

LCM1000 Series

1000 Watts Bulk Front End

Total Power:	1000 Watts
Input Voltage:	90-264 Vac
# of Outputs:	Single
Main Output:	12/15/24/36/48Vdc

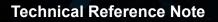
Special Features

- 1000 W output power
- Low Cost
- 2.5" x 5.2" x 10.0"
- 7.7 Watts Per Cubic Inch
- Industrial/Medical Safety
- -40 °C to 70 °C with derating
- Optional 5 V @ 2 A Housekeeping
- High Efficiency: 90% Typical
- Variable speed "Smart Fans"
- · DSP controlled
- · Full rating with reverse airflow
- Conformal coat option
- + \pm 10% adjustment range
- Margin programming
- · OR-ing FET
- Low acoustic noise
- EMI Class A; Class B with internal modification option
- EN61000 Immunity
- RoHS 2

Safety

ULcUL Recognized ITE(UL/CSA62368-1) ULcUL Recognized Medical(ANSI/ AAMI ES60601-1) TUV-SuD ITE + Medical (EN62368 and EN60601-1) CE LVD (EN62368 + ROHS) BSMI CB Report - through Demko for IEC60950-1 - through TUV-SuD for IEC60601-1 CCC Approval

Product Descriptions


The LCM1000 series power supply provides for a very wide range of AC-DC embedded power requirement. Featuring high build quality with robust screw terminals, long life, and typical full-load efficiency of greater than 90 percent, these units are ideal for use in industrial and medical applications. They are backed by a comprehensive set of industrial and medical safety approvals and certificates.

A sophisticated digital control loop optimizes efficiency across a wide load range. The efficiency of the LCM1000 is greater than 90 percent at full load (230 Vac input), and is at least 80 percent when loading is higher than 25 percent of full load. Power factor correction is implemented internally, offering a typical power factor of 0.99.

Variable-speed 'Smart Speed' fans draw on software controls developed by Artesyn Network Power to match fan speed to the unit's cooling requirement and load current. Slowing fan not only saves power but also reduces wear, thus extends its life.

The MTBF of the LCM1000 unit is greater than 500,000 hours and the units carry a manufacturer's warranty of three years

Model Numbers

Standard ¹	Output Voltage	Minimum Load	Maximum Load	Adjustment Range	Maximum Power
LCM1000L	12Vdc	0A	83.3A	10.8Vdc ~ 13.2Vdc	1000W
LCM1000N	15Vdc	0A	66.7A	13.5Vdc ~ 16.5Vdc	1000W
LCM1000Q	24Vdc	0A	41.7A	21.6Vdc ~ 26.4Vdc	1000W
LCM1000U	36Vdc	0A	27.8A	32.4Vdc ~ 39.6Vdc	1000W
LCM1000W	48Vdc	0A	20.8A	40.8Vdc ~ 52.8Vdc	1000W

Note 1 - Add "-T" for terminal block Add "-4" for 5V standby Add "-1" for Conformal Coating adder Add "-5" for Conformal Coating and 5V Standby adder Add "-8" for Constant Current Add "-9" for option 1 + 8 Add "-D" for option 1 + 8 Add "-E" for option 1 + 4 + 8

Absolute Maximum Ratings

Stress in excess of those listed in the "Absolute Maximum Ratings" may cause permanent damage to the power supply. These are stress ratings only and functional operation of the unit is not implied at these or any other conditions above those given in the operational sections of this TRN. Exposure to any absolute maximum rated condition for extended periods may adversely affect the power supply's reliability.

Table 1. Absolute Maximum Ratings:

Parameter	Model	Symbol	Min	Тур	Max	Unit
Input Voltage AC continuous operation	All Models	V _{IN}	90	-	264	Vac
Maximum Output Power, continuous	All Models	P _{O,max}	-	-	1000	W
Isolation Voltage(Qualification) Input to outputs (2X MOPP) Input to safety ground (1X MOPP) Outputs to safety ground (1X MOPP)			- - -		4000 2500 500	Vac Vdc Vdc
Isolation Voltage(Production) Input to outputs (2X MOPP) Input to safety ground (1X MOPP) Outputs to safety ground (1X MOPP)			- - -		1800 1800 200	Vac Vac Vdc
Ambient Operating Temperature	All Models	T _A	-40	-	+701	°C
Storage Temperature	All Models	T _{STG}	-40	-	+85	OO
Humidity (non-condensing) Operating Non-operating	All Models All Models		20 10		90 95	% %
Altitude Operating Non-operating	All Models All Models		-		10,000 30,000	feet feet

Note 1 - With linear 50% derating from 50 $^{\rm O}{\rm C}$ to 70 $^{\rm O}{\rm C}$

