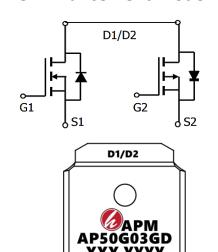


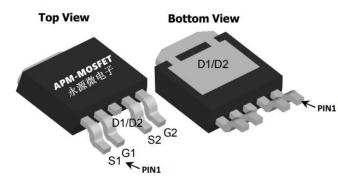
Description

The AP50G03GD uses advanced trench technology to provide excellent R_{DS(ON)}, low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

V_{DS} = 30V I_D =52A


 $R_{DS(ON)} < 10 m\Omega$ @ $V_{GS}=10V$ (Type: $7.2 m\Omega$)


 $V_{DS} = -30V I_{D} = -48A$

 $R_{DS(ON)} < 13m\Omega @ V_{GS}=-10V (Type: 8.8m\Omega)$

Application

BLDC

Package Marking and Ordering Information

	<u> </u>		
Product ID	Pack	Marking	Qty(PCS)
AP50G03GD	TO-252-4L	AP50G03GD XXX YYYY	2500

Absolute Maximum Ratings (Tc=25℃unless otherwise noted)

Symbol	Parameter	N-Ch	P-Ch	Units
V _D s	Drain-Source Voltage	30	-30	V
Vgs	Gate-Source Voltage	±20	±20	V
I _D @T _C =25℃	Continuous Drain Current, V _{GS} @ 10V ¹	52	-48	Α
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ¹	38.5	-37.5	А
Ідм	Pulsed Drain Current ²	150	-144	Α
EAS	Single Pulse Avalanche Energy ³	289	378	mJ
las	Avalanche Current	28	29.5	А
P _D @T _C =25°C	Total Power Dissipation ⁴	46	41.3	W
Тѕтс	Storage Temperature Range	-55 to 150	-55 to 150	$^{\circ}$ C
TJ	Operating Junction Temperature Range	-55 to 150	-55 to 150	$^{\circ}$
Reja	Thermal Resistance Junction-Ambient ¹	62.5		°C/W
Rejc	Thermal Resistance Junction-Case ¹	2	.3	°C/W

N-Electrical Characteristics (T_J=25 °C, unless otherwise noted)

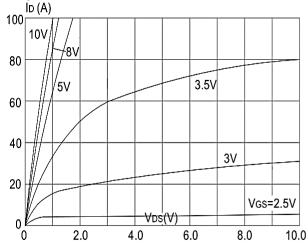
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	30	33		٧
∆BVDSS/∆TJ	BVDSS Temperature Coefficient	Reference to 25°C , I _D =1mA		0.0193		V/°C
DDC(ON)	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =30A		7.2	10	mΩ
RDS(ON)		V _{GS} =4.5V , I _D =15A		11	16	
VGS(th)	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	1.2	1.6	2.5	٧
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	VGS-VDS, ID -250UA		-3.97		mV/°C
IDSS	Drain Source Leakage Current	V _{DS} =24V , V _{GS} =0V , T _J =25°C			1	- uA
1033	Drain-Source Leakage Current	V _{DS} =24V , V _{GS} =0V , T _J =55°C			5	
IGSS	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =30A		34		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.8		Ω
Qg	Total Gate Charge (4.5V)	V _{DS} =15V , V _{GS} =4.5V , I _D =15A		9.8		
Qgs	Gate-Source Charge			4.2		nC
Q _{gd}	Gate-Drain Charge			3.6		
Td(on)	Turn-On Delay Time			4		
Tr	Rise Time	V_{DD} =15V , V_{GS} =10V , R_{G} =3.3 Ω		8		no
Td(off)	Turn-Off Delay Time	I _D =15A		31		ns
Tf	Fall Time			4		
Ciss	Input Capacitance			940		
Coss	Output Capacitance	V_{DS} =15V , V_{GS} =0V , f=1MHz		131		pF
Crss	Reverse Transfer Capacitance			109		
Is	Continuous Source Current ^{1,5}	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			43	Α
ISM	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			112	Α
VSD	Diode Forward Voltage ²	V _{GS} =0V , I _S =1A , T _J =25°C			1	V
t _{rr}	Reverse Recovery Time	IF=30A , dI/dt=100A/μs ,		8.5		nS
Qrr	Q _{rr} Reverse Recovery Charge T _J =25°C			2.2		nC

