Features

- $90 \mathrm{~m} \Omega$ High Side MOSFET
- 2A Continuous Current
- Soft-Start Time Programmable by External Capacitor
- Wide Supply Voltage Range: 2.7V to 5.5V
- Current-Limit and Short-Circuit Protections
- Under-Voltage Lockout Protection
- Reverse Current Blocking when Switch Disabled
- Over-Temperature Protection
- Logic Level Enable Input

APL3512A: Active High APL3512B: Active Low

- Lead Free and Green Devices Available (RoHS Compliant)

Applications

- TFT LCD Modules
- Notebook and Desktop Computers
- USB Ports
- High-Side Power Protection Switches

Simplified Application Circuit

General Description

The APL3512A/B is a power-distribution switch with some protection functions that can deliver current up to 2 A . The device incorporates a $90 \mathrm{~m} \Omega \mathrm{~N}$-channel MOSFET power switch that is controlled by an enable logic pin and has a SS pin dedicated to soft-start ramp-up rate control that can be used in application where the inrush current is concerned.
The device integrates some protection features, including current-limit protection, short-circuit protection, overtemperature protection, and UVLO. The current-limit and short-circuit protection can protect down-stream devices from catastrophic failure by limiting the output current at current-limit threshold during over-load or short-circuit events. When $\mathrm{V}_{\text {OUT }}$ drops below $\mathrm{V}_{\mathbb{I N}}-1.5 \mathrm{~V}$ the devices limit the current to a lower and safe level. The over-temperature protection function shuts down the N -channel MOSFET power switch when the junction temperature rises beyond $140^{\circ} \mathrm{C}$ and will automatically turns on the power switch when the temperature drops by $20^{\circ} \mathrm{C}$. The UVLO function keeps the power switch in off state until there is a valid input voltage present.
The device is available in lead free SOT-23-5, TDFN2x26 and SOP-8 packages with enable active-high(EN) and active-low(ENB) versions.

[^0]
Pin Configuration

Exposed Pad, connect to large ground plane for heat dissipation

Ordering and Marking I nformation

APL3512		Package Code B: SOT-23-5 K:SOP-8 QB:TDFN2x2-6 Operating Ambient Temperature Range I: -40 to $85^{\circ} \mathrm{C}$ Handling Code TR : Tape \& Reel EN Function A : Active High B: Active Low Assembly Material G: Halogen and Lead Free Device
APL3512A B:	L2AX	X - Date Code
APL3512B B:	L2BX	X - Date Code
APL3512A K:	$\begin{aligned} & \hline \text { APL3512A } \\ & \text { XXXXX } \\ & \hline \end{aligned}$	XXXXX - Date Code
APL3512B K:	$\begin{array}{\|l\|} \hline \text { APL3512B } \\ \hline \text { XXXXX } \end{array}$	XXXXX - Date Code
APL3512A QB:	L12A	X - Date Code
APL3512B QB:	L12B	X - Date Code

Note : ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for MSL classification at lead-free peak reflow temperature. ANPEC defines "Green" to mean lead-free (RoHS compliant)and halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500 ppm by weight).

Absolute Maximum Ratings (Note 1)

Symbol	Parameter	Rating	Unit
$\mathrm{V}_{\text {IN }}$	VIN to GND Voltage	$-0.3 \sim 6$	V
$\mathrm{~V}_{\text {OUT }}$	VOUT to GND Voltage	$-0.3 \sim 6$	V
$\mathrm{~V}_{\text {ENB }}, \mathrm{V}_{\text {EN }}$	EN, ENB to GND Voltage	$-0.3 \sim 6$	V
$\mathrm{~V}_{\text {SS }}$	SS to GND Voltage	$-0.3 \sim 6$	V
$\mathrm{I}_{\text {OUT }}$	Continuous Output Current	Internally Limited	A
T_{J}	Maximum Junction Temperature	$-40 \sim 150$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	$-65 \sim 150$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SDR }}$	Maximum Lead Soldering Temperature, 10 Seconds	260	${ }^{\circ} \mathrm{C}$

Note1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Thermal Characteristics

Symbol	Parameter	Typical Value	Unit
θ_{JA}	Junction-to-Ambient Resistance in Free Air ${ }^{\text {(Nole 2) }}$		
		SOT-23-5	250
	SOP-8	160	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		TDFN2x2-6	225

Note 2: $\theta_{J A}$ is measured with the component mounted on a high effective thermal conductivity test board in free air.