Input Specifications

Table 2. Input Specifications:

Parameter	Conditions	Symbol	Min	Тур	Мах	Unit
Operating Input Voltage, AC	All	V _{IN,AC}	90	115/230	264	Vac
Input AC Frequency	All	f _{IN}	47	50/60	440	Hz
Maximum Input Current (I _O = I _{O,max} , I _{SB} = I _{SB,max})	V _{IN,AC} = 100V	I _{IN,max}	-	-	12	A _{RMS}
No Load Input Current ($V_O = ON$, $I_O = 0$, $I_{SB} = 0$)	V _{IN,AC} = 90Vac V _{IN,AC} = 264Vac	I _{IN,no-load}	- -	-	480 350	mA _{RMS}
No Load Input Power ($V_O = ON$, $I_O = 0$, $I_{SB} = 0$)	V _{IN,AC} = 90Vac	$P_{IN,no-load}$	-	-	30	W
Harmonic Line Currents	All	THD	I	EC 1000-3-2	2	
Power Factor	$I_{O} = I_{O,max}$ $V_{IN,AC} = 90$ to 264Vac	PF	-	0.99	-	
Startup Surge Current (Inrush)	V _{IN,AC} = 264Vac	I _{IN,surge}	-	-	25	A _{PK}
Input Fuse	Internal, L and N 250Vac rated		-	-	30	A
Input AC Low Line Start-up Voltage	$I_{O} = I_{O,max}$	V _{IN,AC-start}	85	-	90	Vac
Input AC Undervoltage Lockout Voltage	$I_{O} = I_{O,max}$	V _{IN,AC-stop}	80	-	90	Vac
PFC Switching Frequency	All	f _{SW,PFC}	65	-	75	KHz
Efficiency @ 25 ^o C	$V_{IN,AC} = 230Vac$ $I_O = I_{O,max}$	η	-	90	-	%
Hold Up Time	See note 1	t _{Hold-Up}	20	-	-	mSec
Turn On Delay Resistive Load	$V_{IN,AC} = 90Vac$ $I_O = I_{O,max}$	t _{Turn-On}	-	-	3	Sec
Lookage Current to sofety ground	UL test method	I _{IN,leakage}	-	-	0.4	mA
Leakage Current to safety ground	IEC test method	I _{IN,leakage}	-	-	0.5	mA

Note 1 - Adjusting the output to higher tolerance (i.e. 26.4V which is the +10% adjustment range of 24V nominal) will give a typical Hold-up of 10msec.

Output Specifications

Table 3. Output Specifications:

Parameter		Condition	Symbol	Min	Тур	Max	Unit
	LCM1000L			11.94	12.00	12.06	
	LCM1000N			14.92	15.00	15.07	
Factory Set Voltage	LCM1000Q	I _O = 0A, V _{IN,AC} = 115Vac	V _{O,set}	23.88	24.00	24.12	V
	LCM1000U			35.82	36.00	36.18	
	LCM1000W			47.76	48.00	48.24	
	LCM1000L			10.8	-	13.2	
	LCM1000N			13.5	-	16.5	
Output Adjust Range	LCM1000Q	I _O = 0A, See note 1	Vo	21.6	-	26.4	V
	LCM1000U			32.4	-	39.6	
	LCM1000W	-		43.2	-	52.8	
Total Degulation	otal Regulation		% V _o	-2.0	-	+2.0	%
I otal Regulation			% V _{SB}	-4	-	+8	%
	LCM1000L			-	-	120	
	LCM1000N	-		-	-	150	
Output Displa alt alt	LCM1000Q	See note 3	Vo	-	-	240	
Output Ripple, pk-pk	LCM1000U	See note 3		-	-	360	- mV _{PK-PK} -
	LCM1000W	-		-	-	480	
	All Models ⁴	-	V _{SB}	-	-	100	
	LCM1000L			0	-	83.3	
	LCM1000N	-		0	-	66.7	A
Output Current,	LCM1000Q		I _{O,max}	0	-	41.7	
continuous	LCM1000U	All		0	-	27.8	
	LCM1000W	-		0	-	20.8	
	All Models ⁴	1	I _{SB,max}	0	-	2	А
DC DC Switching Frequ	iency	All	f _{SW,DC-DC}	125	-	145	KHz
Turn On Overshoot		I _O = 0A	%V _o	-	-	10	%

Note 1 - See page 22 for voltage adjustment pot location

Note 2 - Inclusive of line, load temperature change, warm-up drift

Note 3 - Measure with a 0.1uF ceramic capacitor in parallel with a 10uF tantalum capacitor using a 20MHz bandwidth limited oscilloscope

