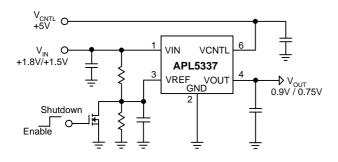


Source and Sink, 2A, Fast Transient Response Linear Regulator


#### **Features**

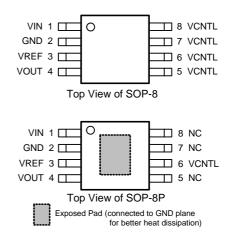
- Provide Bi-direction Current
  - Sourcing or Sinking Current Up to 2A
- · Built-in Soft-Start
- Power-On-Reset Monitoring on VCNTL Pins
- Fast Transient Response
- Stable with Ceramic Output Capacitors
- ±10mV High System Output Accuracy Over Load and Temperature Ranges
- · Adjustable Output Voltage by External Resistors
- Current-Limit Protection
- · On-Chip Thermal Shutdown
- Shutdown for Standby or Suspend Mode
- Simple SOP-8 and SOP-8 with Exposed Pad (SOP-8P) Packages
- Lead Free and Green Devices Available (RoHS Compliant)

## **Applications**

- DDRII/III SDRAM Termination Voltage
- Motherboard and VGA Card Power Supplies
- Setop Box
- Low Power DDR3

# **Simplified Application Circuit**

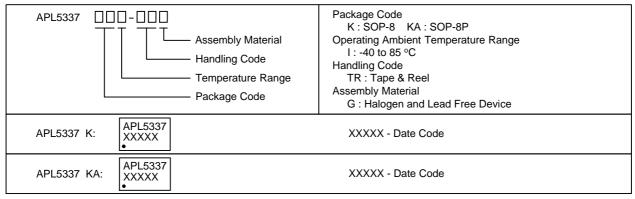



### **General Description**

The APL5337 linear regulator is designed to provide a regulated voltage with bi-direction output current for DDR-SDRAM termination voltage. The APL5337 integrates two power transistors to source or sink load current up to 2A. It also features internal soft-start, current-limit, thermal shutdown and enable control functions into a single chip. The internal soft-start controls the rising rate of the output voltage to prevent inrush current during start-up. The current-limit circuit detects the output current and limits the current during short-circuit or current overload conditions. The on-chip thermal shutdown provides thermal protection against any combination of overload that would create excessive junction temperatures.

The output voltage of APL5337 is regulated to track the voltage on VREF pin. A proper resistor divider connected to VIN, GND, and VREF pins is used to provide a half voltage of VIN to VREF pin. In addition, connect an external ceramic capacitor and an open-drain transistor to VREF pin for external soft-start and shutdown control.

Pulling and holding the voltage on VREF below the enable voltage threshold shuts down the output. The output of APL5337 will be high impedance after being shut down by VREF or the thermal shutdown function.


## **Pin Configuration**



ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders.



### **Ordering and Marking Information**



Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for MSL classification at lead-free peak reflow temperature. ANPEC defines "Green" to mean lead-free (RoHS compliant) and halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight).

### Absolute Maximum Ratings (Note 1)

| Symbol            | Parameter                                      | Rating                       | Unit |
|-------------------|------------------------------------------------|------------------------------|------|
| V <sub>CNTL</sub> | VCNTL Supply Voltage (VCNTL to GND)            | -0.3 ~ 7                     | V    |
| V <sub>IN</sub>   | VIN Supply Voltage (VIN to GND)                | -0.3 ~ 7                     | V    |
| $V_{REF}$         | VREF Input Voltage (VREF to GND)               | -0.3 ~ 7                     | V    |
| V <sub>OUT</sub>  | VOUT Output Voltage (VOUT to GND)              | -0.3 ~ V <sub>IN</sub> +0.3V | V    |
| P <sub>D</sub>    | Power Dissipation                              | Internally Limited           | W    |
| TJ                | Junction Temperature                           | 150                          | °C   |
| T <sub>STG</sub>  | Storage Temperature Range                      | -65 ~ 150                    | °C   |
| T <sub>SDR</sub>  | Maximum Lead Soldering Temperature, 10 Seconds | 260                          | °C   |

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### **Thermal Characteristics**

| Symbol               | Parameter                                                   |                 | Typical Value | Unit |
|----------------------|-------------------------------------------------------------|-----------------|---------------|------|
| $\theta_{JA}$        | Junction-to-Ambient Thermal Resistance in Free Air (Note 2) | SOP-8<br>SOP-8P | 80<br>55      | °C/W |
| $\theta_{\text{JC}}$ | Junction-to-Case Thermal Resistance in Free Air (Note 3)    | SOP-8P          | 20            | °C/W |

Note 2: θ<sub>1a</sub> is measured with the component mounted on a high effective thermal conductivity test board in free air.

Note 3: The exposed pad of SOP-8P is soldered directly on the PCB. The case temperature is measured at the center of the exposed pad on the underside of the SOP-8P package.