Note :

- 1、The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.
- 2、 The data tested by pulsed , pulse width $\leq 300 \text{us}$, duty cycle $\leq 2\%$
- 3、 The EAS data shows Max. rating . The test condition is VDD=25V, VGS=10V,L=0.1Mh, IAS=28A
- 4. The power dissipation is limited by 175°C junction temperature
- 5. The data is theoretically the same as ID and IDM , in real applications , should be limited by total power dissipation.

.

P-Electrical Characteristics (T_J=25°C, unless otherwise noted)


Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
V(BR)DSS	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D = -250μA	-30	-32.5	-	V
IDSS	Zero Gate Voltage Drain Current	V _{DS} = -30V, V _{GS} =0V,	-	-	-1	μΑ
IGSS	Gate to Body Leakage Current	V _{DS} =0V, V _{GS} = ±20V	-	-	±100	nA
VGS(th)	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D = -250μA	-1.2	-1.5	-2.5	V
DDQ()	Static Drain-Source on-Resistance note3	V _{GS} = -10V, I _D = -10A	-	8.8	13	mΩ
RDS(on)		V _{GS} = -4.5V, I _D = -5A	_	16	20	
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz	4.9	7.0	9.1	Ω
C _{iss}	Input Capacitance		-	2130	-	pF
Coss	Output Capacitance	V _{DS} = -24V, V _{GS} =10V, f=1.0MHz	-	280	-	pF
Crss	Reverse Transfer Capacitance		-	252	-	pF
Q_g	Total Gate Charge	V _{DS} = -24V, I _D = -1A, V _{GS} = -10V	-	22	-	nC
Qgs	Gate-Source Charge		-	4	-	nC
Q_{gd}	Gate-Drain("Miller") Charge		-	5.8	-	nC
td(on)	Turn-on Delay Time		-	9	-	ns
tr	Turn-on Rise Time	V _{DD} = -24V, I _D = -1A,	-	13	-	ns
td(off)	Turn-off Delay Time	V_{GS} = -10V, R_{GEN} =7.0 Ω	-	48	-	ns
t _f	Turn-off Fall Time		-	20	-	ns
IS	Maximum Continuous Drain to Source Diode Forward Current		-	-	-29.5	Α
ISM	Maximum Pulsed Drain to Source Diode Forward Current		-	-	-44	Α
VSD	Drain to Source Diode Forward Voltage V _{GS} =0V, I _S = -1A		-	-0.74	-1.2	V

Note:

- 1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- $\mathbf{2}_{\times}$ The data tested by pulsed , pulse width .The EAS data shows Max. rating .
- 3. The power dissipation is limited by 175°C junction temperature
- 4 \ EAS condition: TJ=25°C, VDD= -24V, VG= -10V, RG=7 Ω , L=0.1mH, IAS= -29.5A
- $5\sqrt{100}$ The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

N-Typical Characteristics

Figure1: Output Characteristics

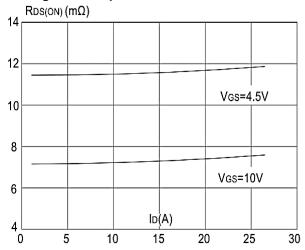


Figure 3:On-resistance vs. Drain Current

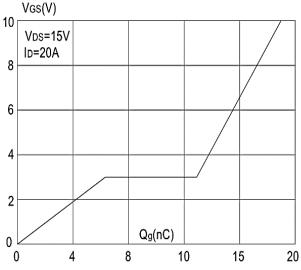
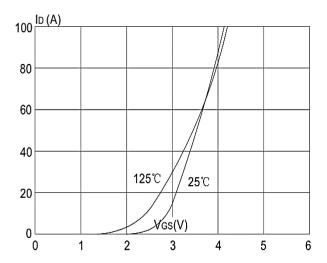
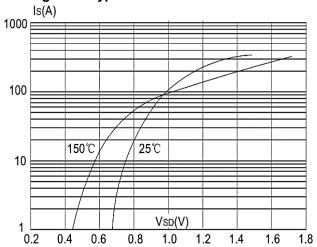





Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

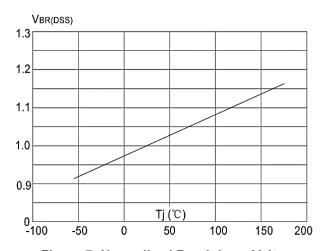


Figure 7: Normalized Breakdown Voltage vs Junction Temperature

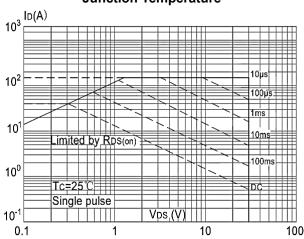


Figure 9: Maximum Safe Operating Area Temperature

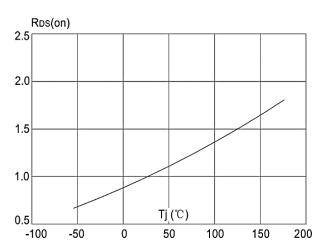


Figure 8: Normalized on Resistance vs.

Junction Temperature

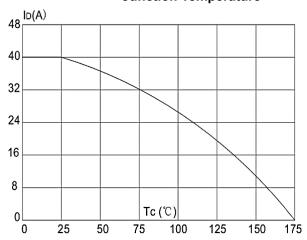


Figure 10: Maximum Continuous Drain Current vs. Ambient

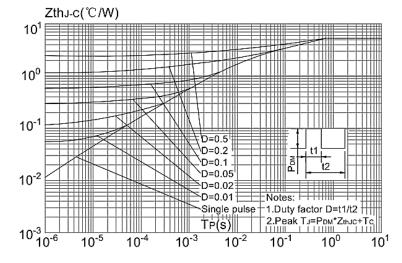


Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambien

P-Typical Characteristics

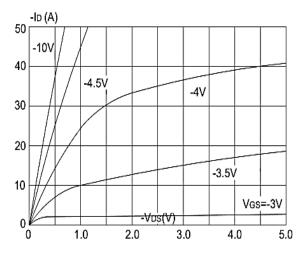


Figure1: Output Characteristics Figure

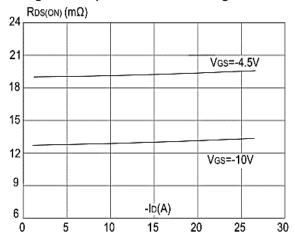


Figure 3:On-resistance vs. Drain Current -VGS(V)

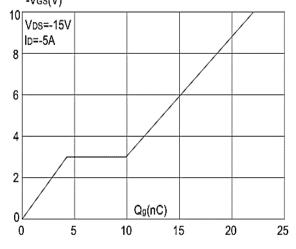


Figure 5: Gate Charge Characteristics

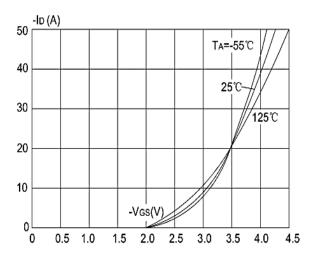
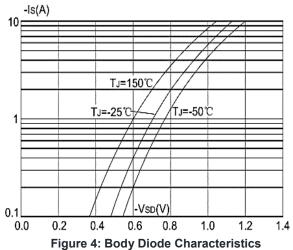



Figure2: Typical Transfer Characteristics

C(pF)

10⁴

10³

Ciss

Coss

10²

-VDS(V)

