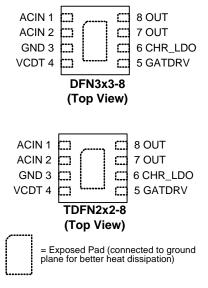


Li+ Charger Protection IC

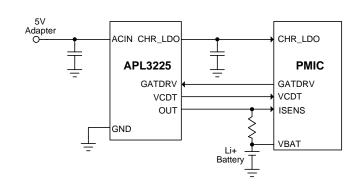

Features

- Provide OUT Pin 5V Voltage Clamping Protection
- Thermal Charging Regulation Protection
- Provide Input Over-voltage Protection
- · Provide Input Over-current Protection
- · Provide Over Temperature Protection
- · Provide Reverse Current Blocking
- High Immunity of False Triggering
- High Accuracy Protection Threshold
- Low On Resistance 0.3WTyp.
- Compact TDFN2x2-8 and DFN3x3-8 Packages
- Lead Free and Green Devices Available (RoHS Compliant)

Applications

· Cell Phones

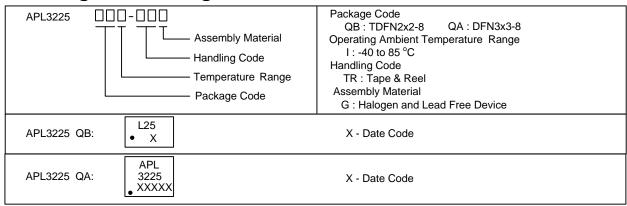
Pin Configuration


General Description

The APL3225 provides complete Li+ charger protection against input over-voltage, input over-current and over-temperature. When any of the monitored parameters is over the threshold, the IC turns off the charging current. All protections also have deglitch time against false triggering due to voltage spikes or current transients.

The APL3225 integrates a 5.5V LDO to prevent ACIN overshoot reaching CHR_LDO and OUT. When any transient peak voltage above 5.5V presenting in ACIN pin, but below OVP threshold, the internal LDO will clamp its output at 5.5V. When ACIN voltage exceeds OVP threshold, the device will turn off charging current. The charging current is controlled by the GATDRV pin. When sourcing a current from the GATDRV pin, the OUT pin delivers the charging current which is 200-fold magnified in amplitude based on GATDRV's current.

Other features include accurate V_{VCDT}/V_{ACIN} voltage divider, reverse current blocking from OUT to ACIN and OTP protection. The APL3225 provides complete Li+ charger protections, and saves the external MOSFET and Schottky diode for the charger of cell phone's PMIC. The above features and small package make the APL3225 an ideal part for cell phones applications.


Simplified Application Circuit

ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders.

Ordering and Marking Information

Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for MSL classification at lead-free peak reflow temperature. ANPEC defines "Green" to mean lead-free (RoHS compliant) and halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight).

Absolute Maximum Ratings (Note 1)

Symbol	Parameter	Rating	Unit
V _{ACIN}	ACIN Input Voltage (ACIN to GND)	-0.3 ~ 28	V
V _{CHR_LDO}	CHR_LDO to GND Voltage	-0.3 ~ 7	V
V_{GATDRV}	GATDRV to GND Voltage	-0.3 ~ V _{CHR_LDO}	V
V _{CDT}	VCDT to GND Voltage	-0.3 ~ 7	V
V _{OUT}	OUT to GND Voltage	-0.3 ~ 7	V
I _{OUT}	Output Current (OUT to GND)	2	Α
TJ	Maximum Junction Temperature	150	°C
T _{STG}	Storage Temperature	-65 ~ 150	°C
T _{SDR}	Maximum Lead Soldering Temperature (10 Seconds)	260	°C

Note 1:Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect vice reliability.

Thermal Characteristic

Symbol	Parameter	Typical Value	Unit
θ_{JA}	TDFN2x2-8 Junction-to-Ambient Resistance in free air (Note 2)	75	°C/W
θ_{JA}	DFN3x3-8 Junction-to-Ambient Resistance in free air (Note 2)	65	°C/W

Note 2: θ_{JA} is measured with the component mounted on a high effective thermal conductivity test board in free air. The exposed pad of TDFN2x2-8 is soldered directly on the PCB.

