Overview

LDR (or Light Dependant Resistor, or Photoresistor) is a variable resistor. Light falling on the sensor decreases its resistance.

Output: This module outputs $5 v$ when the sensor receives no light (the circuit is open) and $0 v$ when exposed to bright light (the circuit is closed). When connected to an input on the Arduino using the TinkerKit Shield, you can expect to read values from 0 to 1023.

Module Description: This module features a Light Dependent Resistor, a signal amplifier, the standard TinkerKit 3pin connector, a green LED that signals that the module is correctly powered and a yellow LED whose brightness changes according to the amount of lightness.

This module is a SENSOR. The connector is an OUTPUT which must be connected to one of the INPUT connectors on the TinkerKit Shield.

Code Example

/*

Analog input, analog output, serial output
Reads an analog input pin, and T000090 LDR Analog Sensor connected to I0, maps the result to a range from 0 to 255
and uses the result to set the pulsewidth modulation (PWM) on a T010111
LED Module connected on 00.
Also prints the results to the serial monitor.
created 29 Dec. 2008
Modified 4 Sep 2010
by Tom Igoe
modified 7 dec 2010
by Davide Gomba
This example code is in the public domain.

```
*/
#define 00 11
#define 01 10
#define 02 9
#define 03 6
#define 04 5
#define 05 3
#define I0 A0
#define I1 A1
#define I2 A2
#define I3 A3
#define I4 A4
#define I5 A5
// These constants won't change. They're used to give names
// to the pins used:
const int analogInPin = I0; // Analog input pin that the LDR is attached
to
const int analogOutPin= 00; // Analog output pin that the LED is attached
to
int sensorValue = 0; // value read from the pot
int outputValue = 0; // value output to the PWM (analog out)
void setup() {
// initialize serial communications at 9600 bps:
Serial.begin(9600);
}
void loop() {
// read the analog in value:
sensorValue = analogRead(analogInPin);
```

```
// map it to the range of the analog out:
outputValue = map(sensorValue, 0, 1023, 0, 255);
// change the analog out value:
analogWrite(analogOutPin, outputValue);
// print the results to the serial monitor:
Serial.print("sensor = " );
Serial.print(sensorValue);
Serial.print("\t output = ");
Serial.println(outputValue);
// wait 10 milliseconds before the next loop
// for the analog-to-digital converter to settle
// after the last reading:
delay(10);
}
```


X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Optical Sensor Development Tools category:
Click to view products by Arduino manufacturer:
Other Similar products are found below :
MT9V034C12STCH-GEVB MT9V115EBKSTCH-GEVB 416015300-3 ISL29102IROZ-EVALZ MT9M021IA3XTMH-GEVB AR1820HSSC12SHQAH3-GEVB AR1335CSSC11SMKAH3-GEVB MAXCAMOV10640\# MT9M031I12STMH-GEVB TSL2581CS-DB TMD3700-DB NANOUSB2.2 ASX340AT3C00XPEDH3-GEVB AR0144ATSM20XUEAH3-GEVB AR0144CSSC00SUKAH3-GEVB AR0522SRSC09SURAH3-GEVB AR0522SRSM09SURAH3-GEVB AR0521SR2C09SURAH3-GEVB MARS1-MAX9295A-GEVK MARS1-MAX9296B-GEVB ISL29112IROZ-EVALZ AR0233AT2C17XUEAH3-GEVB AR0431CSSC14SMRAH3-GEVB MARS-DEMO3-MIPI-GEVB TCS3430-DB AR0234CSSC00SUKAH3-GEVB AR0130CSSM00SPCAH-GEVB AR0330CM1C00SHAAH3-GEVB EVALZADPD2212 TMD2772EVM TMG3993EVM MIKROE-2103 TSL2672EVM 1384 MT9M114EBLSTCZDH-GEVB SEN0043 SEN0162 TMD2771EVM TMD3782EVM TSL4531EVM 1918 AS7225 DEMO KIT SEN0097 SEN0212 SEN0228 AR0134CSSC00SUEAH3-GEVB AP0100AT2L00XUGAH3-GEVB AR0144CSSM20SUKAH3-GEVB 725-28915 EVAL-ADPD1081Z-PPG