# **Recommended Operating Conditions**

| Symbol            | Parameter                                                  | Range                         | Unit |
|-------------------|------------------------------------------------------------|-------------------------------|------|
| V <sub>CNTL</sub> | VCNTL Supply Voltage                                       | 3.0 ~ 5.5                     | ٧    |
| V <sub>IN</sub>   | VIN Supply Voltage                                         | 1.2 ~ 5.5                     | ٧    |
| $V_{REF}$         | VREF Input Voltage                                         | 0.6 ~ V <sub>CNTL</sub> - 2.2 | ٧    |
| I <sub>OUT</sub>  | VOUT Output Current (Note 4)                               | -2 ~ +2                       | Α    |
| C <sub>IN</sub>   | Capacitance of Input Capacitor                             | 10 ~ 100                      | μF   |
|                   | Equivalent Series Resistor (ESR) of Input Capacitor        | 0 ~ 200                       | mΩ   |
| C <sub>OUT</sub>  | Capacitance of Output Multi-layer Ceramic Capacitor (MLCC) | 8 ~ 47                        | μF   |
|                   | Total Output Capacitance (Note 5)                          | 10 ~ 330                      | μF   |
| T <sub>A</sub>    | Ambient Temperature                                        | -40 ~ 85                      | °C   |
| TJ                | Junction Temperature                                       | -40 ~ 125                     | °C   |

Note 4: The symbol "+" means the VOUT sources current to load; the symbol "-" means the VOUT sinks current from load to GND.

Note 5: It's necessary to use a multi-layer ceramic capacitor 8μF at least as an output capacitor. Please place the ceramic capacitor near VOUT pin as close as possible. Besides, the other kinds of capacitors (like Electrolytic, PoSCap, tantalum capacitors) can be used as the output capacitors in parallel.

### **Electrical Characteristics**

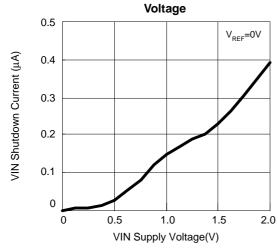
Refer to the typical application circuit. These specifications apply over  $V_{CNTL}$ =5V,  $V_{IN}$ =1.8V or 1.5V,  $V_{REF}$ =0.5V $_{IN}$ ,  $C_{IN}$ =10 $\mu$ F,  $C_{OUT}$ =10 $\mu$ F (MLCC) and  $T_A$ = -40~85°C, unless otherwise specified. Typical values are at  $T_A$ =25°C.

| Symbol            | Parameter                          | Toot Co                                                                        |                       | APL5337 |      | Unit |      |
|-------------------|------------------------------------|--------------------------------------------------------------------------------|-----------------------|---------|------|------|------|
| Symbol            | Farameter                          | Test Conditions                                                                |                       | Min.    | Тур. | Max. | Onic |
| SUPPLY            | CURRENT                            |                                                                                |                       |         |      |      |      |
|                   | VCNTL Supply Current               | I <sub>OUT</sub> =0A                                                           |                       | -       | 1    | 2    | mA   |
| I <sub>CNTL</sub> | VONTE Supply Current               | V <sub>REF</sub> =0V (Shutdow                                                  | /n)                   | -       | -    | 35   | μΑ   |
| I <sub>VIN</sub>  | VIN Supply Current at Shutdown     | VREF=GND (Shut                                                                 | tdown)                | -       | -    | 5    | μΑ   |
| POWER             | -ON-RESET (POR)                    |                                                                                |                       |         |      |      |      |
|                   | Rising VCNTL POR Threshold         | V <sub>CNTL</sub> Rising                                                       |                       | 2.5     | 2.75 | 2.9  | V    |
|                   | VCNTL POR Hysteresis               |                                                                                |                       | -       | 0.35 | -    | V    |
| OUTPU             | T VOLTAGE                          |                                                                                |                       |         | ,    |      |      |
| V                 | Output Valtage                     | V <sub>REF</sub> =0.9V                                                         |                       | -       | 0.9  | -    | V    |
| V <sub>OUT</sub>  | Output Voltage                     | V <sub>REF</sub> =0.75V                                                        |                       | -       | 0.75 | -    | v    |
|                   | Output Accuracy to VREF            | V <sub>REF</sub> =0.75V/0.9V, Over Load & Offset & Temperature                 |                       | -10     | -    | 10   | mV   |
| PSRR              | VCNTL Power Supply Rejection Ratio | $V_{CNTL}$ =5V, $V_{IN}$ =1.8V, $C_{OUT}$ =10 $\mu$ F, f=1kHz 1V <sub>PP</sub> |                       | 45      | 55   | -    | dB   |
|                   |                                    | Sourcing Current                                                               | T <sub>J</sub> =25°C  | 2.3     | 3.0  | 3.7  |      |
|                   |                                    | (V <sub>IN</sub> =1.8V)                                                        | T <sub>J</sub> =125°C | 2.3     | 3.0  | 3.7  |      |
| l .               | 0                                  | Sinking Current                                                                | T <sub>J</sub> =25°C  | -2.3    | -3.0 | -3.7 | A A  |
| I <sub>LIM</sub>  | Current-Limit                      | (V <sub>IN</sub> =1.8V)                                                        | T <sub>J</sub> =125°C | -2.3    | -3.0 | -3.7 |      |
|                   |                                    | Sourcing Current                                                               | T <sub>J</sub> =25°C  | 2.3     | 3.0  | 3.7  |      |
|                   |                                    | (V <sub>IN</sub> =1.5V)                                                        | T <sub>J</sub> =125°C | 2.3     | 3.0  | 3.7  |      |

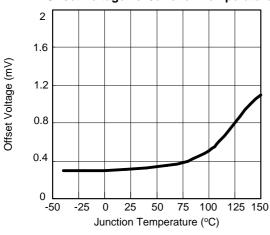


# **Electrical Characteristics (Cont.)**

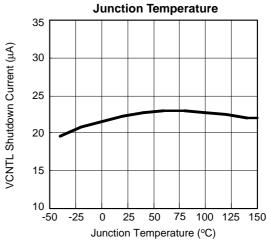
Refer to the typical application circuit. These specifications apply over  $V_{CNTL}$ =5V,  $V_{IN}$ =1.8V or 1.5V,  $V_{REF}$ =0.5V<sub>IN</sub>,  $C_{IN}$ =10 $\mu$ F,  $C_{OUT}$ =10 $\mu$ F (MLCC) and  $T_A$ = -40~85°C, unless otherwise specified. Typical values are at  $T_A$ =25°C.


