

- Max. 250mA/120V/9W AC/6W DC
- 2 pole
- Momentary or latching
- 8 contact functions
- Temperature range:

High temp: $-40 /+160^{\circ} \mathrm{C}$

- Through-hole version (TH)

DIMENSIONS THROUGH-HOLE

OPERATING FORCE (TYPICAL EXAMPLE)

WIRING DIAGRAM

Select the contact function you require - and design your PC board accordingly

2 break contact

HOW TO ORDER

High temp.

H

E

2 change over contact

2 make and 2 break

reverse polarity

HOW TO ASSEMBLE

unimec ${ }^{\text {TM }}$

$15 X X X+16300+16310$

unime ${ }^{\text {rm }}$

$15 X X X+16270$
$+16300+16324$

unimec $^{\text {TM }}$

Technical specifications

RoHS Compatible

unimec ${ }^{\text {TM }}$ LEDs

Part Nos.		16920/16921			16922			16923					16924		
Colour (G=green, $\mathrm{Y}=$ yellow, $\mathrm{R}=$ red)		G	Y	R	G	Y	R	B	G	Y	W	R	G	Y	R
Colour Codes		02	04	08	02	04	08	00	20	40	65	80	23	45	88
Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)															
Power	mW	100	100	100	135	135	135	105	70	60	120	60	150	130	300
Current forward	mA	30	30	30	30	30	30	30	20	20	25	20	40	40	90
Forward peak current	mA	50	50	50	90	90	90	200	$60^{* *}$	60**	100	$60^{* *}$	500	500	1000
Voltage reverse	V	5	5	5	5	5	5	5	3	3	5	3	12	12	5
Operating temperature	${ }^{\circ} \mathrm{C}$	$-25-+100$			-55-+100			$-25-+85$					-55-+100		
Storage temperature	${ }^{\circ} \mathrm{C}$	-25-+100			-55-+100			-30-+100					$-55-+100$		
Soldering temperature	${ }^{\circ} \mathrm{C}$	+245 for max. 3 sec			+300 for max. 3 sec			+260 for max. 5 sec					+300 for max. 3 sec		
Electrical-Optical Characteristics ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)															
Voltage forward	Typ. V	2.0	2.0	2.0	2.1	2.2	2.3	2.1	2.1	2.1	3.8	2.0	2.1*	2.3***	2.4***
	Max. V	3.0	3.0	3.0	3.0	3.0	3.0	2.8	3.0	3.0	4.3	3.0	2.5*	$2.5{ }^{* * *}$	$3.8{ }^{* * *}$
Current reverse	$\mu \mathrm{A}$	100	100	100	100	100	100	2	10	10	50	10	10	10	10
Wave length	nm	560	590	660	565	585	635	460	563	585	NA	650	570	587	635
Spread	$\emptyset \mathrm{nm}$	10	10	10	10	10	10	40	40	40	NA	40	25	45	45
Spread angle	Degree	20	20	20	45	45	45	20	45	45	25	45	80	90	55
Luminous Intensity	Min. mcd	1	1	0.8	1.5	2.5	2.5	20	9.0	5.6	630	5.6	$71^{* * * *}$	71****	100****
	Typ. mcd	2	3	1.6	2.5	3.0	5.0	25	25	16	1000	16	112****	$112^{* * *}$	$160^{* * * *}$
Orientation The longer pin is the anode, the shorter is the cathode.	The longer pin is the anode, the shorter is the cathode.														

[^0]
Usage guidelines

How to get the best results with MEC Switches?

These guidelines are offered to users of MEC Switches as an aid to ensure successful and reliable switch operation.

Temperature

Both unimec ${ }^{T M}$ and multimec ${ }^{\circ}$ switches are produced in low and high temperature versions. Please see the technical specifications for details on operating and storage temperatures and soldering guidelines to make sure you select the best switch for your application. When wave soldering is taking place, MEC strongly recommend that the temperature profile is analysed and compared with the temperature rating of the switch. In case of doubt always select the high temperature versions unime $c^{\text {Tm }} 154 \mathrm{XX}$, and multimec ${ }^{\circ} 5 \mathrm{XXH9XX}$. It is also important to monitor the accumulated heat build up from both the pre-heat zones and the solder zone.

Most standard accessories for both unimec ${ }^{T M}$ and multimec ${ }^{\circ}$ switches are made from ABS plastic with a maximum operating temperature of $65^{\circ} \mathrm{C}$. It is strongly recommended that accessories are mounted after soldering of the switch. If this is not possible care must be taken not to overheat the accessories during the soldering process. The 1SS, 1GAS/1GCS and Varimec ${ }^{\text {tTM }}$ caps are, however, made of high temperature materials and will meet the same temperature specifications as the high temperature switches.

For accessories made from other plastic materials please see multimec ${ }^{\circledR}$ and unimec ${ }^{\text {™ }}$ technical specifications.

LEDs have their own temperature specifications. When fitted in a high temperature switch the LED will determine the max. operating temperature, i.e. 5 GTH 93524 has an upper temperature limit of $85^{\circ} \mathrm{C}$! This also applies with 3 F switches.