Recommended Operating Conditions (Note 3)

Symbol	Parameter	Range	Unit
$\mathrm{V}_{\text {IN }}$	VIN Input Voltage	$2.7 \sim 5.5$	V
I Out	OUT Output Current	$0 \sim 2$	A
$\mathrm{C}_{S S}$	SS Pin Soft-Start Capacitor ${ }^{\text {(Note 4) }}$	$0.3 \sim 470$	nF
T_{A}	Ambient Temperature	$-40 \sim 85$	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature	$-40 \sim 125$	${ }^{\circ} \mathrm{C}$

Note 3: Refer to the typical application circuit.
Note 4: Attaching a capacitor on SS pin can adjust the $\mathrm{V}_{\text {out }}$ soft-start rate. If the C_{ss} is out of the recommended range, the soft-start rate could become internally controlled as if no C_{ss}.

Electrical Characteristics

Unless otherwise specified, these specifications apply over $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{ENB}}=0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=-40 \sim 85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Test Conditions	APL3512A/B			Unit
			Min.	Typ.	Max.	
SUPPLY CURRENT						
	VIN Supply Current	No load, $\mathrm{V}_{\text {EN }}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{ENB}}=5 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
		No load, $\mathrm{V}_{\text {EN }}=5 \mathrm{~V}$ or $\mathrm{V}_{\text {ENB }}=0 \mathrm{~V}$	-	60	100	$\mu \mathrm{A}$
	Leakage Current	VOUT=GND, $\mathrm{V}_{\text {EN }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {ENB }}=5 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
	Reverse Leakage Current	VIN=GND, $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {ENB }}=5 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
POWER SWITCH						
$\mathrm{R}_{\text {DS(ON) }}$	Power Switch On Resistance	$\mathrm{l}_{\text {Out }}=1.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	90	110	$\mathrm{m} \Omega$
		Iout $=1.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-40 \sim 85^{\circ} \mathrm{C}$	-	90	140	$\mathrm{m} \Omega$
UNDER-VOLTAGE LOCKOUT						
	VIN UVLO Threshold Voltage	$\mathrm{V}_{\text {IN }}$ rising, $\mathrm{T}_{\mathrm{A}}=-40 \sim 85^{\circ} \mathrm{C}$	2.3	-	2.65	V
	VIN UVLO Hysteresis		-	0.2	-	V
CURRENT-LIMIT AND SHORT-CIRCUIT PROTECTIONS						
$\mathrm{I}_{\text {LIM }}$	Current-Limit Threshold	$\mathrm{V}_{1 \mathrm{~N}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40 \sim 85^{\circ} \mathrm{C}$	2.5	3.1	4.22	A
$\mathrm{I}_{\text {SHort }}$	Short-Circuit Output Current	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ to 5.5 V	-	0.8	-	A
SOFT-START CONTROL PIN						
	SS Current	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~T}_{\text {A }}=-40 \sim 85^{\circ} \mathrm{C}$	1	2	3	$\mu \mathrm{A}$
tss	Soft-Start Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} \text {, No load, } \mathrm{C}_{\text {out }}=1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{Ss}}=10 \mathrm{nF}, \\ & \mathrm{~T}_{\mathrm{A}}=-40 \sim 85^{\circ} \mathrm{C} \end{aligned}$	-	10	-	ms
		$\begin{aligned} & \mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \text { No load, } \mathrm{C}_{\text {out }}=1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{SS}}=10 \mathrm{nF}, \\ & \mathrm{~T}_{\mathrm{A}}=-40 \sim 85^{\circ} \mathrm{C} \end{aligned}$	-	6.6	-	ms
		$\begin{aligned} & \mathrm{V}_{\text {IN }}=3.3 \mathrm{~V} \text {, No load, } \mathrm{C}_{\text {out }}=1 \mu \mathrm{~F} \text {, No } \mathrm{C}_{\text {ss }} \text { or SS } \\ & \text { tied to } \mathrm{V}_{\mathrm{IN}}, T_{A}=-40 \sim 85^{\circ} \mathrm{C} \end{aligned}$	1	2	3	ms
EN OR ENB INPUT PIN						
V_{H}	Input Logic HIGH	$\mathrm{V}_{\mathbb{1} \mathrm{N}}=2.7 \mathrm{~V}$ to 5 V	2	-	-	V
V_{IL}	Input Logic LOW	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$ to 5 V	-	-	0.8	V
	Input Current		-	-	1	$\mu \mathrm{A}$
	VOUT Discharge Resistance	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{ENB}}=5 \mathrm{~V}$	-	150	-	Ω
OVER-TEMPERATURE PROTECTION (OTP)						
Tотр	Over-Temperature Threshold	T_{J} rising	-	140	-	${ }^{\circ} \mathrm{C}$
	Over-Temperature Hysteresis		-	20	-	${ }^{\circ} \mathrm{C}$