Recommended Operating Conditions (Note 3)

Symbol	Parameter	Range	Unit
V _{ACIN}	ACIN Input Voltage	4.5 ~ 6.5	V
I _{OUT}	Output Current	0 ~ 1	Α
T _A	Ambient Temperature	-40 ~ 85	°C
TJ	Junction Temperature	-40 ~ 125	°C
C _{CHR_LDO}	CHR_LDO Output Capacitor	1	μF

Note 3: Refer to the typical application circuit

Electrical Characteristics

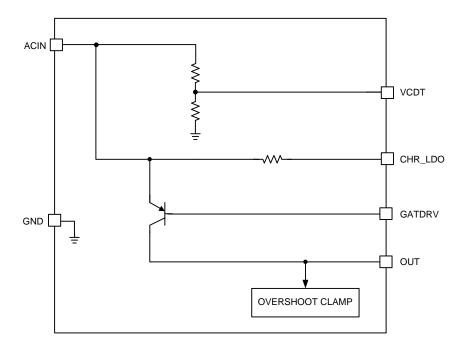
Unless otherwise specified, these specifications apply over V_{ACIN} =5V, T_{A} = -40 ~ 85 °C. Typical values are at T_{A} =25°C.

Symbol		Test Conditions		APL3225			Unit
Symbol	Parameter	rest Conditions		Min.	Тур.	Max.	J Onit
ACIN INPU	IT CURRENT and POWER-ON-R	ESET (POR)					
		I _{OUT} =0A, I _{CHR_LD}	O=0A	-	350	600	μА
I _{ACIN}	ACIN Supply Current	In OTP		-	-	550	μА
		V _{ACIN} >V _{OVP}		-	-	550	μА
V_{POR}	ACIN POR Threshold	V _{ACIN} rising		2.4	2.6	2.8	٧
	ACIN POR Hysteresis			-	250	-	mV
T _{B(ACIN)}	ACIN Power-On Blanking Time			-	8	-	ms
INTERNAL	SWITCH ON RESISTANCE	•		•		•	
	ACIN to OUT On Resistance	I _{OUT} = 1A		-	0.3	0.35	Ω
	CHR_LDO Discharge Resistnace	V _{ACIN} = 12V , V _{CHR_LDO} = 2V		-	500	-	Ω
INPUT OVI	ER-VOLTAGE PROTECTION (OV	P)					
V_{REG}	Internal LDO Output Voltage	V_{ACIN} = 6V, I_{OUT} = 10mA, T_{J} = -40 ~ 125 $^{\circ}$ C		5.265	5.5	5.735	V
	LDO Output Series Resistance			2.4	3	3.6	kΩ
V_{OVP}	Input OVP Threshold	APL3225	V_{ACIN} rising, $T_J = -40 \sim 125$ °C	6.6	6.8	7	V
	Input OVP Hysteresis			150	200	250	mV
T _{OVP}	Input OVP Propagation Delay			-	-	1	μs
T _{ON(OVP)}	Input OVP recovery time			-	1	-	ms
OVER-CUF	RRENT PROTECTION (OCP)						
loc	Over-Current Trip Threshold	$T_J = 25 ^{\circ}\text{C}, T_J =$: -40 ~ 25 °C	1.5	-	-	Α
I _{CL}	Current Limit Level	T _J = 25 °C, T _J = -40 ~ 25 °C		1.2	-	-	Α
CDT INTE	RNAL DIVIDER						
	Divider Ratio	V _{VCDT} /V _{ACIN}		0.1035	0.1056	0.1078	V/V
CHARGE C	URRENT CONTROL	•		•			
	Current Mirror Gain	$I_{OUT} = 0.6A, I_{OUT}$	_T /I _{GATDRV}	100	200	300	A/A

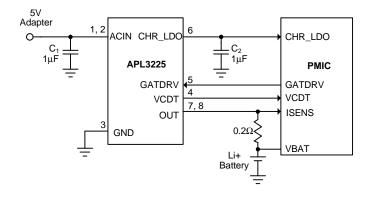
Electrical Characteristics (Cont.)

Unless otherwise specified, these specifications apply over V_{ACIN} =5V, T_{A} = -40 ~ 85 °C. Typical values are at T_{A} =25°C.

