm{~A}$
SW 06F Q	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Cerdip	Q-16
SW 06G P	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Plastic DIP	$\mathrm{N}-16$
SW 06G S	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOL	R-16

TRUTH TABLE

		Switch State	
Disable	Logic	Channels	
Input	Input	$\mathbf{1 \& 2}$	Channels $\mathbf{3 \& 4}$
0	X	OFF	OFF
1 or NC	0	OFF	ON
1 or NC	1	ON	OFF

PIN CONNECTIONS

16-Pin DIP (Q or P-Suffix) 16-Pin SOL (S-Suffix)

SW06B RC/883 LCC Package (RC-Suffix)

SW06- Typical Performance Characteristics

"ON" Resistance vs. Power Supply Voltage

Switch Current vs. Voltage

Supply Current vs. Temperature

"ON" Resistance vs. Analog Voltage

Leakage Current vs. Analog Voltage

Supply Current vs. Supply Voltage

$R_{\text {ON }}$ vs. Temperature

Leakage Current vs. Temperature

Switch Capacitance vs. Analog Voltage

$T_{\text {ON }} / T_{\text {OFF }}$ Switching Response

Insertion Loss vs. Frequency

Switching Time vs. Analog Voltage

Crosstalk and "OFF" Isolation vs. Frequency

Switching Time vs. Temperature

Total Harmonic Distortion

Power Supply Rejection vs. Frequency

Overvoltage Characteristics

SW06- Typical Performance Characteristics (Operating and Single Supply)

"On" Resistance vs. Analog Voltage

Leakage Current vs. V ANalog $^{\text {Len }}$

Supply Current vs. Supply Voltage

NOTE
T hese single-supply-operation characteristic curves are valid when the negative power supply V - is tied to the logic ground reference pin "GND." TTL input compatibility is still maintained when "GND" is the same potential as the TTL ground. $\mathrm{t}_{\mathrm{OFF}}$ is measured from 50% of logic input waveform to $0.9 \mathrm{~V}_{\mathrm{O}}$. The analog voltage range extends from 0 V to $\mathrm{V}+-4 \mathrm{~V}$; the switch will no longer respond to logic control when V_{A} is within 4 volts of $\mathrm{V}+$.

Switching Time vs. Supply Voltage

Simplified Schematic Diagram (Typical Switch)

"Off" Isolation Test Circuit

Switching Time Test Circuit
QUAD SPST
DUAL SPDT

Figure 1. Functional Applications of SW06

APPLICATIONS INFORMATION

The single analog switch product configures, by appropriate pin connections, into four switch applications. As shown in Figure 1, the SW06 connects as a QUAD SPST, a DUAL SPDT, a DUAL DPST, or a DPDT analog switch. This versatility increases further when taking advantage of the disable input (DIS) which turns all switches OFF when taken active low.
Ion-implantation of the JFET analog switch achieves low ON resistance and tight channel-to-channel matching. Combining the low ON resistance and low leakage currents results in a worst case voltage error figure $\mathrm{V}_{\text {ERROR }} @+125^{\circ} \mathrm{C}=I_{\mathrm{D} \text { (ON) }} \times$ $R_{\text {SD (ON })}=100 \mathrm{nA} \times 100 \Omega=11$ microvolts. This amount of error is negligible considering dissimilar-metal thermally-induced offsets will be in the 5 to 15 microvolt range.

LOGIC INPUTS

The logic inputs ($1 \mathrm{~N}_{\mathrm{x}}$) and disable input (DIS) are referenced to a TTL logic threshold value of two forward diode drops (1.4 V at $+25^{\circ} \mathrm{C}$) above the $\mathrm{GN} D$ terminal. These inputs use PNP transistors which draw maximum current at a logic " 0 " level and drops to a leakage current of a reverse biased diode as the logic input voltage raises above 1.4 volts. Any logic input voltage greater than 2.0 volts becomes logic " 1, " less than 0.8 volts becomes logic " 0 " resulting in full TTL noise immunity not available from similar CM OS input analog switches. The PN P transistor inputs require such low input current that the SW06 approaches fan-ins of CM OS input devices. These bipolar logic inputs exceed any CMOS input circuit in resistance to static voltage and radiation susceptibility. No damage will occur to the SW 06 if logic high voltages are present when the SW 06 power
supplies are $O F F$. When the $V+$ and V - supplies are $O F F$, the logic inputs present a reverse bias diode loading to active logic inputs. Input logic thresholds are independent of $\mathrm{V}+$ and V supplies making single $\mathrm{V}+$ supply operation possible by simply connecting GND and V - together to the logic ground supply.