Typical Operating Characteristics

Supply Current vs. Junction Temperature

Current-Limit Threshold vs. Junction Temperature

Current-Limit Threshold vs. Input Voltage

Typical Operating Characteristics (Cont.)

Turn-On Rising Time vs. Junction Temperature

EN Pin Threshold Voltage vs.
Input Voltage

EN Pin Threshold Voltage vs. Junction Temperature

Typical Operating Characteristics (Cont.)

Turn Off Leakage Current vs. Junction Temperature

Operating Waveforms

The test condition is $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Power On

$\mathrm{V}_{\mathbb{I N}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=30 \Omega, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F} / \mathrm{MLCC}$,
$\mathrm{C}_{\text {out }}=100 \mu \mathrm{~F} /$ /Electrolytic, SS open
CH1: $\mathrm{V}_{\text {IN }}, 2 \mathrm{~V} / \mathrm{Div}, \mathrm{DC}$
CH2: $\mathrm{V}_{\text {out }}, 2 \mathrm{~V} / \mathrm{Div}, \mathrm{DC}$
CH3: I IUT, 0.5A/Div, DC
TIME:5ms/Div

Turn On Response

$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=30 \Omega, \mathrm{C}_{\text {IN }}=1 \mu \mathrm{~F} / \mathrm{MLCC}$,
$\mathrm{C}_{\text {out }}=100 \mu \mathrm{~F} /$ Electrolytic, SS open
CH1: $\mathrm{V}_{\text {EN }}, 5 \mathrm{~V} /$ Div, DC
CH2: $\mathrm{V}_{\text {out }}, 2 \mathrm{~V} / \mathrm{Div}, \mathrm{DC}$
CH3: I ${ }_{\text {OUT }}, 0.5 \mathrm{~A} /$ Div, DC
TIME:0.5ms/Div

Power Off

$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{LAAD}}=30 \Omega, \mathrm{C}_{\text {IN }}=1 \mu \mathrm{~F} / \mathrm{MLCC}$,
$\mathrm{C}_{\text {out }}=100 \mu \mathrm{~F} /$ Electrolytic, SS open
CH1: $\mathrm{V}_{\text {IN }}, 2 \mathrm{~V} /$ Div, DC
CH2: V ${ }_{\text {out }}, 2 \mathrm{~V} / \mathrm{Div}, \mathrm{DC}$
CH3: I IUT, 0.5A/Div, DC
TIME:20ms/Div

Turn Off Response

$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=30 \Omega, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F} / \mathrm{MLCC}$,
$\mathrm{C}_{\text {out }}=100 \mu \mathrm{~F} /$ Electrolytic, SS open
CH1: $\mathrm{V}_{\text {EN }}, 5 \mathrm{~V} / \mathrm{Div}$, DC
CH2: $\mathrm{V}_{\text {out }}, 2 \mathrm{~V} / \mathrm{Div}, \mathrm{DC}$
CH3: I Iout , 0.5A/Div, DC
TIME: $1 \mathrm{~ms} /$ Div

Operating Waveforms (Cont.)