Symbol Parameter		Took Conditions	APL3225			Unit	
Symbol	Parameter Test Conditions		Min.	Тур.	Max.	Unit	
REVERSE	CURRENT BLOCKING						
	PMOS Lockout Threshold		-	20	-	mV	
	PMOS Lockout Release Threshold		-	150	-	mV	
	OUT Input Current (Reverse Current Blocking)	$V_{ACIN} = 0V$, $V_{OUT} = 4.2V$, $V_{GATDRV} = 0V$	-	-	1	μΑ	
VOUT OVE	RSHOOT CLAMP		•		-	,	
V _{CCAMP}	Overshoot Clamp Rising Threshold	V _{OUT} rising slew rate > 0.2V/μs	4.6	4.8	5.0	٧	
	Overshoot Clamp Pull Low Resistance	V _{OUT} rising slew rate > 0.2V/μs	-	3	-	Ω	
	Overshoot Clamp Active Time	From Overshoot Clamp Threshold being surpassed	-	150	-	μs	
Thermal Sh	utdown Protection						
Тотр	Thermal Shutdown Threshold	T _J rising	-	160	-	°C	
	Thermal Shutdown Hysteresis		-	40	-	°C	



Pin Description


	PIN	FUNCTION			
NO	NAME	FUNCTION			
1	ACIN	Power Supply Input. Connect this pin to external DC supply. Bypass to GND with a 1µF			
2	ACIN	(minimum) ceramic capacitor.			
3	GND	Ground terminal.			
4	VCDT	Provide an interval voltage divider. This pin divides ACIN voltage into 39/369 ratio.			
5	GATDRV	Charging current control pin. When sourcing a current from this pin, the OUT pin will source out a current whose magnitude is 200xl _{GATDRV} .			
6	CHR_LDO	Output Pin. The pin provides supply voltage to the PMIC input. Bypass to GND with a 1µF (minimum) ceramic capacitor.			
7	OUT	Output Pins. The pin provides supply source current in series with a resistor to battery.			
8	501	This pin possesses the overshoot clamp function to limit peak voltage.			
Exposed Pad	-	Exposed Thermal Pad. Must be electrically connected to the GND pin.			

Block Diagram

Typical Application Circuit

Designation	Description
Cacin	1μF, 25V, X5R, 0603 Murata GRM188R61E105K
CACIN	1μF, 16V, X5R, 0603 Murata GRM188R61C105K
C _{CHR_LDO}	1μF, 6.3V, X5R, 0603 Murata GRM185R60J225KE26

Function Description

ACIN Power-On-Reset (POR)

The APL3225 is built-in a power-on-reset circuit to keep the output shut off until internal circuitry is operating properly. The POR circuit has hysteresis and a de-glitch feature so that it will typically ignore undershoot transients on the input. When input voltage exceeds the POR threshold and after 8ms blanking time, the output voltage starts a soft-start to reduce the inrush current.

ACIN Over-Voltage Protection (OVP) and LDO Mode Operation

The CHR_LDO output of the IC operates similar to a linear regulator. When the ACIN input voltage is less than V_{REG} , and above the ACIN POR V_{ACIN} , the internal LDO output voltage tracks the input voltage with a voltage drop caused by $R_{\mathrm{DS(on)}}$ of MOSFET Q1. When the ACIN input voltage is greater than V_{REG} plus the $R_{\text{DS(on)}}$ drop of Q1, and less than V_{OVP} , the internal LDO output voltage is regulated to V_{REG} , and this is also referred as LDO mode operation. If the input voltage rises above V_{OVP}, the internal FET Q1 and Q2 will be turned off within 1µs to protect connected system on OUT pin. When the input voltage returns below the input OVP threshold minus the hysteresis, the FETs is turned on again after 1ms recovery time. The input OVP circuit has a 200mV hysteresis and a recovery time of $\boldsymbol{T}_{\text{ON}(\text{OVP})}$ to provide noise immunity against transient conditions.

Charging Current Control

The charging current is controlled by the GATDRV pin. When sourcing a current from the GATDRV pin, the OUT pin delivers the charging current which is 200-fold magnified in amplitude based on GATDRV's current. The $\rm I_{\rm OUT}$ current can be calculated by this following equation:

 $I_{OUT} = 200xI_{GATDRY}$

where

The I_{OUT} is the current flowing out from OUT pin. The I_{GATDRV} is the current flowing out from GATDRV pin.

