Xinger III

Doherty Combiner

Description

The X3DC07E2S is a low profile, high performance Doherty Combiner in a new easy to use, manufacturing friendly surface mount package. The X3DC07E2S is designed particularly for Doherty Amplifier applications, where tightly controlled phase and amplitude imbalance as well as low insertion loss are required for maximum and low power condition. It can be used in high power applications up to 200 watts.

Parts have been subjected to rigorous qualification testing and they are manufactured using materials with coefficients of thermal expansion (CTE) compatible with common substrates such as FR4, G10, RF-35, RO4350 and polyimide. Produced with 6 of 6 RoHS compliant tin immersion finish

Electrical Specifications **

Features:

- 728-768 MHz
- High Power
- Low Amp Imbalance
- Very Low Loss
- Production Friendly
- Tape and Reel
- Lead Free

Frequency	Return Loss ${ }^{[1]}$	Insertion Loss ${ }^{[1]}$	Amplitude Imbalance ${ }^{[1]}$	Phase Imbalance [1]
MHz	dB Min	dB Max	dB Max	Degrees
728-768	20	0.15	± 0.12	90 ± 3.0
$\text { Return }_{[2]}$	Insertion Loss ${ }^{[2]}$	Port Extension ${ }^{[3]}$	Power	Operating Temp.
dB Min	dB Max	Degrees	Avg. CW Watts	${ }^{\circ} \mathrm{C}$
20	0.25	0	200	-55 to +150

**Specification based on performance of unit properly installed on Anaren Test Board [1] At maximum power condition, Doherty combiner functions as an equal-split power combiner.
[2] At low power condition, Doherty combiner functions as a 100Ω to 50Ω impedance transformer.
[3] There are short 50 ohm lines associated with input ports of 0° at 748 MHz . Details in page 2.

Mechanical Outline

What'll we think of next?

Available on Tape and Reel for Pick and Place Manufacturing.

Doherty Amplifier Configuration

Doherty Combiner Pin Configuration

The X3DC07E2S has an orientation marker to denote Pin 1. Once port one has been identified the other ports are known automatically. Please see the chart below for clarification:

Pin 1	Pin 2	Pin 3	Pin 4
Combining Port	Not Used	Peak Amp Port	Main Amp Port

There are inevitably short lines associating with input ports in some high frequency band parts. The length of the short line is specified as electrical length at center frequency and noted as port extension in this datasheet. The designer should take this length into the consideration to optimize the offset line length.

Typical Performance $\left(-55^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}, 95^{\circ} \mathrm{C}\right) \quad \mathbf{7 2 8 - 7 6 8} \mathrm{MHz}$

What'll we think of next? ${ }^{\text {© }}$

USA/Canada:
(315) 233-5510 Toll Free:
(833) 389-6402

Typical Performance ($-55^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}, 95^{\circ} \mathrm{C}$): $\mathbf{7 2 8 - 7 6 8} \mathrm{MHz}$

Definition of the Specifications

To guarantee the part performance in Doherty architecture, the part is specified in Doherty operation for maximum power condition and low power condition. The following specification definition assumes the extra port extension is already applied to the raw S parameter and the parts is measured with Pin n connected to Port n (where $n=1,2,3,4$).

- Maximum power condition

Under the maximum power condition, the symmetrical Doherty architecture requires main amplifier and peak amplifier to work at full capacity with the optimum termination (50Ω). The two amplifiers should deliver RF power of equal magnitude and 90 degree phase difference. Doherty combiner functions as a coherent power combiner and supplies the 90 degree phase compensation. The following specification is defined with 50Ω port impedance at three ports for this condition. The return loss and the insertion loss in max power mode are not affected by the 50 ohm lossless port rotation mentioned in electrical spec table in page 1. The phase imbalance and the amplitude imbalance are not affected either since port rotation are taken off equally from the main and the peak amp port.