The test condition is $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=30 \Omega, \mathrm{C}_{\text {IN }}=1 \mu \mathrm{~F} / \mathrm{MLCC}$,
$\mathrm{C}_{\text {OUT }}=33 \mu \mathrm{~F} /$ Electrolytic
CH1: $\mathrm{V}_{\mathrm{EN}}, 5 \mathrm{~V} /$ Div, DC
CH2: $\mathrm{V}_{\text {OUT }}, 2 \mathrm{~V} / \mathrm{Div}, \mathrm{DC}$
TIME: $0.5 \mathrm{~ms} /$ Div

Current Limit Response

$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{C}_{\text {IN }}=1 \mu \mathrm{~F} / \mathrm{MLCC}$,
$\mathrm{C}_{\text {Out }}=33 \mu \mathrm{~F} /$ Electrolytic
CH1: $\mathrm{V}_{\text {IN }}, 2 \mathrm{~V} / \mathrm{Div}$, DC
CH2: $\mathrm{V}_{\text {Out }}, 2 \mathrm{~V} /$ Div, DC
CH3: I $\begin{aligned} & \text { OUT } \\ & , 1 \text { A/Div, DC }\end{aligned}$
TIME: 2ms/Div

Pin Description

PIN				FUNCTION
NO.			NAME	
SOT-23-5	SOP-8	TDFN2x2-6		
1	8	6	VOUT	Output Voltage Pin. The output voltage follows the input voltage. When ENB is high or EN is low the output voltage is discharged by an internal resistor.
2	3	3	GND	Ground
3	6	4	$\begin{gathered} \mathrm{EN} \\ (\mathrm{APL} 3512 \mathrm{~A}) \end{gathered}$	Enable Input. Pull this pin to high to enable the device and pull this pin to low to disable device. The EN pin cannot be left floating.
			$\begin{gathered} \text { ENB } \\ (\text { APL3512B) } \end{gathered}$	Enable Input. Pull this pin to high to disable the device and pull this pin to low to enable device. The ENB pin cannot be left floating.
4	2	2	SS	Soft-Start Control Pin. Connect a capacitor to GND to control the soft-tart rate. If the $S S$ pin is left floating or tied to $\mathrm{V}_{\mathbb{N}}$ the soft-tart time is 2 ms when $\mathrm{V}_{\mathbb{I N}}=5 \mathrm{~V}$.
5	1	1	VIN	Power Supply Input. Connect this pin to external DC supply.
-	4, 5, 7	5	NC	Internally not connected.

Block Diagram

Typical Application Circuit

Function Description

VIN Under-Voltage Lockout (UVLO)

The APL3512A/B power switch is built-in an under-voltage lockout circuit to keep the output shut off until internal circuitry is operating properly. The UVLO circuit has hysteresis and a de-glitch feature so that it will typically ignore undershoot transients on the input. When input voltage exceeds the UVLO threshold, the output voltage starts a soft-start to reduce the inrush current.

Power Switch

The power switch is an N -channel MOSFET with a low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$. The internal power MOSFET does not have the body diode. When IC is off, the MOSFET prevents a current flowing from the VOUT back to VIN and VIN to VOUT.

Current-Limit Protection

The APL3512A/B power switch provides the current-limit protection function. During current-limit, the devices limit output current at current-limit threshold. For reliable operation, the device should not be operated in currentlimit for extended period.

Short-Circuit Protection

When the output voltage drops below $\mathrm{V}_{\mathrm{IN}^{\prime}}-1.5 \mathrm{~V}$, which is caused by the over load or short-circuit, the devices limit the output current down to a safe level. The short circuit current-limit is used to reduce the power dissipation during short-circuit condition. If the junction temperature is over the thermal shutdown temperature, the device will enter the thermal shutdown.