ANALOG VOLTAGE AND CURRENT andiog voltage

These switches have constant ON resistance for analog voltages from the negative power supply (V-) to within 4 volts of the positive power supply. This characteristic shown in the plots results in good total harmonic distortion, especially when compared to CM OS analog switches that have a 20 to 30 percent variation in ON resistance versus analog voltage. Positive analog input voltage should be restricted to 4 volts less than $V+$ assuring the switch remains open circuit in the OFF state. No increase in switch ON resistance occurs when operating at supply voltages less than ± 15 volts (see plot). Small signals have a 3 dB down frequency of 70 M Hz (see insertion loss versus frequency plot).

ANALOG CURRENT

The analog switches in the ON state areJFETs biased in their triode region and act as switches for analog current up to the I_{A} specification (see plot of $I_{D S}$ vS $\mathrm{V}_{D S}$). Some applications require pulsed currents exceeding the $I_{A} S p e c$. F or example, an integrator reset switch discharging a shunt capacitor will produce a peak current of $\mathrm{I}_{\mathrm{A}(\text { PEAK })}=\mathrm{V}_{\text {CAP }} / \mathrm{R}_{\mathrm{DS(ON)}}$. In this application, it is best to connect the source to the most positive end of the capacitor, thereby achieving the lowest switch resistance and
fastest reset times. The switch can easily handle any amount of capacitor discharge current subject only to the maximum heat dissipation of the package and the maximum operating junction temperature from which repetition can be established.

SWITCHING

Switching time $\mathrm{t}_{\text {ON }}$ and $\mathrm{t}_{\text {OFF }}$ characteristics are plotted versus $\mathrm{V}_{\text {Analog }}$ and temperature. In all cases, $\mathrm{t}_{\text {OFF }}$ is designed faster than $\mathrm{t}_{\text {on }}$ to ensure a break-before-make interval for SPDT and DPDT applications. The disable input (DIS) has the same switching times (t_{on} and $\mathrm{t}_{\mathrm{ofF}}$) as the logic inputs ($\left(\mathrm{N}_{\mathrm{x}}\right)$.
Switching transients occurring at the source and drain contacts results from ac coupling of the switching FETs gate-to-source and gate-to-drain coupling capacitance. The switch turn ON will cause a negative going spike to occur and the turn OFF will cause a positive spike to occur. These spikes can be reduced by additional capacitance loading, lower values of R_{L}, or switching an additional switch (with its extra contact floating) to the opposite state connected to the spike sensitive node.

Typical Applications

Operation from Single Positive Power Supply

DISABLE NODE

This TTL compatible node is similar to the logic inputs N_{X} but has an internal $2 \mu \mathrm{~A}$ current source pull-up. If disable is left unconnected, it will assume the logic " 1 " state, then the state of the switches is controlled only by the logic inputs $/ \mathrm{N}_{\mathrm{x}}$.

POWER SUPPLIES

This product operates with power supply voltages ranging from ± 12 to ± 18 volts; however, the specifications only guarantee device parameters with ± 15 volt $\pm 5 \%$ power supplies. The power supply sensitive parameters have plots to indicate effects of supply voltages other than ± 15 volts.

4-Channel Sample Hold Amplifier

THIS SWITCH ARRANGEMENT IMPROVES OFF ISOLATION BY 30dB
High Off Isolation Selector Switch (Shunt-Series Switch)

During the BBM interval the $1 \mathrm{k} \Omega$ resistor pulls the output to ground assuring that no shorting between V_{1} and V_{2} occurs.

Single Pole Double Throw Selector Switch with Break-Before-Make Interval

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

20-Terminal Leadless Chip Carrier (RC-Suffix)
 E-20A

16-Lead Plastic DIP
(P-Suffix) N -16

16-Lead Wide Body SOL
(S-Suffix)
R-16/SOL-16

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAS4599DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 DG2502DB-T2-GE1

TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN\#PBF 74LV4066DB,118
FSA2275AUMX

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