| Cumbal            | Parameter                     | Test Conditions  APL533  Min. Typ.            | APL5337               |      | Unit           |      |    |
|-------------------|-------------------------------|-----------------------------------------------|-----------------------|------|----------------|------|----|
| Symbol            | Parameter                     | lest C                                        | onditions             | Min. | Ain. Typ. Max. |      |    |
| OUTPUT \          | OLTAGE (CONT.)                |                                               |                       |      |                |      |    |
|                   | Current-Limit                 | Sinking Current                               | T <sub>J</sub> =25°C  | -2.3 | -3.0           | -3.7 | Α  |
| I <sub>LIM</sub>  | Current-Limit                 | (V <sub>IN</sub> =1.5V)                       | T <sub>J</sub> =125°C | -2.3 | -3.0           | -3.7 | A  |
| I <sub>DIS</sub>  | Discharge Current             | T <sub>A</sub> =25 °C, V <sub>REF</sub> =0.1V |                       | -    | 22             | -    | μΑ |
| ENABLE AN         | ND SOFT-START                 |                                               |                       |      |                |      |    |
|                   | VREF Enable Voltage Threshold |                                               |                       | 0.15 | 0.3            | 0.4  | V  |
| I <sub>VREF</sub> | VREF Bias Current             |                                               |                       | -100 | -              | +100 | nA |
| T <sub>SS</sub>   | Soft-Start Interval           |                                               |                       | 0.1  | 0.2            | 0.4  | ms |
| THERMAL           | SHUTDOWN                      |                                               |                       |      |                |      |    |
| T <sub>SD</sub>   | Thermal Shutdown Temperature  | T <sub>J</sub> Rising                         |                       | -    | 150            | -    | °C |
|                   | Thermal Shutdown Hysteresis   |                                               |                       | -    | 30             | -    | °C |

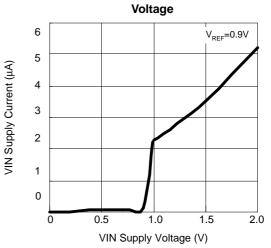



# **Typical Operating Characteristics**




# VIN Shutdown Current vs. VIN Supply



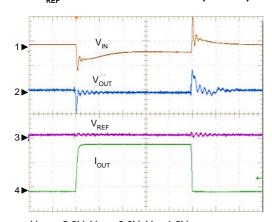

#### Offset Voltage vs. Junction Temperature



# VCNTL Shutdown Current vs. Junction Temperature



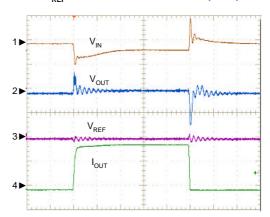
# VIN Supply Current vs. VIN Supply






# **Operating Waveforms**

Refer to the typical application circuit. The test condition is  $V_{IN}$ =1.5V or 1.8V or 1.35V,  $T_A$ =25°C unless otherwise specified.

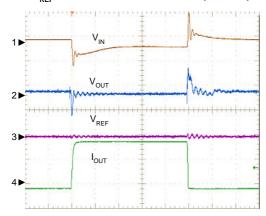

#### V<sub>RFF</sub>=0.9@2A Load Transient (Source)



$$\begin{split} & \text{$V_{\text{CNTL}}$=$3.3$V, $V_{\text{REF}}$=$0.9$V, $V_{\text{IN}}$=$1.8$V} \\ & \text{CH1: $V_{\text{IN}}$, $100\text{mV/Div, AC}$} \\ & \text{CH2: $V_{\text{OUT}}$, $20\text{mV/Div, AC}$} \\ & \text{CH3: $V_{\text{REF}}$, $20\text{mV/Div, AC}$} \end{split}$$

CH4: I<sub>OUT</sub>, 1A/Div, DC TIME: 20µs/Div

#### V<sub>RFF</sub>=0.9@2A Load Transient (Sink)

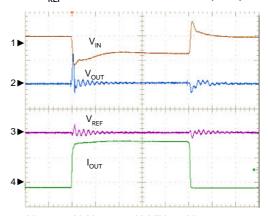



 $V_{CNTL} = 3.3 V, V_{REF} = 0.9 V, V_{IN} = 1.8 V$ 

CH1:  $V_{\rm IN}$ , 100mV/Div, AC CH2:  $V_{\rm OUT}$ , 20mV/Div, AC CH3:  $V_{\rm REF}$ , 20mV/Div, AC CH4:  $I_{\rm OUT}$ , 1A/Div, DC

TIME: 20µs/Div

### V<sub>RFF</sub>=0.75@2A Load Transient (Source)




 $V_{CNTL}$ =3.3V,  $V_{REF}$ =0.75V,  $V_{IN}$ =1.5V

 $\begin{array}{l} {\rm CH1: \, V_{\rm IN}, \, 100mV/Div, \, AC} \\ {\rm CH2: \, V_{\rm OUT}, \, 20mV/Div, \, AC} \\ {\rm CH3: \, V_{\rm REF}, \, 20mV/Div, \, AC} \\ {\rm CH4: \, I_{\rm OUT}, \, 1A/Div, \, DC} \end{array}$ 