Soft-Start

The APLA3512A/B provides an adjustable soft-start circuitry to control rise rate of the output voltage and limit the current surge during start-up. The soft-start ramp-up rate is controlled by a capacitor from SS pin to the ground. Under a specific $\mathrm{V}_{\text {IN }}$ being applied to the APL3512A/B, the soft start time can be calculated by the following equation:
$\mathrm{t}_{\mathrm{SS}}=0.2 \times \mathrm{C}_{\mathrm{SS}} \times \mathrm{V}_{\mathrm{IN}}$
where,
t_{ss} is soft-start time of $\mathrm{V}_{\text {out }}$ rising from 0 to 100%, of which unit is second.
C_{ss} is the value of the capacitor connected from SS pin to GND, of which unit is micro-Farad.
$\mathrm{V}_{\text {IN }}$ is the amplitude of input voltage applied to this device, of which unit is volt.
If the C_{SS} is not connected or SS pin is tied to V_{IN}, the softstart time is 2 ms when $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$.

Enable/Disable

Pull the ENB above 2 V , or EN below 0.8 V to disable the device and pull ENB pin below 0.8 V or EN above 2 V to enable the device. When the IC is disabled, the supply current is reduced to less than $1 \mu \mathrm{~A}$. The enable input is compatible with both TTL and CMOS logic levels. The EN/ENB pins cannot be left floating.

Over-Temperature Protection

When the junction temperature exceeds $140^{\circ} \mathrm{C}$, the internal thermal sense circuit turns off the power FET and allows the device to cool down. When the device's junction temperature cools by $20^{\circ} \mathrm{C}$, the internal thermal sense circuit will enable the device, resulting in a pulsed output during continuous thermal protection. Thermal protection is designed to protect the IC in the event of over-temperature conditions. For normal operation, the junction temperature cannot exceed $\mathrm{T}_{\mathrm{J}}=+125^{\circ} \mathrm{C}$.

Application Information

Input Capacitor

A $1 \mu \mathrm{~F}$ ceramic bypass capacitor from $\mathrm{V}_{\text {IN }}$ to $G N D$, located near the APL3512, is strongly recommended to suppress the ringing during short-circuit fault event. Without the bypass capacitor, the output short may cause sufficient ringing on the input (from supply lead inductance) to damage internal control circuitry.

Output Capacitor

A low-ESR $10 \mu \mathrm{~F}$ MLCC, aluminum electrolytic or tantalum between VOUT and GND is strongly recommended to reduce the voltage droop during hot-attachment of downstream peripheral. Higher-value output capacitor is better when the output load is heavy. Additionally, bypassing the output with a $0.1 \mu \mathrm{~F}$ ceramic capacitor improves the immunity of the device to short-circuit transients.
During soft-start process, the output bulk capacitor draws inrush current from $\mathrm{V}_{\mathbb{I N}}$. If the inrush current reaches foldback current-limit threshold, namely 0.8 A , the output current will be clamped in 0.8A level. It will take longer to complete the soft-start process since the soft-start rate is controlled neither by internal soft-start nor by external soft-start circuitry. When the $\mathrm{C}_{\text {out }}$ meets the following formula, the soft-start will be controlled by foldback cur-rent-limiting:

$$
\mathrm{C}_{\text {out }}>\left(0.8 \mathrm{xt}_{\mathrm{ss}}\right) / V_{\text {IN }}
$$

Where $t_{s S}$ is 1 ms when $S S$ is open or tied to $V_{I N}$, or obtained by the tss equation, described in the paragraph of Soft-Start in Functional Description section when $\mathrm{C}_{s s}$ is used. If the soft-start rate is controlled by the foldback currentlimiting, the soft-start time can be got by the following equation:
$\mathrm{t}_{\text {SS_Foldback }}=\left(\mathrm{C}_{\text {OUT }} \times \mathrm{V}_{\text {IN }}\right) / 0.8$

Soft-Start Capacitor

The APL3512 has a built-in adjustable soft-start control for user to set an optimum soft-start time for the application. The soft-start time can be calculated by the equation, described in the paragraph of Soft-Start in Functional Description section. Please note that there are minimum and maximum limitations of soft-start capacitor. If the value of soft-start capacitor is less than the minimum limitation or higher than the maximum limitation (please
refer to the Recommended Operating Conditions), the soft-start time will become internally controlled as if there is no $\mathrm{C}_{\mathrm{ss}}, \mathrm{t}_{\mathrm{ss}}=2 \mathrm{~ms}$ when $\mathrm{V}_{\text {is }}=5 \mathrm{~V}$, for example. If a softstart capacitor is used, please make sure the $\mathrm{C}_{s s}$ is in the recommeded operating range.