Current Limit

The output current is monitored by the internal current limit circuit. When the output current reaches the current limit threshold, the device limits the output current at current limit threshold. The current limit level decrease as the junction temperature increase. When the Junction temperature increases, the internal current limit circuit reduces the current limit level, allowing the device's Junction temperature to cool down.

Internal P-MOSFET and Reverse Current Blocking

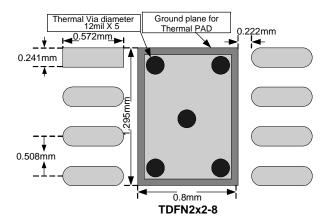
The APL3225 integrates a P-channel MOSFET with the body diode reverse protection to replace the external PNP transistor and Schottky diode for cell phone's PMIC. The body diode reverse protection prevents battery voltage supplies to CHR_LDO and ACIN pin. When the P-channel MOSFET's negative $V_{\rm SD}$ voltage is detected, the internal bulk selection circuitry will switch the body diode of the P-channel MOSFET forward biased from source to drain, meanwhile the P-channel is turned off regardless of GATDRV's current. This after the detection of negative $V_{\rm SD}$, the P-channel MOSFET is in lockout state to prevent battery discharging from ACIN and CHR_LDO to external circuitry. The P-channel MOSFET lockout will be releases when positive $V_{\rm SD}$ is detected.

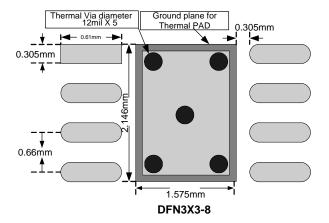
OUT Overshoot Clamp

This OUT pin possesses the overshoot clamp function to limit peak voltage. Since the clamping function needs a low resistance path between OUT pin and external high voltage source (in abnormal condition), please connect this OUT pin directly to outside circuit to let clamping work.

Application Information

Capacitor Selection

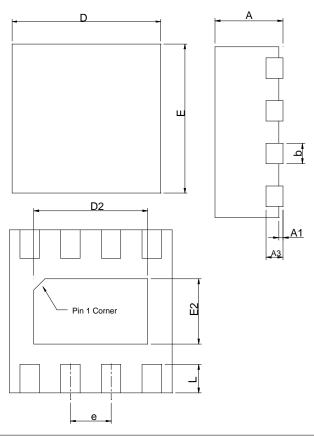

The input capacitor is for decoupling and prevents the input voltage from overshooting to dangerous levels. In the AC adapter hot plug-in applications or load current step-down transient, the input voltage has a transient spike due to the parasitic inductance of the input cable. A 25V, X5R, dielectric ceramic capacitor with a value between $1\mu F$ and $4.7\mu F$ placed close to the ACIN pin is recommended.


The output capacitor of CHR_LDO is for CHR_LDO voltage decoupling. And also can be as the input capacitor of the charging circuit. At least, a $1\mu F$, 10V, X5R capacitor is recommended.

Lavout Consideration

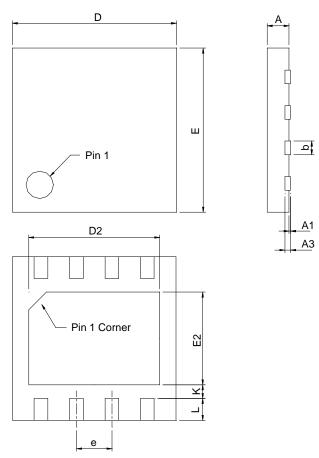
In some failure modes, a high voltage may be applied to the device. Make sure the clearance constraint of the PCB layout must satisfy the design rule for high voltage. The exposed pad of the TDFN2x2-8 and DFN3x3-8 performs the function of channeling heat away. It is recommended that connect the exposed pad to a large copper ground plane on the backside of the circuit board through several thermal vias to improve heat dissipation. The input and output capacitors should be placed close to the IC. The high current traces like input trace and output trace must be wide and short.