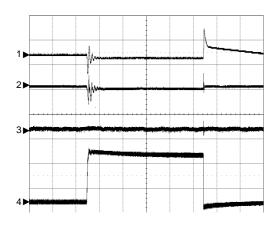
TIME: 20µs/Div

### V<sub>REF</sub>=0.75@2A Load Transient (Sink)



 $V_{CNTL}$ =3.3V,  $V_{REF}$ =0.75V, VIN=1.5V

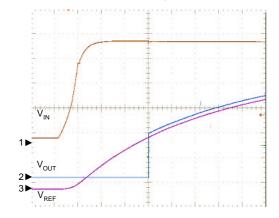
 $\begin{array}{l} {\rm CH1:~V_{IN},~100mV/Div,~AC} \\ {\rm CH2:~V_{OUT},~20mV/Div,~AC} \\ {\rm CH3:~V_{REF},~20mV/Div,~AC} \\ {\rm CH4:~I_{OUT},~1A/Div,~DC} \end{array}$ 


TIME: 20µs/Div



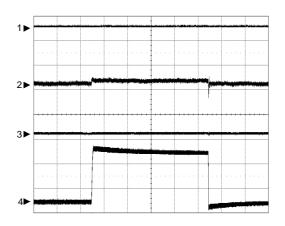
## **Operating Waveforms (Cont.)**

Refer to the typical application circuit. The test condition is  $V_{IN}$ =1.5V or 1.8V or 1.35V,  $T_A$ =25°C unless otherwise specified.


#### VREF=0.675V Load Transient (Source)



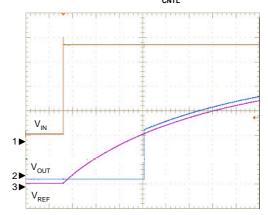
$$\begin{split} & \text{V}_{\text{CNTL}}\text{=}3.3\text{V}, \, \text{V}_{\text{REF}}\text{=}0.675\text{V}, \, \text{V}_{\text{IN}}\text{=}1.35\text{V} \\ & \text{CH1: V}_{\text{IN}}, \, 200\text{mV/Div, DC, Offset=}1.35\text{V} \\ & \text{CH2: V}_{\text{OUT}}, \, 50\text{mv/Div, DC, Offset=}0.675\text{V} \\ & \text{CH3: V}_{\text{REF}}, \, 20\text{mV/Div, DC, Offset=}0.675\text{V} \end{split}$$


CH4:  $I_{OUT}$ , 0.5A/Div, DC TIME: 0.2mS/Div

# Power on @ V<sub>CNTL</sub>=3.3V



 $\begin{array}{l} {\rm V_{CNTL}}{\rm =}3.3{\rm V,\ V_{REF}}{\rm =}0.9{\rm V,\ V_{IN}}{\rm =}1.8{\rm V} \\ {\rm CH1:\ V_{IN},\ 100mV/Div,\ AC} \\ {\rm CH2:\ V_{OUT},\ 200mV/Div,\ DC} \\ {\rm CH3:\ V_{REF},\ 200mV/Div,\ DC} \\ {\rm TIME:\ 10mS/Div,\ Load=600\Omega} \end{array}$ 


#### VREF=0.675V Load Transient (Sink)

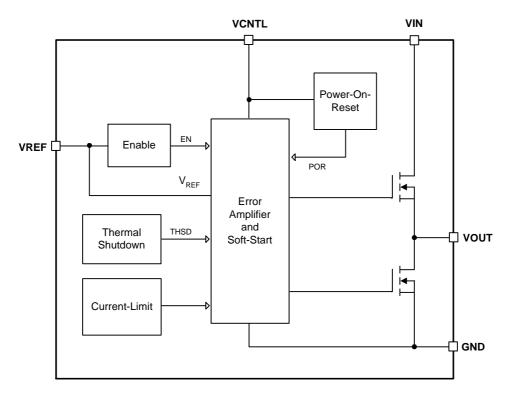


$$\begin{split} & \text{V}_{\text{CNTL}} \! = \! 3.3 \text{V}, \, \text{V}_{\text{REF}} \! = \! 0.675 \text{V}, \, \text{V}_{\text{IN}} \! = \! 1.35 \text{V} \\ & \text{CH1: V}_{\text{IN}}, \, 200 \text{mV/Div}, \, \text{DC}, \, \text{Offset} \! = \! 1.35 \text{V} \\ & \text{CH2: V}_{\text{OUT}}, \, 20 \text{mv/Div}, \, \text{DC}, \, \text{Offset} \! = \! 0.675 \text{V} \\ & \text{CH3: V}_{\text{REF}}, \, 50 \text{mV/Div}, \, \text{DC}, \, \text{Offset} \! = \! 0.675 \text{V} \end{split}$$

CH4:  $I_{OUT}$ , 0.5A/Div, DC TIME: 0.2mS/Div

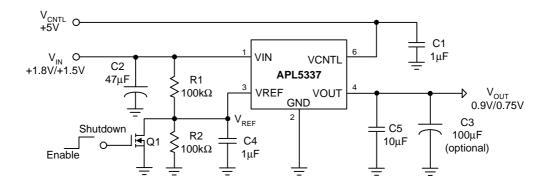
### Power on @ V<sub>CNTL</sub>=5V




 $\begin{array}{l} {\rm V_{CNTL}}{\rm =}5{\rm V,\ V_{REF}}{\rm =}0.9{\rm V,\ V_{IN}}{\rm =}1.8{\rm V} \\ {\rm CH1:\ V_{IN},\ 100mV/Div,\ DC} \\ {\rm CH2:\ V_{OUT},\ 200mV/Div,\ DC} \\ {\rm CH3:\ V_{REF},\ 200mV/Div,\ DC} \\ {\rm TIME:\ 10mS/Div,\ Load=600} \\ \end{array}$ 



