

ARTESYN DS495SPE

495 Watts Distributed Power System

Advanced Energy's Artesyn DS495SPE is housed in 1U high rack-mounting enclosures measuring just 3.4 x 7.7 inches (86.3 x 196.5 mm). This form factor is significantly shorter than that of similarly rated earlier-generation power supplies — freeing up valuable system space — and is achieved by use of the latest power switching technology and high density component packaging techniques.

DATA SHEET

Front-end Bulk Power

Total Output Power:

495 W continuous

Wide Input Voltage:

90 - 264 Vac

SPECIAL FEATURES

- 495 W output power
- 1U power supply
- Active Power Factor Correction
- EN61000-3-2 Harmonic compliance
- Inrush current control
- 80 plus Platinum efficiency
- N+N redundant
- Hot-pluggable
- Active current sharing
- Full digital control
- PMBus compliant
- Standard airflow
- Two-year warranty

COMPLIANCE

- Conducted/Radiated EMI Class A Limits + 6 dB margin
- EN61000-4-11

SAFETY

- IEC62368
- UL/cUL
- Demko +CB Report
- CE Mark
- CCC
- BSMI

ELECTRICAL SPECIFICATIONS

Input						
Input range	90 - 264 Vac					
Frequency	47 Hz to 63 H	47 Hz to 63 Hz				
Efficiency	94.0% peak					
Max input current	6.6 Arms @ 9	0 Vac				
Inrush current	25 Apk					
Conducted EMI	Class A with	6 dB margin				
Radiated EMI	Class A with	6 dB margin				
Power factor	>0.9 beginnin	g at 20% load				
ITHD	10%	10%				
Leakage current	1 mA	1 mA				
Hold-up time	10 ms at full	10 ms at full load				
Output						
		Main DC Outp	ut	S	tandby DC Outp	out
	MIN	NOM	MAX	MIN	NOM	MAX
Nominal setting	-0.20%	12	0.20%	-2.5%	12	+2.5%
Total output regulation range	11.4 V		12.6 V	11.4 V		12.6 V
Dynamic load regulation range	11.4 V		12.6 V	11.4 V		12.6 V
Output ripple (peak to peak)			120 mV			120 mV
Output current	2.0 A ¹		41.25 A	0.0 A		3.0 A
Current sharing	With	Within ±5% of full load rating			N/A	
Capacitive loading	TBD		38,000 μF	47 μF		4,700 μF

2000 ms

20 ms

ELECTRICAL SPECIFICATIONS

Start-up from AC to output

Output rise time

Protections			
Main Output	MIN	NOM	MAX
Overcurrent protection ²	110%		150%
Overvoltage protection ¹	13.5 V		15.0 V
Undervoltage protection	10.0 V		11.0 V
Overtemperature protection		Yes	
Fan fault protection		Yes	
Standby Output			
Overcurrent protection ²	3.6 A		4.5 A
Overvoltage protection ²	13.5 V		15.0 V
Undervoltage protection	10.0 V		11.0 V

¹ Latch mode

1700 ms

20 ms

¹ Minimum current for transient load response testing only. Unit is designed to operate and be within output regulation range at zero load.

² Standby protection is auto-recovery

ORDERING INFORMATION

Model Number	Nominal Main Output	Standby Output	Airflow Direction
DS495SPE-3	12 V @ 41.25 A	12 V @ 3 A	Standard (forward)
DS495SPE-3-001	12 V @ 41.25 A	12 V @ 3 A	Reverse

CONTROL AND STATUS SIGNALS

Input Signal	s		
PSON_L			
	signal which enables/disables the main output. Pulling this sig a 100pF decoupling capacitor and pulled down by a 3.0K oh	· ·	It is recommended that this pin is
		MIN	MAX
V _{IL}	Input logic level LOW		0.4 V
V _{IH}	Input logic level HIGH	2.06 V	3.0 V
I _{SOURCE}	Current that may be sourced by this pin at low state		1 mA
PSKILL_L			
First break/la	st mate active high signal which enables/disables the main or	utput. When driven high, the main out	out shall be turned-off.
		MIN	MAX
V _{IL}	Input logic level LOW		0.4 V
V _{IH}	Input logic level HIGH	2.4 V	3.0 V
I _{SOURCE}	Current that may be sourced by this pin at low state		1.0 mA

Output Signals

ACOK

Signal used to indicate the presence of AC input to the power supply. A logic level HIGH will indicate that the AC input to the power supply is within the operating range while a logic level LOW will indicate that AC has been lost.