Mounting and Dismounting

If switches are to be mounted in rows it is essential that the recommendations regarding spacing are followed. PC board thickness should be $1.4 \pm 0.2 \mathrm{~mm}$ and terminal hole diameter should be 0.9 mm .

All unimec ${ }^{\text {TMM }}$ and multimec ${ }^{\circ}$ caps and bezels are easily snapped onto the switch modules and can be changed at a later time with the exception of the unimec 16.700 cap. The same applies to the 3 Ecaps . Once these caps are installed they are not designed to be removed. To do so may cause damage to the switch and the PC board if not done very carefully. If the 16.300 or 16.700 cap must be removed from a unime ${ }^{\text {r"M }}$ alternate action switch, make sure that the switch actuator is in the released, upper position before attempting to remove the cap. This will prevent possible damage to the internal latching pin.

Care must be taken when inserting the 3FT switch and LED assembly into the PC board. Do not press direct on the LED. This will force the LED down into the actuator and risks to cause the switch contacts to remain in the closed position. To correct the fault, the LED must be raised slightly and centered in the actuator to assure unrestricted movement of the actuator. A mounting tool is available for multimec ${ }^{\circ}$ switches.

Soldering and Cleaning unimec ${ }^{\text {rm }}$

Most assembly and field problems experienced by users of unsealed switches are caused by the contamination of the contacts during soldering and cleaning.

Contact contamination may be recognised by an increase in contact resistance and possible intermittent operation of the switch, especially in low power applications. Care must be taken not to submerge the switch in cleaning agents or spray the switch during cleaning. The switch must be protected at all times to prevent contamination by flux or cleaning liquids.

For unime $c^{\text {rTM }}$ alternate versions we recommend to leave the actuator in the released upper position during soldering. This makes the switch more resistent to overheating.

Soldering and Cleaning multimec ${ }^{\circ}$

multimec ${ }^{\circ}$ switches are fully sealed to IP67 specifications to prevent solder flux and aqueous based cleaning solutions from entering the switch and contaminating the contacts. The switches can be placed on the PC board with other components and wave soldered. multimec ${ }^{\circ}$ offers a high level of sealing, however, with aqueous solvent solutions care must be taken to avoid the worst case situation with water jets, complete immersion into a liquid with a temperature below the board or surface tension reducing additives.

Recommended cleaning methods are demineralized water. Any surface tension reducing agents, such as soap, must not be used as they risk causing a potential leakage of the switch.

Soldering - Through Hole Versions

Hand soldering: Max. $350^{\circ} \mathrm{C}$ for max. 3 sec., this applies for both low temperature and high temperature versions.

Wave soldering: heat built up in the switch during pre-heating and soldering must not exceed the maximum operating temperature of the switch. If, for some reason, a high pre-heating temperature is required, MEC recommend the high temperature switches. In any case peak temperature must not exceed $260^{\circ} \mathrm{C}$, and soldering time is $\max 10 \mathrm{sec}$.

Soldering - Surface Mount Versions

For all methods - infrared, convection and vapour phase. The upper limit $260^{\circ} \mathrm{C} / 30 \mathrm{sec}$ must be observed. The soldering temperature profile must have moderate temperature gradients.

RoHS Compliance

As of 1 July 2006 MEC has completed the conversion to RoHS compliance. For more info please see our homepage www.mec.dk

Temperature Limits:

Low temperature switch	$115^{\circ} \mathrm{C}$
High temperature switch	$160^{\circ} \mathrm{C}$
LEDs	$85 / 100^{\circ} \mathrm{C}$
Accessories	$65 / 85 / 160^{\circ} \mathrm{C}$

Packaging

unimec $c^{\text {TM }}$ and multimec ${ }^{\circ}$ switches are packed in rigid tubes of 50 pieces each.

A box contains 1.000 pcs.

The surface mount versions of multimec ${ }^{\circ}$ switches with a height up to 12.5 mm can also be delivered on tape/reel. Each reel contains 250/500 pcs.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Pushbutton Switches category:
Click to view products by Apem manufacturer:

Other Similar products are found below :
8940K2012 LW1L-M1C10V-A LW1L-M1C70-A LW2L-A1C20M-GD LW2L-M1C20M-A 60324L M22-D-R-GB0/K11 M7E-HRN2 67021K512 67081K512X 701PB580 7190K101 7199K101 810K12910 810KSV30B MML21EA2ADK MML21KA3ABK MML23KA3AC05K-001 MML23KW3AA01W 8418K2 8442K3 8450K1 860K11911T01A 861901 861K11911T01A07 861K13810T00A14 861K13911 8646AB6X718UL 8646ABUL 9001KXRK 907AYY100 PMHD155A1 95-313.000 $\underline{9533 \mathrm{CD} 4+\mathrm{U} 574+\mathrm{U} 4922} \underline{95-414.000}$ 99-450.837 99-453.837 PV3H2B0NN-341 1203MRA A22NZBGANGA A22NZBMMNGA A22NZBNANGA A22NZMPATRA A2PMA1X03EC56 A3A-5123-02 A3A-7140 A3A-7310 A3A-7340 A3U-TMW-A2C-5M A595

[^0]: */F=20mA, **Pulse width 1 ms Duty cycle $1: 5$, ***/F=50mA, ***Luminous Flux mlm