Layout Consideration

The PCB layout should be carefully performed to maximize thermal dissipation and to minimize voltage drop, droop and EMI. The following guidelines must be considered:

1. Please place the input capacitors near the VIN pin as close as possible.
2. Output decoupling capacitors for load must be placed near the load as close as possible for decoupling highfrequency ripples.
3. Locate APL3512 and output capacitors near the load to reduce parasitic resistance and inductance for excellent load transient performance.
4. The negative pins of the input and output capacitors and the GND pin must be connected to the ground plane of the load.
5. Keep $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {out }}$ traces as wide and short as possible.

Recommended Minimum Footprint

Unit : Inch
SOT-23-5

Recommended Minimum Footprint

SOP-8

Package Information

SOT-23-5

$\begin{aligned} & \mathrm{S} \\ & \mathrm{Y} \\ & \mathrm{M} \\ & \mathrm{~B} \\ & \mathrm{~L} \end{aligned}$	SOT-23-5			
	MILLIMETERS		INCHES	
	MIN.	MAX.	MIN.	MAX.
A		1.45		0.057
A1	0.00	0.15	0.000	0.006
A2	0.90	1.30	0.035	0.051
b	0.30	0.50	0.012	0.020
C	0.08	0.22	0.003	0.009
D	2.70	3.10	0.106	0.122
E	2.60	3.00	0.102	0.118
E1	1.40	1.80	0.055	0.071
e	0.95 BSC		0.037 BSC	
e1	1.90 BSC		0.075 BSC	
L	0.30	0.60	0.012	0.024
θ	0°	8°	0°	8°

Note : 1. Follow JEDEC TO-178 AA.
2. Dimension D and E1 do not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 10 mil per side.

Package Information

SOP-8

$S$$\mathbf{Y}$$\mathbf{M}$$\mathbf{B}$$\mathbf{O}$L	SOP-8			
	MILLIMETERS		INCHES	
	MIN.	MAX.	MIN.	MAX.
A		1.75		0.069
A1	0.10	0.25	0.004	0.010
A2	1.25		0.049	
b	0.31	0.51	0.012	0.020
c	0.17	0.25	0.007	0.010
D	4.80	5.00	0.189	0.197
E	5.80	6.20	0.228	0.244
E1	3.80	4.00	0.150	0.157
e	1.27 BSC		0.050 BSC	
h	0.25	0.50	0.010	0.020
L	0.40	1.27	0.016	0.050
θ	0°	8°	0°	8°

Note: 1. Follow JEDEC MS-012 AA.
2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 6 mil per side.
3. Dimension "E" does not include inter-lead flash or protrusions. Inter-lead flash and protrusions shall not exceed 10 mil per side.

Package Information

TDFN2x2-6

$\begin{aligned} & \text { S } \\ & \text { Y } \\ & \text { B } \\ & \text { O } \end{aligned}$	TDFN2x2-6			
	MILLIMETERS		INCHES	
	MIN.	MAX.	MIN.	MAX.
A	0.70	0.80	0.028	0.031
A1	0.00	0.05	0.000	0.002
A3	0.20 REF		0.008 REF	
b	0.18	0.30	0.007	0.012
D	1.90	2.10	0.075	0.083
D2	1.00	1.60	0.039	0.063
E	1.90	2.10	0.075	0.083
E2	0.60	1.00	0.024	0.039
e	0.65 BSC		0.026 BSC	
L	0.30	0.45	0.012	0.018
K	0.20		0.008	

Note : 1. Followed from JEDEC MO-229 WCCC.