This is an open collector/drain output.

		MIN	MAX
V _{oL}	Output logic level LOW		0.6 V
V _{oH}	Output logic level HIGH	2.0 V	3.0 V
I _{SOURCE}	Current that may be sourced by this pin		4.0 mA

PWR_GOOD/PWOK

Signal used to indicate that main output voltage is within regulation range. The PWR_GOOD signal will be driven HIGH when the output voltage is valid and will be driven LOW when the output falls below the under-voltage threshold.

This signal also gives an advance warning when there is an impending power loss due to loss of AC input or system shutdown request. More details in the Timing Section.

This is an open collector/drain output. It is recommended that this pin be connected to a 100 pF decoupling capacitor and pulled down by a 10 kohm resistor.

		MIN	MAX
V _{oL}	Output logic level LOW		0.4 V
V _{oH}	Output logic level HIGH	2.0 V	3.0 V
I _{SINK}	Current that may be sunk by this pin		10.0 mA

CONTROL AND STATUS SIGNALS (CONTINUED)

Output Signals

PS_PRESENT

Signal used to indicate to the system that a power supply is inserted in the power bay. This pin is connected to the standby return in the power supply through a 220 ohm resistor. Recommended pull-up resistor to 12 VSB is 8.2 k with a 3.0 k pull-down to ground. A 100 pF decoupling capacitor is also recommended.

PS_INTERRUPT_L

Active low signal used by the power supply to indicate to the system that a change in power supply status has occurred. This event can be triggered by faults such as OVP, OCP, OTP, and fan fault. This signal can be cleared by a CLEAR_FAULT command. Recommended pull-up resistor to 12 VSB is 8.2 k with a 3.0 k pull-down to ground. A 100 pF decoupling capacitor is also recommended.

8.2 k with a 3.0 k	pull-down to ground. A 100 pF decoupling capacitor is al	so recommended.	
		MIN	MAX
V _{oL}	Output logic level LOW		0.8 V
V _{oH}	Output logic level HIGH	2.0 V	3.0 V
SOURCE	Current that may be sourced by this pin		4 mA
SINK	Current that may be sunk by this pin at low state		4 mA
BUS Signals			
ISHARE			
Bus signal used b voltage inorder to	by the power supply for active current sharing. All power so load share.	upplies configured in the system for r	n+n sharing will refer to this bus
Voltage Range	The range of this signal for active sharing will be up to	8.0 V, which corresponds to the maxim	mum output current.
		MIN	MAX
_{SHARE} Voltage	Voltage at 100% load, stand-alone unit	7.75	8.25
	Voltage at 50% load, stand-alone unit	3.85	4.15
	Voltage at 0% load, stand-alone unit	0	0.35
SCL, SDA			
Clock and data s	ignals defined as per I ² C requirements.		
VL	Input logic level LOW		0.8 V

Note: All signal noise levels are below 400 mVpk-pk from 0 - 100 MHz.

Input logic level HIGH

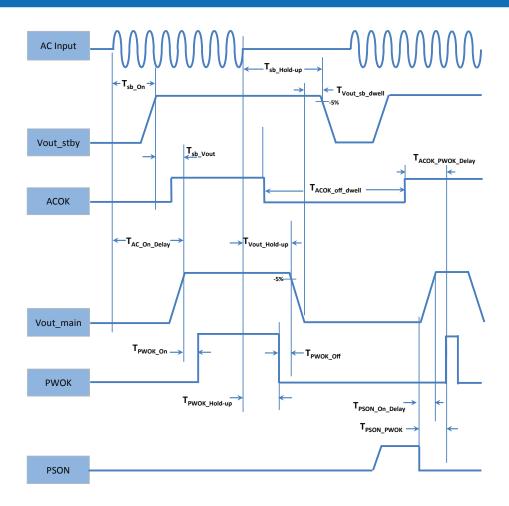
1°C Addressing Table: Not applicable. This power supply has a fixed 1°C address. In order to support multiple addresses, the system will have to utilize a switcher or an 1°C expander.