# **Pin Description**


| PIN                          |       | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| NO.                          | NAME  | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 1                            | VIN   | Main Power Input Pin. Connect this pin to a voltage source and an input capacitor. The APL5337 sources current to VOUT pin by controlling the upper pass MOSFET, providing a current path from VIN to VOUT.                                                                                                                                                                                                                        |  |  |  |
| 2                            | GND   | Power and Signal Ground. Connect this pin to system ground plane with shortest traces. The APL5337 sinks current from VOUT pin by controlling the lower pass MOSFET, providing a current path from VOUT to GND. This pin is also the ground path for internal control circuitry.                                                                                                                                                   |  |  |  |
| 3                            | VREF  | Reference Voltage Input and Active-high Enable Control Pin. Apply a voltage to this pin as a reference voltage for the APL5337. Connect this pin to a resistor diver, between VIN and GND, and a capacitor for filtering noise purpose. Applying and holding the voltage below the enable voltage threshold on this pin by an open-drain transistor shuts down the output. During shutdown, the VOUT pin has high input impedance. |  |  |  |
| 4                            | VOUT  | Output Pin of The Regulator. Connect this pin to load and output capacitors (>8µF MLCC is necessary) required for stability and improving transient response. The output voltage is regulated to track the reference voltage and capable of sourcing or sinking current up to 1.5A.                                                                                                                                                |  |  |  |
| 5, 7, 8 (SOP-8P)             | NC    | No Internal Connection.                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 5 ~ 8 (SOP-8)<br>6 (SOP-8P)  | VCNTL | Power Input Pin for Internal Control Circuitry. Connect this pin to a voltage source, providing a bias for the internal control circuitry. A decoupling capacitor is connected near this pin.                                                                                                                                                                                                                                      |  |  |  |
| Exposed Pad<br>(SOP-8P only) | GND   | Chip Substrate Connection of The Chip. Connect this pad to system ground plane for good thermal conductivity.                                                                                                                                                                                                                                                                                                                      |  |  |  |

# **Block Diagram**





# **Typical Application Circuit**



The ceramic capacitor C5 ( at least  $8\mu F$ ) is necessary for output stability.



# **Function Description**

#### Power-On-Reset

A Power-On-Reset (POR) circuit monitors both input voltages at VCNTL pins to prevent wrong logic controls. The POR function initiates a soft-start process after both of the supply voltages exceed their rising POR voltage thresholds during powering on.

#### **Output Voltage Regulation**

The output voltage on VOUT pin is regulated to track the reference voltage applied on VREF pin. Two internal N-channel power MOSFETs controlled by high bandwidth error amplifiers regulate the output voltage by sourcing current from VIN pin or sinking current to GND pin. An internal output voltage sense pad is bonded to the VOUT pin with a bonding wire for perfect load regulation.

For preventing the two power MOSFETs from shootthrough, a small voltage offset between the positive inputs of the two error amplifiers is designed. It results in higher output voltage while the regulator sinks light or heavy load current.

The APL5337 provides a very fast load transient response at small output capacitance to save total cost.

#### **Current-Limit**

The APL5337 monitors the output current, both sourcing and sinking current, and limits the maximum output current to prevent damages during current overload or short-circuit (shorten from VOUT to GND or VIN) conditions.

#### Enable

The VREF pin is a multi-function input pin which is the reference voltage input pin and the enable control input pin. Applying and holding the voltage ( $V_{REF}$ ) on VREF below 0.3V (typical) shuts down the output of the regulator. In the typical application, an NPN transistor or N-channel MOSFET is used to pull down the  $V_{REF}$  while applying a "high" signal to turn on the transistor. When shutdown function is active, both of the internal power MOSFETs are turned off and the impedance of the VOUT pin is larger than  $10 \text{m}\Omega$ .

#### Internal and External Soft-Start

The APL5337 is designed with an internal soft-start function to control the rise rate of the output voltage to prevent inrush current during start-up.

When release the pull-low transistor connected with VREF pin, the current via the resistor divider charges the external soft-start capacitor (C4) and the  $V_{\rm REF}$  starts to rise up. The IC starts a soft-start process when the  $V_{\rm REF}$  reaches the enable voltage threshold. The output voltage is regulated to follow the lower voltage, which is either the internal soft-start voltage ramp or the VREF voltage, to rise up. The external soft-start interval is programmable by the resistor-divider and the soft-start capacitor (C4).

#### **Thermal Shutdown**

The thermal shutdown circuit limits the junction temperature of the APL5337. When the junction temperature exceeds 150°C, a thermal sensor turns off the both pass transistors, allowing the device to cool down. The thermal sensor allows the regulator to regulate again after the junction temperature cools by 30°C, resulting in a pulsed output during continuous thermal overload conditions. The thermal limit is designed with a 30°C hysteresis to lower the average  $T_{\rm J}$  during continuous thermal overload conditions, increasing lifetime of the APL5337.



## Application Information

#### **Power Sequencing**

The input sequence of powers applied for VIN and VCNTL is not necessary to be concerned.

#### Reference Voltage

A reference voltage is applied at the VREF pin by a resistor divider between VIN and GND pins. An external bypass capacitor is also connected to VREF. The capacitor and the resistor divider form a low-pass filter to reduce the inherent reference noise from VIN. The capacitor is a  $0.1\mu F$  or greater ceramic capacitor and connected as close to VREF as possible. More capacitance and large resistor divider will increase the soft-start interval. Do not place any additional loading on this reference input pin.

#### **Input Capacitor**

The APL5337 requires proper input capacitors to supply current surge during stepping load transients to prevent the input rail from dropping. Because the parasitic inductors from the voltage sources or other bulk capacitors to the VIN pin limit the slew rate of the input current, more parasitic inductance needs more input capacitance. For the APL5337, the total capacitance of input capacitors value including MLCC and aluminum electrolytic capacitors should be larger than  $10\mu F$ .