Carrier Tape \& Reel Dimensions

Application	A	H	T1	C	d	D	W	E1	F
SOT-23-5	178.0 +2.00	50 MIN .	$\begin{array}{r} 8.4+2.00 \\ -0.00 \end{array}$	$\begin{array}{r} 13.0+0.50 \\ -0.20 \end{array}$	1.5 MIN.	20.2 MIN.	8.0 ± 0.30	1.75 ± 0.10	3.5 ± 0.05
	P0	P1	P2	D0	D1	T	A0	B0	K0
	4.0 ± 0.10	4.0 ± 0.10	2.0 ± 0.05	$\begin{array}{r} 1.5+0.10 \\ -0.00 \end{array}$	1.0 MIN.	$\begin{array}{r} 0.6+0.00 \\ -0.40 \end{array}$	3.20 ± 0.20	3.10 ± 0.20	1.50 ± 0.20
Application	A	H	T1	C	d	D	W	E1	F
SOP-8	330.0 ± 2.00	50 MIN.	$12.4+2.00$ -0.00	$\begin{array}{r} 13.0+0.50 \\ -0.20 \end{array}$	1.5 MIN.	20.2 MIN.	12.0 ± 0.30	1.75 ± 0.10	5.5 ± 0.05
	PO	P1	P2	D0	D1	T	A0	B0	K0
	4.0 ± 0.10	8.0 ± 0.10	2.0 ± 0.05	$\begin{array}{r} 1.5+0.10 \\ -0.00 \end{array}$	1.5 MIN.	$\begin{array}{r} \hline 0+0.00 \\ -0.40 \end{array}$	6.40 ± 0.20	5.20 ± 0.20	2.10 ± 0.20
Application	A	H	T1	C	d	D	W	E1	F
TDFN2x2-6	178.0 ± 2.00	50 MIN .	$\begin{array}{r} \hline 8.4+2.00 \\ -0.00 \end{array}$	$\begin{array}{r} 13.0+0.50 \\ -0.20 \end{array}$	1.5 MIN.	20.2 MIN.	12.0 ± 0.30	1.75 ± 0.10	5.5 ± 0.05
	P0	P1	P2	D0	D1	T	A0	B0	K0
	4.0 ± 0.10	4.0 ± 0.10	2.0 ± 0.05	$\begin{array}{r} 1.5+0.10 \\ -0.00 \end{array}$	1.5 MIN.	$\begin{gathered} 0.6+0.00 \\ -0.40 \end{gathered}$	2.35 ± 0.20	2.35 ± 0.20	1.30 ± 0.20

(mm)

Devices Per Unit

Package Type	Unit	Quantity
SOT-23-5	Tape \& Reel	3000
SOP-8	Tape \& Reel	2500
TQFN2x2-6	Tape \& Reel	3000

Taping Direction Information

SOT-23-5

SOP-8

TDFN2x2-6

Classification Profile

Classification Reflow Profiles

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Preheat \& Soak Temperature min ($\mathrm{T}_{\text {smin }}$) Temperature max ($\mathrm{T}_{\text {smax }}$) Time ($\mathrm{T}_{\text {smin }}$ to $\mathrm{T}_{\text {smax }}$) $\left(\mathrm{t}_{\mathrm{s}}\right.$)	$\begin{gathered} 100^{\circ} \mathrm{C} \\ 150^{\circ} \mathrm{C} \\ 60-120 \text { seconds } \end{gathered}$	$\begin{gathered} 150^{\circ} \mathrm{C} \\ 200^{\circ} \mathrm{C} \\ 60-120 \text { seconds } \end{gathered}$
Average ramp-up rate ($\mathrm{T}_{\text {smax }}$ to T_{P})	$3^{\circ} \mathrm{C} /$ second max.	$3^{\circ} \mathrm{C} /$ second max.
Liquidous temperature (T_{L}) Time at liquidous (t)	$\begin{gathered} 183^{\circ} \mathrm{C} \\ 60-150 \text { seconds } \end{gathered}$	$\begin{gathered} 217^{\circ} \mathrm{C} \\ 60-150 \text { seconds } \end{gathered}$
Peak package body Temperature $\left(T_{p}\right)^{*}$	See Classification Temp in table 1	See Classification Temp in table 2
Time (t_{p})** within $5^{\circ} \mathrm{C}$ of the specified classification temperature (T_{c})	20** seconds	30** seconds
Average ramp-down rate (T_{p} to $\mathrm{T}_{\text {smax }}$)	$6^{\circ} \mathrm{C} /$ second max.	$6^{\circ} \mathrm{C} /$ second max.
Time $25^{\circ} \mathrm{C}$ to peak temperature	6 minutes max.	8 minutes max.
* Tolerance for peak profile Temperature $\left(T_{p}\right)$ is defined as a supplier minimum and a user maximum. ** Tolerance for time at peak profile temperature (t_{p}) is defined as a supplier minimum and a user maximum.		