2.0 V

3.0 V

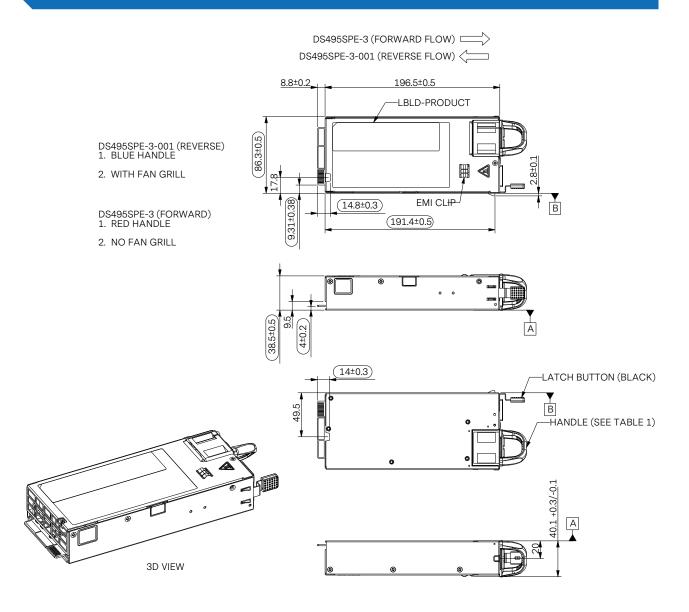
VН

ELECTRICAL SPECIFICATIONS


LED Indicators		
A single bi-color LED is used to indicate the power supply status.		
	Status LED	
No AC input, with external 12 V available	Blinking GREEN (2 sec on, 1 sec off)	
Standby mode	Blinking GREEN (2 sec on, 1 sec off)	
Main output ON	Solid GREEN	
Power supply failure (OCP, OVP, OTP, FAN FAULT)	Blinking AMBER (1 sec on, 1 sec off)	
Standby fault	OFF	

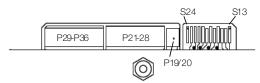
Firmware Reporting And Monitoring			
		Accuracy Range	
Output loading	5 to 20%	20 to 50%	50 to 100%
Input voltage		±5%	
Input current	±0.55 A fixed error ±5%		
Input power	6.25W 5%		
Output voltage	±2%		
Output current	±0.7 A error ±3%		
Temperature	±5 °C on the operating range		
E _{IN}	±15% from 10% to 20% load ±5%		
Fan speed	Actual RPM ±250 RPM		

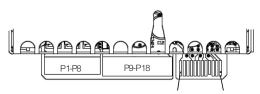
Timing Specifications				
	Description	Min	Max	Unit
T _{sb_On}	Delay from AC being applied to standby output being within regulation		1700	ms
T _{Vout_rise}	Rise time of output voltage going from 10% to 90% of the nominal regulation	2	20	ms
T _{sb_Vout}	Delay from standby output to main output voltage being within regulation		300	ms
T _{AC_On_Delay}	Delay from AC being applied to main output being within regulation		2000	ms
T _{PWOK_On}	Delay from output voltages within regulation limits to PWOK asserted	100	500	ms
T _{ACOK_PWOK_Delay}	Delay from deassertion of ACOK, due loss of input, to deassertion of PWOK	4		ms
T _{PWOK_Hold-up}	Delay from loss of AC to deassertion of PWOK	10		ms
T _{Vout_Hold-up}	Delay from loss of AC to main output being within regulation	11		ms
T _{Vout_sb_dwell}	Delay from main output going <1V to stnadby voltage falling out of regulation	5		ms
T _{ACOK_off_dwell}	Duration time of ACOK deassertion when the PSU has sensed a loss of input	75	120	ms
T _{sb_Hold-up}	Delay from loss of AC to standby output being within regulation *Tested with standby at 1A load	150		ms
T _{PWOK_Off}	Delay from deassertion of PWOK to output falling out of regulation	1		ms
T _{PSON_On_Delay}	Delay from PSON assertion to output being within regulation		350	ms