For VCNTL pin, a capacitor of  $0.47\mu F$  (MLCC) or above is recommended for noise decoupling.

#### **Output Capacitor**

The APL5337 needs a proper output capacitor to maintain circuit stability and improve transient response. In order to insure the circuit stability, a  $10\mu F$  X5R or X7R MLCC output capacitor is sufficient at all operating temperatures and it must be placed near the VOUT. The maximum distance from output capacitor to VOUT must within 10mm. Total output capacitors value including MLCC and aluminum electrolytic capacitors should be larger than  $10\mu F$ .

Table 1 provides the suitable output capacitors for APL5337.

Table 1: Output Capacitor Guide

| Vendor   | Description                           |
|----------|---------------------------------------|
| Murata   | 10μF, 6.3V, X7R, 0805, GRM21BR70J106K |
| iviuiata | 10μF, 6.3V, X5R, 0805, GRM21BR60J106K |

Murata website: www.murata.com

#### **Operation Region and Power Dissipation**

The APL5337 maximum power dissipation depends on the thermal resistance and temperature difference between the die junction and ambient air. The power dissipation  $P_{\rm D}$  across the device is:

$$P_{D} \leq \frac{(T_{J} - T_{A})}{\theta_{JA}}$$

Where  $(T_J-T_A)$  is the temperature difference between the junction and ambient air.  $\theta_{JA}$  is the thermal resistance between junction and ambient air. Assuming the  $T_A=25^{\circ}C$  and maximum  $T_J=150^{\circ}C$  (typical thermal limit threshold), the maximum power dissipation is calculated as:

$$P_{D(max)} = \frac{(150 - 25)}{80}$$
$$= 1.56(W)$$

For normal operation, do not exceed the maximum junction temperature of  $T_J = 125^{\circ}C$ . The calculated power dissipation should less than:

$$P_{D} = \frac{(125 - 25)}{80}$$
$$= 1.25(W)$$

#### **PCB Layout Consideration**

Figure 1 illustrates the layout. Below is a checklist for your layout:

- 1. Please place the input capacitors close to the VIN.
- 2. Please place the output capacitors close to the VOUT, a MLCC capacitor larger than  $8\mu F$  must be placed near the VOUT. The distance from VOUT to output MLCC must be less than 10mm.
- To place APL5337 and output capacitors near the load is good for load transient response.
- 4. Large current paths, the bold lines in Figure 1, must have wide tracks.



# **Application Information (Cont.)**

#### **PCB Layout Consideration (Cont.)**

5. For SOP-8P package, please solder the thermal pad to the APL5337 to top-layer ground plane. Numerous vias 0.254mm in diameter should be used to connect both top-layer and internal ground planes. The ground planes and PCB form a heat sink to channel major power dissipation of the APL5337 into ambient air.

Large ground plane is good for heatsinking. Optimum performance can only be achieved when the device is mounted on a PC board according to the board layout diagrams which are shown as Figure 2.

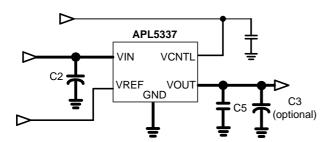
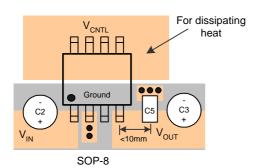




Figure 1.



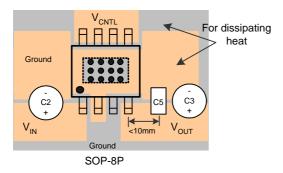
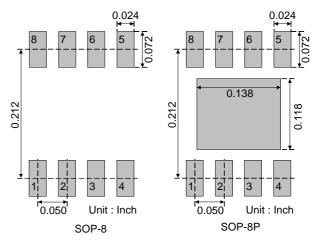
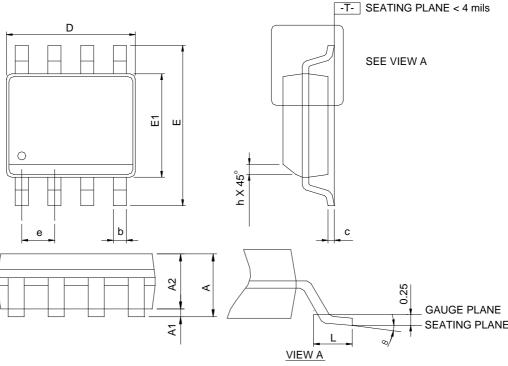