0 5 10 15 20 25 30

Figure 6: Capacitance Characteristics

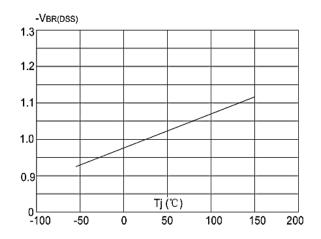


Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

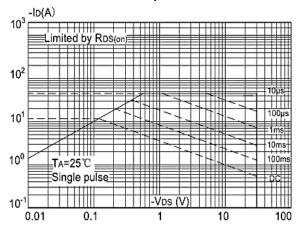


Figure 9: Maximum Safe Operating Area

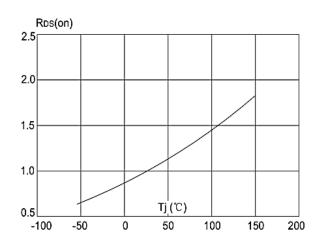


Figure 8: Normalized on Resistance vs. Junction Temperature

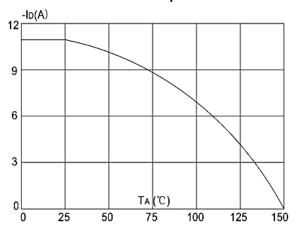


Figure 10: Maximum Continuous Drain Current vs. Ambient Temperature

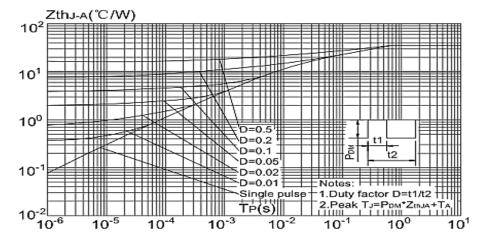
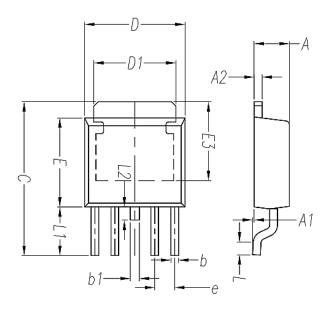



Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Package Mechanical Data-TO-252-4L-Duble-DX

	Common			
Symbol	mm			
	Mim	Nom	Max	
D	6.30	6.55	6.80	
D1	4.80	5.35	5.90	
С	9.70	10.00	10.30	
E	5.90	6.10	6.30	
E3	4.50	5.15	5.80	
L	0.90	1.35	1.80	
L1	2.60	2.85	3.05	
L2	0.50	0.85	1.20	
b	0.30	0.50	0.70	
b1	0.40	0.60	0.80	
A	2.10	2.30	2.50	
A2	0.40	0.53	0.65	
A1	0.00	0.10	0.20	
е	1.17	1.27	1.37	

Attention

- 1,Any and all APM Microelectronics products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your APM Microelectronics representative nearest you before using any APM Microelectronics products described or contained herein in such applications.
- 2,APM Microelectronics assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all APM Microelectronics products described or contained herein.
- 3, Specifications of any and all APM Microelectronics products described or contained here instipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- 4, APM Microelectronics Semiconductor CO., LTD. strives to supply high quality high reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives that could give rise to smoke or fire, or that could cause damage to other property. Whendesigning equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- 5,In the event that any or all APM Microelectronics products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- 6, No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of APM Microelectronics Semiconductor CO., LTD.
- 7, Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. APM Microelectronics believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- 8, Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "DeliverySpecification" for the APM Microelectronics product that you Intend to use.

Edition	Date	Change
Rve1.0	2021/4/30	Initial release

Copyright Attribution"APM-Microelectronice"

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by APM Microelectronics manufacturer:

Other Similar products are found below:

614233C 648584F MCH3443-TL-E MCH6422-TL-E NTNS3A92PZT5G IRFD120 IRFF430 JANTX2N5237 2N7000 AOD464
2SK2267(Q) 2SK2545(Q,T) 405094E 423220D MIC4420CM-TR VN1206L 614234A 715780A SSM6J414TU,LF(T 751625C
IPS70R2K0CEAKMA1 BSF024N03LT3 G PSMN4R2-30MLD TK31J60W5,S1VQ(O 2SK2614(TE16L1,Q) DMN1017UCP3-7
EFC2J004NUZTDG FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE2384 NTE2969 NTE6400A DMC2700UDMQ-7
DMN2080UCB4-7 DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 SSM6P54TU,LF DMP22D4UFO-7B IPS60R3K4CEAKMA1
DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 IRF40H233XTMA1 IPSA70R950CEAKMA1 IPSA70R2K0CEAKMA1 STU5N65M6
C3M0021120D DMN6022SSD-13