TIMING DIAGRAM

ENVIRONMENTAL SPECIFICATIONS

Operating temperature	0 °C to 55 °C at 100% load; DS495SPE-3 can operate up to 65 °C at 300 W without damage DS495SPE-3-001 can operate up to 60 °C at 300 W without damage
Operating altitude	up to 16,400 feet, with ambient temperature derated to 45 °C at 10,000 feet
Operating relative humidity	10% to 95% non-condensing
Non-operating temperature	-40 °C to +70 °C
Non-operating relative humidity	10% to 95% non-condensing
Non-operating altitude	up to 50,000 feet
Vibration and shock	Standard operating/non-operating random shock and vibration
ROHS compliance	Yes
MTBF	> 900 khours at 55 °C, 80% load
Operating life	> 5 years at 55 °C at 80% load


MECHANICAL OUTLINE


CONNECTOR DEFINITIONS

Output Connector Part Number	Card-edge
Mating Connector Part Number	FCI 10107844-002LF or equivalent

Power Supply Output Card Edge (Top Side)

Output Connector Pin Configuration			
S1	PS PRESENT	S13	PS_ON_L
S2	Reserved	S14	PS_KILL_L
S3	Reserved	S15	Reserved
S4	Pwr_Good (PWOK)	S16	RETURN
S5	ACOK (AC Input Present)	S17	SDA
S6	RETURN	S18	RETURN
S7	ISHARE	S19	SCL
S8	RESERVE	S20	RETURN
S9	PS INTERRUPT_L	S21	REMOTE SENSE-
S10	RETURN	S22	RETURN
S11	Reserved	S23	REMOTE SENSE+
S12	Reserved	S24	RESERVE
P1-P8	Vo	P19-P20	VSB
P9-P18	RTN	P21-P28	RTN
		P29-P36	Vo

ABOUT ADVANCED ENERGY

Advanced Energy (AE) has devoted more than three decades to perfecting power for its global customers. AE designs and manufactures highly engineered, precision power conversion, measurement and control solutions for mission-critical applications and processes.

Our products enable customer innovation in complex applications for a wide range of industries including semiconductor equipment, industrial, manufacturing, telecommunications, data center computing, and medical. With deep applications know-how and responsive service and support across the globe, we build collaborative partnerships to meet rapid technological developments, propel growth for our customers, and innovate the future of power.

PRECISION | POWER | PERFORMANCE

Specifications are subject to change without notice. Not responsible for errors or omissions. ©2020 Advanced Energy Industries, Inc. All rights reserved. Advanced Energy®, AE® and Artesyn™ are U.S. trademarks of Advanced Energy Industries, Inc.

For international contact information, visit advancedenergy.com.

powersales@aei.com (Sales Support) productsupport.ep@aei.com (Technical Support) +1 888 412 7832

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rack Mount Power Supplies category:

Click to view products by Artesyn Embedded Technologies manufacturer:

Other Similar products are found below:

HFE2500BP PET1300-12-054NAE HFE1600BP 73-311-0001 73-317-0148 73-495-0233 750-1016 SFP450-S101G FUP550SNRPS

VRA.00335.0 VRA.00334.0 VRA.00333.0 HFE1600-KIT CC109146503 RKP-1UI PFE1100-12-054ND FND300-1012G 73-951-0001T

73-954-0001C DS550DC-3 DRP-3200-48 RCP-2000-24 TSR10 TET2000-12-086NA PET2000-12-074RA RCP-MU 605-10144-2AC

6609006-5 D1U54P-W-1200-12-HC4PC DS450DC-3 DS650DC-3 HPR12K-00-001 LCM1500L-T-4 LCM300Q-T LCM300W-T-4

LCM600N-T-4-A FNP600-48G FNR-3-48G FNR-5-12G PFS1200-12-054RAH PFS1200-12-054RD SPSPFE3-05G TET3200-12-069RA

IEC-A-1 FXX1600PCRPS 915606 DHP-1UT-A DRP-3200-24 RCP-1000-12 RCP-1000-12-C RCP-1000-24