Xinger

Ultra Low Profile 1008 Balun 50Ω to 200Ω Balanced

Description

The B0110E50200AHF is a low profile sub-miniature balanced to unbalanced transformer designed for differential inputs and output locations on next generation digital TV chipsets in an easy to use surface mount package. The B0110E50200AHF is ideal for high volume manufacturing and is higher performance than traditional wire wound Baluns. The B0110E50200AHF has an unbalanced port impedance of 50Ω and 200Ω balanced port impedance. This transformation enables single ended signals to be applied to differential ports on modern semiconductors. The output ports have equal amplitude (-3 dB) with 180 degree phase differential. The B0110E50200AHF is available on tape and reel for pick and place high volume manufacturing.
Detailed Electrical Specifications: Specifications subject to change without notice.

Features:	Parameter	ROOM ($25^{\circ} \mathrm{C}$)						Unit
		Min.	Typ.	Max	Min.	Typ.	Max	
- 50-1450 MHz (IL 2dB BW)	Frequency	50		1450	85	50	1300	MHz
- 85-1300 MHz (IL 1dB BW)	Unbalanced Port Impedance		50					Ohm
- 0.83 mm Height Profile	Balanced Port Impedance		200			200		Ohm
cellent CMRR (30dB typical)	Return Loss	8	9.8		11	12.3		dB
- Surface Mountable	Insertion Loss*		2.2	2.5		1.2	1.5	dB
- Tape \& Reel	Amplitude Balance		0.4	1		0.4	1	dB
- Non-conductive Top Surface	Phase Balance		5.6	8		2.6	4	Degrees
- RoHS Compliant	CMRR		26			30		dB
	Power Handling			0.5			0.5	Watts
	Operating Temperature	-55		+85	-55		+85	${ }^{\circ} \mathrm{C}$

* Insertion Loss stated at room temperature (Insertion Loss is approximately 0.15 dB higher at $+85{ }^{\circ} \mathrm{C}$). All performances stated for recommended operation with external circuitry.

Outline Drawing

Available on Tape and Reel for Pick and Place Manufacturing.

USA/Canada:
(315) 432-8909

Toll Free:
(800) 411-6596

Europe: $\quad+44$ 2392-232392

Typical Performance with Two External 220pF Capacitors (test/specification condition)

Figure 1 The Balun with external capacitors on both low impedance ports (nominal/test configuration). The two capacitors improve the insertion loss and return loss in the $\mathbf{4 0 - 2 0 0 M H z}$ range over that of the basic balun.

Return Loss (dB)

Typical Performance with no External Components

Figure 2 The Balun in it's basic configuration with no external components.

Amplitude Balance (dB)

Return Loss (dB)

What'll we think of next? *

Model B0110E50200AHF

Rev B

Distortion Considerations:

This balun does NOT contain any ferrite materials and are as such distortion free. Very, very low levels of distortion can arise from dissimilar metals on the contact pads of the part $(\mathrm{Cu}-\mathrm{Ni}-\mathrm{Au})$ and from inter-metallic contaminations within the part.

Power Handling Considerations:

The RF-power handling capability of these baluns depends on the temperature at the mounted interface (base plate temperature), and whether or not DC-bias is feed through the part. The power handling specified is for a mounted temperature of $85^{\circ} \mathrm{C}$ and no DC -bias and is based on a maximum operating temperature of the part itself of $125^{\circ} \mathrm{C}$ (do not exceed this).

The maximum power handling relates to the dissipated power within the part and is therefore a function of insertion loss. The insertion loss of this device changes within the specified band. Thus if operated with a narrowband signal at either band edge (this is what is specified) it will have less power handling than if operated closer to the center of the band or if operated with a very wideband signal. If signals arrive at the balun that are out of the specified band, these must be included in the total dissipated power calculation. However the deteriorating return loss will eliminate some of this power.