Parameter	Definition	Mathematical Representation
Return Loss	The impedance match at the combining port to a 50Ω system.	$20 \log \left\|\mathbf{S}_{11}\right\|$
Insertion Loss	The combined power divided by the sum of input power under the perfect combining condition.	$10 \log \left(\left\|\mathbf{S}_{13}^{2}\right\|+\left\|\mathbf{S}_{14}^{2}\right\|\right)$
Phase Imbalance	The phase difference between Peak-Combined path and Main- Combined path at $\omega_{c}=748 \mathrm{MHz}$	Phase $\left(\mathbf{S}_{14}\left(\omega_{c}\right)\right)-$ Phase $\left(\mathbf{S}_{13}\left(\omega_{c}\right)\right)$
Amplitude Imbalance	The magnitude difference between Peak-Combined path and Main- Combined path.	$\underline{\left(20 \log \left\|\mathbf{S}_{14}\right\|-20 \log \left\|\mathbf{S}_{13}\right\|\right)} 2$

- Low power condition

Under low power condition, the Doherty operation turns off peak amplifier and requires main amplifier to be terminated with double of the optimum impedance (100 Ω). In this configuration, Doherty combiner servers as an impedance transformer transforming 50Ω at combining port to 100Ω at main amplifier port. The following specification is defined under the port impedance condition of Port 1 (Combining Port) 50Ω, Port 4 (Main Amp Port) 100Ω and Port 3 (Peak Amp Port) open. With the peak amp left off, the extra line length in that port (see figure in page 2) acts as an open stub which shifts the low power mode return loss null and insertion loss. The offset line length needs to be adjusted taking the port rotation number into consideration so that the junction of 50Ω and 35Ω transmission line sees high impedance instead of the part edge. The return loss and the insertion loss defined below are after the offset line adjustments specified in the spec table.

Parameter	Definition	Mathematical Representation
Return Loss	The impedance match of the 50 to100 Ω transformer.	20log $\left\|\mathbf{S}_{11}\right\|$
Insertion Loss	The output power divided by input power.	20log $\left\|\mathbf{S}_{41}\right\|$

Available on Tape and Reel for Pick and Place Manufacturing.

USA/Canada: (315) 233-5510
Toll Free: (833) 389-6402
Europe: $\quad+44$ 2392-232392
Asia: $\quad+8651262749282$

Packaging and Ordering Information

Parts are available in reels. Packaging follows EIA 481-2. Parts are oriented in tape and reel as shown below. Minimum order quantities are 2000 per reel.

SECTION A-A

Direction of
Part Feed
(Unloading)

To ensure proper electrical and thermal performance there must be a ground plane with 100% solder connection underneath the part orientated as shown with text facing up

Dimensions are in Inches [Millimeters] X3DC07E2S Mounting Footprint

USA/Canada: (315) 233-5510
Toll Free:
(833) 389-6402

Europe:
Asia: $\quad+8651262749282$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Signal Conditioning category:
Click to view products by Anaren manufacturer:
Other Similar products are found below :
MAPDCC0001 MAPDCC0004 PD0409J5050S2HF 880157 HHS-109-PIN DC1417J5005AHF AFS14A30-2185.00-T3 AFS14A35-1591.50T3 DS-323-PIN B39321R801H210 1A0220-3 JP510S LFB212G45SG8C341 LFB322G45SN1A504 LFL182G45TC3B746 SF2159E 30057
FM-104-PIN CER0813B MAPDCC0005 3A325 4028741180 ATB3225-75032NCT BD0810N50100AHF BD2425J50200AHF C5060J5003AHF JHS-115-PIN JP503AS DC0710J5005AHF DC2327J5005AHF DC3338J5005AHF 43020 LFB2H2G60BB1C106 LFL15869MTC1B787 X3C19F1-20S XC3500P-20S 10013-20 SF2194E CDBLB455KCAX39-B0 TGL2208-SM, EVAL RF1353C PD0922J5050D2HF 1E1305-3 1G1304-30 B0922J7575AHF 2020-6622-20 TP-102-PIN TP-103-PIN BD1222J50200AHF