Figure 2. Recommended Layout


#### **Recommended Minimum Footprint**



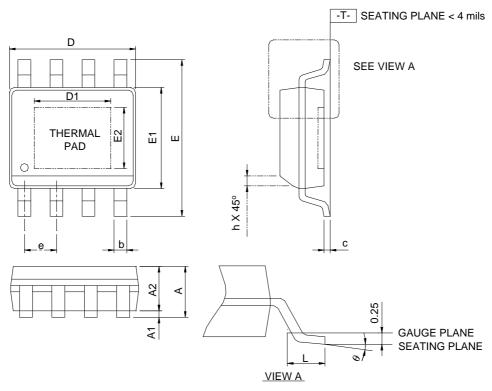


# **Package Information**

### SOP-8



| ş                          |        | SOP-8          |       |       |  |
|----------------------------|--------|----------------|-------|-------|--|
| S<br>Y<br>M<br>B<br>O<br>L | MILLIM | MILLIMETERS IN |       | ICHES |  |
| 6                          | MIN.   | MAX.           | MIN.  | MAX.  |  |
| Α                          |        | 1.75           |       | 0.069 |  |
| A1                         | 0.10   | 0.25           | 0.004 | 0.010 |  |
| A2                         | 1.25   |                | 0.049 |       |  |
| b                          | 0.31   | 0.51           | 0.012 | 0.020 |  |
| С                          | 0.17   | 0.25           | 0.007 | 0.010 |  |
| D                          | 4.80   | 5.00           | 0.189 | 0.197 |  |
| Е                          | 5.80   | 6.20           | 0.228 | 0.244 |  |
| E1                         | 3.80   | 4.00           | 0.150 | 0.157 |  |
| е                          | 1.27   | BSC            | 0.05  | 0 BSC |  |
| h                          | 0.25   | 0.50           | 0.010 | 0.020 |  |
| L                          | 0.40   | 1.27           | 0.016 | 0.050 |  |
| θ                          | 0°     | 8°             | 0°    | 8°    |  |


Note: 1. Follow JEDEC MS-012 AA.

- Dimension "D" does not include mold flash, protrusions or gate burrs.
   Mold flash, protrusion or gate burrs shall not exceed 6 mil per side.
- 3. Dimension "E" does not include inter-lead flash or protrusions. Inter-lead flash and protrusions shall not exceed 10 mil per side.

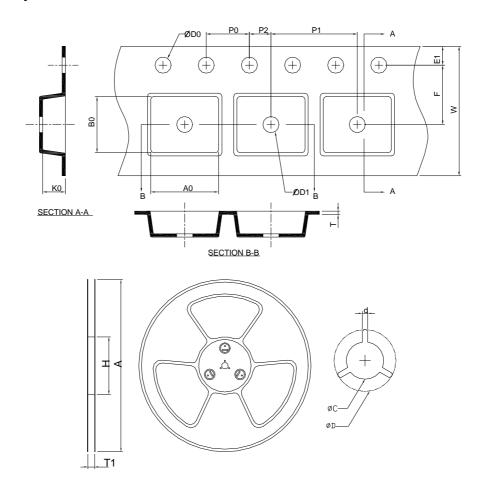


# **Package Information**

### SOP-8P



| Ş      |        | SOF   | P-8P  |       |
|--------|--------|-------|-------|-------|
| SYMBOL | MILLIM | ETERS | INC   | HES   |
|        | MIN.   | MAX.  | MIN.  | MAX.  |
| Α      |        | 1.60  |       | 0.063 |
| A1     | 0.00   | 0.15  | 0.000 | 0.006 |
| A2     | 1.25   |       | 0.049 |       |
| b      | 0.31   | 0.51  | 0.012 | 0.020 |
| С      | 0.17   | 0.25  | 0.007 | 0.010 |
| D      | 4.80   | 5.00  | 0.189 | 0.197 |
| D1     | 2.50   | 3.50  | 0.098 | 0.138 |
| E      | 5.80   | 6.20  | 0.228 | 0.244 |
| E1     | 3.80   | 4.00  | 0.150 | 0.157 |
| E2     | 2.00   | 3.00  | 0.079 | 0.118 |
| е      | 1.27   | BSC   | 0.05  | 0 BSC |
| h      | 0.25   | 0.50  | 0.010 | 0.020 |
| L      | 0.40   | 1.27  | 0.016 | 0.050 |
| θ      | 0°C    | 8°C   | 0°C   | 8°C   |


Note: 1. Followed from JEDEC MS-012 BA.

<sup>2.</sup> Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 6 mil per side .

<sup>3.</sup> Dimension "E" does not include inter-lead flash or protrusions.
Inter-lead flash and protrusions shall not exceed 10 mil per side.



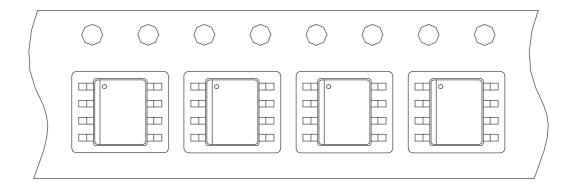
# **Carrier Tape & Reel Dimensions**



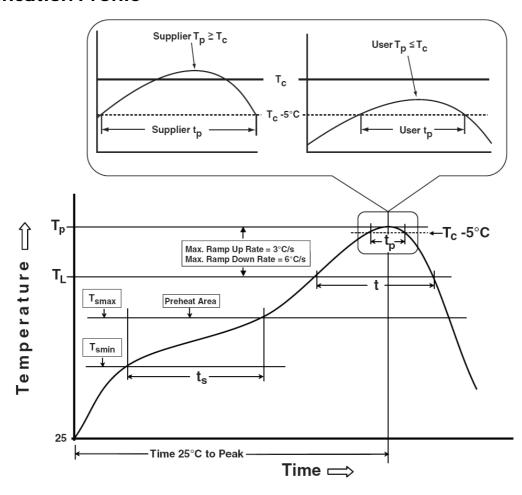
| Application | Α           | Η         | T1                 | C                  | d        | D                 | W          | E1         | F                 |
|-------------|-------------|-----------|--------------------|--------------------|----------|-------------------|------------|------------|-------------------|
|             | 330.0 ±2.00 | 50 MIN.   | 12.4+2.00<br>-0.00 | 13.0+0.50<br>-0.20 | 1.5 MIN. | 20.2 MIN.         | 12.0 ±0.30 | 1.75 ±0.10 | 5.5 <b>±</b> 0.05 |
| SOP-8(P)    | P0          | P1        | P2                 | D0                 | D1       | T                 | A0         | В0         | K0                |
|             | 4.0 ±0.10   | 8.0 ±0.10 | 2.0 ±0.05          | 1.5+0.10<br>-0.00  | 1.5 MIN. | 0.6+0.00<br>-0.40 | 6.40 ±0.20 | 5.20 ±0.20 | 2.10 ±0.20        |