Classification Reflow Profiles (Cont.)

Table 1. SnPb Eutectic Process - Classification Temperatures (Tc)

Package Thickness	Volume $\mathbf{m m}^{\mathbf{3}}$ <350	Volume $\mathbf{m m}^{3}$ ≥ 350
$<2.5 \mathrm{~mm}$	$235^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
$\geq 2.5 \mathrm{~mm}$	$220^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$

Table 2. Pb-free Process - Classification Temperatures (Tc)

Package Thickness	Volume $\mathbf{m m}^{\mathbf{3}}$ $<\mathbf{3 5 0}$	Volume $\mathbf{~ m m}^{\mathbf{3}}$ $\mathbf{3 5 0 - 2 0 0 0}$	Volume $\mathbf{~ m m}^{\mathbf{3}}$ $>\mathbf{2 0 0 0}$
$<1.6 \mathrm{~mm}$	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
$1.6 \mathrm{~mm}-2.5 \mathrm{~mm}$	$260^{\circ} \mathrm{C}$	$250^{\circ} \mathrm{C}$	$245^{\circ} \mathrm{C}$
$\geq 2.5 \mathrm{~mm}$	$250^{\circ} \mathrm{C}$	$245^{\circ} \mathrm{C}$	$245^{\circ} \mathrm{C}$

Reliability Test Program

Test item	Method	Description
SOLDERABILITY	JESD-22, B102	$5 \mathrm{Sec}, 245^{\circ} \mathrm{C}$
HOLT	JESD-22, A108	$1000 \mathrm{Hrs}, \mathrm{Bias}$ @ $\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$
PCT	JESD-22, A102	$168 \mathrm{Hrs}, 100 \% \mathrm{RH}, 2 \mathrm{~atm}, 121^{\circ} \mathrm{C}$
TCT	JESD-22, A104	$500 \mathrm{Cycles},-65^{\circ} \mathrm{C} \sim 150^{\circ} \mathrm{C}$
HBM	MIL-STD-883-3015.7	VHBM $\geqq 2 \mathrm{KV}$
MM	JESD-22, A115	VMM $\geqq 200 \mathrm{~V}$
Latch-Up	JESD 78	$10 \mathrm{~ms}, 1_{\mathrm{tr}} \geqq 100 \mathrm{~mA}$

Customer Service

Anpec Electronics Corp.
Head Office :
No.6, Dusing 1st Road, SBIP,
Hsin-Chu, Taiwan, R.O.C.
Tel : 886-3-5642000
Fax : 886-3-5642050
Taipei Branch :
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd., Sindian City, Taipei County 23146, Taiwan
Tel : 886-2-2910-3838
Fax : 886-2-2917-3838

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Anpec manufacturer:
Other Similar products are found below :
NCP45520IMNTWG-L TCK111G,LF(S FPF1015 FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G TLE7244SL MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1640QGDVTR KTS1641QGDV-TR NCV459MNWTBG NCP4545IMNTWG-L NCV8412ASTT1G NCV8412ASTT3G BTT3018EJXUMA1 FPF2260ATMX SLG59M1557VTR BD2222G-GTR NCP45780IMN24RTWG NCP45540IMNTWG-L MC10XS6200EK MC10XS6225EK MC25XS6300EK MC33882PEP MC10XS6325EK TPS2021IDRQ1 TPS2103D TPS22954DQCR TPS22958NDGKR TPS22994RUKR TPS2561AQDRCRQ1 MIC2005-0.5YML-TR MIC2098-1YMT-TR MIC2098-2YMT-TR MIC94062YMT TR MIC94064YMT-TR MP6231DN-LF MP62551DGT-LF-P BTS117 BTS500151TADATMA2 VN540SP-E MIC2015-1.2YM6 TR MIC2026-2YM MIC2075-2YM

[^0]: ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders.