Recommended Minimum Footprint



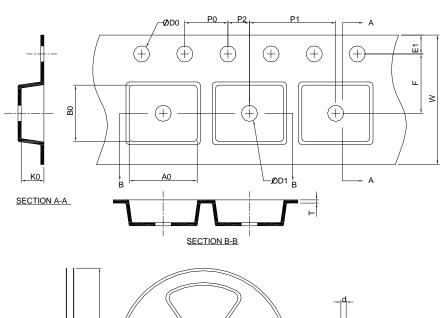
Package Information

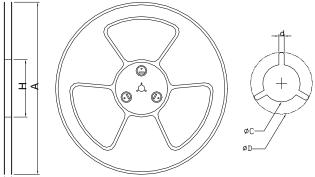
TDFN2x2-8


Ş	TDFN2x2-8					
SYMBOL	MILLIMETERS		INCI	HES		
6	MIN.	MAX.	MIN.	MAX.		
Α	0.70	0.80	0.028	0.031		
A1	0.00	0.05	0.000	0.002		
А3	0.20	REF	0.008	3 REF		
b	0.18	0.30	0.007	0.012		
D	1.90	2.10	0.075	0.083		
D2	1.00	1.60	0.039	0.063		
Е	1.90	2.10	0.075	0.083		
E2	0.60	1.00	0.024	0.039		
е	0.50	BSC	0.020) BSC		
Ĺ	0.30	0.45	0.012	0.018		

Note: 1. Follow from JEDEC MO-229 WCCD-3.

Package Information


DFN3x3-8

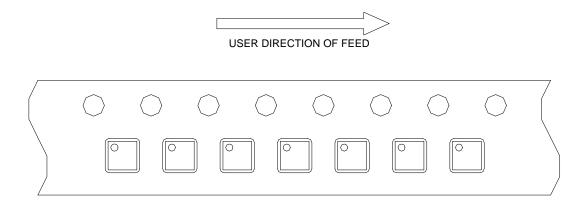


S		DFN3	x3-8	
SYMBOL	MILLIMETERS		INC	HES
2	MIN.	MAX.	MIN.	MAX.
Α	0.80	1.00	0.031	0.039
A1	0.00	0.05	0.000	0.002
АЗ	0.20	REF	0.008	8 REF
b	0.25	0.35	0.010	0.014
D	2.90	3.10	0.114	0.122
D2	1.90	2.40	0.075	0.094
Е	2.90	3.10	0.114	0.122
E2	1.40	1.75	0.055	0.069
е	0.65	BSC	0.020	6 BSC
L	0.30	0.50	0.012	0.020
K	0.20		0.008	

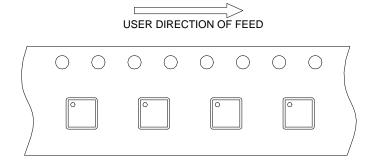
Carrier Tape & Reel Dimensions

Application	Α	H	T1	С	d	D	W	E1	F
	178.0 €.00	50 MIN.	8.4+2.00 -0.00	13.0+0.50 -0.20	1.5 MIN.	20.2 MIN.	8.0 ±0.20	1.75 ±0.10	3.50 ±0.05
TDFN2x2-8	P0	P1	P2	D0	D1	Т	A0	В0	K0
	4.0 ± 0.10	4.0 ± 0.10	2.0 ±0.05	1.5+0.10 -0.00	1.5 MIN.	0.6+0.00 -0.4	2.35 MIN	2.35 MIN	1.00 ±0.20
Application	Α	Н	T1	С	d	D	W	E1	F
Application	A 178.0 £ .00	H 50 MIN.	T1 12.4+2.00 -0.00	13.0+0.50 -0.20	1.5 MIN.	20.2 MIN.	W 12.0 ±0.30	E1 1.75 ±0.10	F 5.5 ±0.05
Application DFN3x3-8			12.4+2.00	13.0+0.50	-	_			-

(mm)