The dissipated RF power can be estimated as;

$$
P_{R F, \text { diss }}=P_{i n}\left(1-10^{-\left(\frac{R L_{d B}}{10}\right)}\right)\left(1-10^{-\left(\frac{L L_{d B}}{10}\right)}\right)[W]
$$

Where:

- $\quad P_{i n}$ is the input power, either on the low impedance side, single ended or the combined differential power on the balanced side, depending on the feeding direction.
- $R L_{d B}$ is the return loss in dB associated with the feeding port. I.e. if feed from the balanced side then the balanced return loss must be used (this however is very similar to the single ended return loss).
- $\quad I L_{d B}$ is the insertion loss at the operating temperature of the device.

Below the dissipated power is shown at a normalized 1W input power for the balun internal temperature of $125^{\circ} \mathrm{C}$.

When used with DC-biasing the RF-power must be de-rated with the amount of DC power dissipated; $P_{d c, d i s s}=\left(R_{\text {out } 1} \| R_{\text {out } 2}\right) I_{d c}^{2} \approx 7 I_{d c}^{2}[W]$

The total dissipated power cannot exceed 0.5 watts.
When the duty cycle is not 100% the input power can be averaged, however the instantaneous input power should newer exceed 0.5 watts. Manufacturing.

Mounting Configuration:

In order for Xinger surface mount components to work optimally, the proper impedance transmission lines must be used to connect to the RF ports. If this condition is not satisfied, insertion loss, Isolation and VSWR may not meet published specifications.

All of the Xinger components are constructed from organic PTFE based composites, which possess excellent electrical and mechanical stability. Xinger components are compliant to a variety of ROHS and Green standards and ready for Pb -free soldering processes. Pads are Gold plated with a Nickel barrier.

To supply common mode voltage offset to the analog-to-digital converter, DC blocking capacitors are needed at the balanced port (pins $6 \& 8$).

An example of the PCB footprint used in the testing of these parts is shown below. In specific designs, the transmission line widths need to be adjusted to the unique dielectric coefficients and thicknesses as well as varying pick and place equipment tolerances. In addition, two external 0402 capacitors must be mounted in locations C1 and C2 as shown in the figure below to get the performance specified in the datasheet.
Circuit Pattern
Footprint Pad(s)
Solder Resist
External Component Footprint
Dimensions are in millimeters

USA/Canada: (315) 432-8909
Toll Free: (800) 411-6596
Europe: $\quad+44$ 2392-232392

Packaging and Ordering Information

Parts are available in reel and are packaged per EIA 481-D. Parts are oriented in tape and reel as shown below. Minimum order quantities are 4000 per reel.

TABLE 1	
REEL DIMENSIONS (inches [mm])	
$\varnothing A$	$13.0[330.0]$
B	$.315[8.0]$
$\varnothing C$	$7.146[181.5]$
$\varnothing D$	$0.512[13.0]$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Signal Conditioning category:
Click to view products by Anaren manufacturer:
Other Similar products are found below :
MAPDCC0001 MAPDCC0004 PD0409J5050S2HF 880157 HHS-109-PIN DC1417J5005AHF AFS14A30-2185.00-T3 AFS14A35-1591.50T3 DS-323-PIN B39321R801H210 1A0220-3 JP510S LFB212G45SG8C341 LFB322G45SN1A504 LFL182G45TC3B746 SF2159E 30057
FM-104-PIN CER0813B MAPDCC0005 3A325 4028741180 ATB3225-75032NCT BD0810N50100AHF BD2425J50200AHF C5060J5003AHF JHS-115-PIN JP503AS DC0710J5005AHF DC2327J5005AHF DC3338J5005AHF 43020 LFB2H2G60BB1C106 LFL15869MTC1B787 X3C19F1-20S XC3500P-20S 10013-20 SF2194E CDBLB455KCAX39-B0 TGL2208-SM, EVAL RF1353C PD0922J5050D2HF 1E1305-3 1G1304-30 B0922J7575AHF 2020-6622-20 TP-102-PIN TP-103-PIN BD1222J50200AHF