(mm)

### **Devices Per Unit**


| Package Type | Unit        | Quantity |
|--------------|-------------|----------|
| SOP-8(P)     | Tape & Reel | 2500     |




# **Taping Direction Information**

SOP-8(P)





### **Classification Profile**





### **Classification Reflow Profiles**

| Profile Feature                                                                                          | Sn-Pb Eutectic Assembly            | Pb-Free Assembly                   |  |
|----------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------|--|
| Preheat & Soak Temperature min $(T_{smin})$ Temperature max $(T_{smax})$ Time $(T_{smin}$ to $T_{smax})$ | 100 °C<br>150 °C<br>60-120 seconds | 150 °C<br>200 °C<br>60-120 seconds |  |
| Average ramp-up rate (T <sub>smax</sub> to T <sub>P</sub> )                                              | 3 °C/second max.                   | 3°C/second max.                    |  |
| Liquidous temperature (T <sub>L</sub> ) Time at liquidous (t <sub>L</sub> )                              | 183 °C<br>60-150 seconds           | 217 °C<br>60-150 seconds           |  |
| Peak package body Temperature (T <sub>p</sub> )*                                                         | See Classification Temp in table 1 | See Classification Temp in table 2 |  |
| Time (t <sub>P</sub> )** within 5°C of the specified classification temperature (T <sub>c</sub> )        | 20** seconds                       | 30** seconds                       |  |
| Average ramp-down rate (T <sub>p</sub> to T <sub>smax</sub> )                                            | 6 °C/second max.                   | 6 °C/second max.                   |  |
| Time 25°C to peak temperature                                                                            | 6 minutes max.                     | 8 minutes max.                     |  |

<sup>\*</sup> Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.

Table 1. SnPb Eutectic Process – Classification Temperatures (Tc)

| Package   | Volume mm <sup>3</sup> | Volume mm <sup>3</sup> |
|-----------|------------------------|------------------------|
| Thickness | <350                   | <sup>3</sup> 350       |
| <2.5 mm   | 235 °C                 | 220 °C                 |
| ≥2.5 mm   | 220 °C                 | 220 °C                 |

Table 2. Pb-free Process – Classification Temperatures (Tc)

| Package<br>Thickness | Volume mm <sup>3</sup><br><350 | Volume mm <sup>3</sup><br>350-2000 | Volume mm <sup>3</sup> >2000 |
|----------------------|--------------------------------|------------------------------------|------------------------------|
| <1.6 mm              | 260 °C                         | 260 °C                             | 260 °C                       |
| 1.6 mm – 2.5 mm      | 260 °C                         | 250 °C                             | 245 °C                       |
| ≥2.5 mm              | 250 °C                         | 245 °C                             | 245 °C                       |

# **Reliability Test Program**

| Test item     | Method             | Description                            |
|---------------|--------------------|----------------------------------------|
| SOLDERABILITY | JESD-22, B102      | 5 Sec, 245°C                           |
| HOLT          | JESD-22, A108      | 1000 Hrs, Bias @ T <sub>j</sub> =125°C |
| PCT           | JESD-22, A102      | 168 Hrs, 100%RH, 2atm, 121°C           |
| тст           | JESD-22, A104      | 500 Cycles, -65°C~150°C                |
| НВМ           | MIL-STD-883-3015.7 | VHBM 2KV                               |
| MM            | JESD-22, A115      | VMM 200V                               |
| Latch-Up      | JESD 78            | 10ms, 1 <sub>tr</sub> 100mA            |

<sup>\*\*</sup> Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.



### **Customer Service**

### **Anpec Electronics Corp.**

Head Office:

No.6, Dusing 1st Road, SBIP, Hsin-Chu, Taiwan, R.O.C. Tel: 886-3-5642000 Fax: 886-3-5642050

#### Taipei Branch:

2F, No. 11, Lane 218, Sec 2 Jhongsing Rd., Sindian City, Taipei County 23146, Taiwan

Tel: 886-2-2910-3838 Fax: 886-2-2917-3838

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Linear Voltage Regulators category:

Click to view products by Anpec manufacturer:

Other Similar products are found below:

LV56831P-E LV5684PVD-XH MCDTSA6-2R L7815ACV-DG PQ3DZ53U LV56801P-E TLE42794G L78L05CZ/1SX L78LR05DL-MA-E 636416C 714954EB BA033LBSG2-TR LV5680P-E L78M15CV-DG TLS202B1MBV33HTSA1 L79M05T-E TLS202A1MBVHTSA1 L78LR05D-MA-E NCV317MBTG NTE7227 LV5680NPVC-XH LT1054CN8 MP2018GZD-5-Z MP2018GZD-33-Z MIC5281-3.3YMM RT9078-28GQZ MC78L06BP-AP TA48LS05F(TE85L,F) TC47BR5003ECT TCR2LN12,LF(S TCR2LN28,LF(S TCR2LN30,LF(S TCR3DF295,LM(CT TCR3DF40,LM(CT BA178M20CP-E2 L78M05TL-TL-E L78M12ABDT LR645N3-G-P003 LR645N3-G-P013 ZXTR2005P5-13 SCD7812BTG TCR3DF335,LM(CT ZXTR2012K-13 TLE42994E V33 ZXTR2008K-13 ZXTR2005K-13 L88R05DL-E ADP3300ARTZ-2.7RL7 LM120K-15/883 IFX54441LDVXUMA1