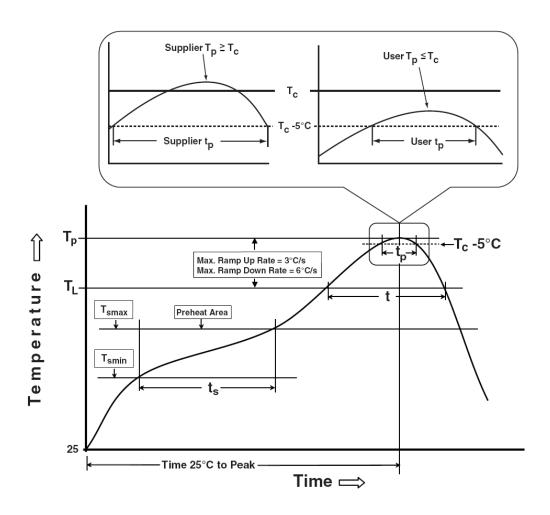

Devices Per Unit

Package Type	Unit	Quantity
TDFN2x2-8	Tape & Reel	3000
DFN3x3-8	Tape & Reel	3000



Taping Direction Information

TDFN2x2-8



DFN3x3-8

Classification Profile

Classification Reflow Profiles

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly	
Preheat & Soak Temperature min (T_{smin}) Temperature max (T_{smax}) Time $(T_{smin}$ to $T_{smax})$ (t_s)	100 °C 150 °C 60-120 seconds	150 °C 200 °C 60-120 seconds	
Average ramp-up rate (T _{smax} to T _P)	3 °C/second max.	3°C/second max.	
Liquidous temperature (T _L) Time at liquidous (t _L)	183 °C 60-150 seconds	217 °C 60-150 seconds	
Peak package body Temperature (T _p)*	See Classification Temp in table 1	See Classification Temp in table 2	
Time (t _P)** within 5°C of the specified classification temperature (T _c)	20** seconds	30** seconds	
Average ramp-down rate (T _p to T _{smax})	6 °C/second max.	6 °C/second max.	
Time 25°C to peak temperature	6 minutes max.	8 minutes max.	

^{*} Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.

Table 1. SnPb Eutectic Process – Classification Temperatures (Tc)

Package Thickness	Volume mm ³ <350	Volume mm ³ ³ 350
<2.5 mm	235 °C	220 °C
≥2.5 mm	220 °C	220 °C

Table 2. Pb-free Process – Classification Temperatures (Tc)

Package Thickness	Volume mm ³ <350	Volume mm ³ 350-2000	Volume mm ³ >2000
<1.6 mm	260 °C	260 °C	260 °C
1.6 mm – 2.5 mm	260 °C	250 °C	245 °C
≥2.5 mm	250 °C	245 °C	245 °C

Reliability Test Program

Renability rest Frogram				
Test item	Method	Description		
SOLDERABILITY	JESD-22, B102	5 Sec, 245°C		
HOLT	JESD-22, A108	1000 Hrs, Bias @ T _j =125°C		
PCT	JESD-22, A102	168 Hrs, 100%RH, 2atm, 121°C		
тст	JESD-22, A104	500 Cycles, -65°C~150°C		
НВМ	MIL-STD-883-3015.7	VHBM 2KV		
MM	JESD-22, A115	VMM 200V		
Latch-Up	JESD 78	10ms, 1 _{tr} 100mA		

^{**} Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.

Customer Service

Anpec Electronics Corp.

Head Office:

No.6, Dusing 1st Road, SBIP, Hsin-Chu, Taiwan, R.O.C. Tel: 886-3-5642000 Fax: 886-3-5642050

Taipei Branch:

2F, No. 11, Lane 218, Sec 2 Jhongsing Rd., Sindian City, Taipei County 23146, Taiwan

Tel: 886-2-2910-3838 Fax: 886-2-2917-3838

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Battery Management category:

Click to view products by Anpec manufacturer:

Other Similar products are found below:

LV5117AV-TLM-H NCP1855FCCT1G FAN54063UCX MP2615GQ-P LC05132C01NMTTTG ISL95522HRZ ISL78714ANZ CM1104-EH CM1104-DBB CM1104-MBB XC6801A421MR-G ISL95521BHRZ MP2639AGR-P ISL95522AIRZ S-82D1AAE-A8T2U7 S-82D1AAA-A8T2U7 S-8224ABA-I8T1U MP2615CGQ-P MC33772CTC0AE EG1205 EA3036CQBR GX4054 GX4057 HP4059D6-42Y HP4059D6-44Y HP2601D8-68 CM1124-EAC ME4064AM5G-N ME4084AM5G ME4074CM5G RY2231B1D4 FM5324GA TP4056 WST4054 WSP4056 FH8209 FH8614G1 FH8206 FH8210A LR4054-T ME4312CSG PJ4054B LP28013SQVF FH8613G1 SY6924QDC SY6918QDC RY2203 SL3795 CL4267 FH7071B