Note 4 - Optional 5V Standby

Output Specifications

Table 3. Output Specifications, con't:	Table 3.	Output S	pecifications,	con't:
--	----------	----------	----------------	--------

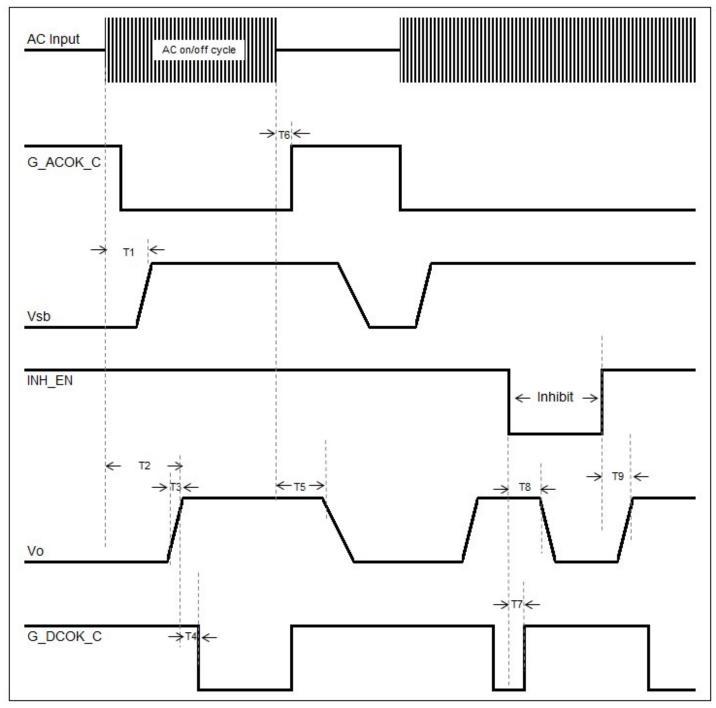
Parameter		Condition	Symbol	Min	Тур	Мах	Unit	
Number of Parallel Units	6	All		-	-	10	Units	
Minimum Load for Curre	ent Sharing			1	-	-	%I _{O,max}	
		1% to 20% of I _{O,max}		25	-	75	%I _o	
V _O Current Share Accur	acy	20% to 50% of I _{O,max}		40	-	60	%I _O	
		50% to 100% of I _{O,max}		45	-	55	%I _o	
	LCM1000L				-	20,000		
	LCM1000N	Start up		-	-	16,000		
Load Capacitance	LCM1000Q		Co	-	-	10,000		
	LCM1000U		Start up		-	-	6,700	uF
	LCM1000W				-	-	5,000	
	All Models ¹		C _{SB}	-	-	270		
V _o Dynamic Response ²	Peak Deviation Settling Time	50% load change, slew rate = 1Α/μs	±%V _O t _s	-	-	4 300	% uSec	
Remote Sense		Maximum compensation at each output line	V _{SENSE}	-	-	500	mV	

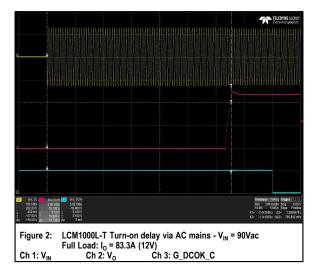
Note 1 - Optional 5V Standby

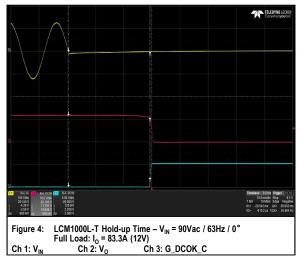
Note 2 - Slew rate is set at 1A/usec with a dynamic load frequency of up to 1Khz. Tested with minimum output capacitor of 1000uF on main output

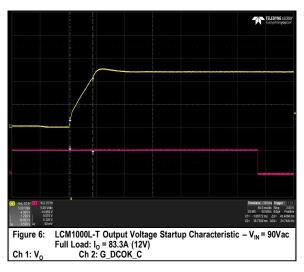
System Timing Specifications

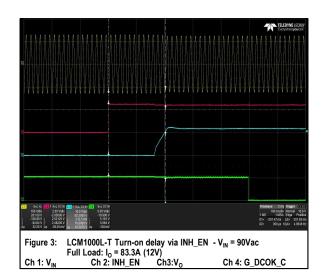
Label	Parameter	Min	Тур	Max	Unit
T1	Delay from AC being applied to V_{SB} being within regulation.	-	-	2000	mSec
T2	Delay from AC being applied to main output voltages being within regulation.	-	-	3000	mSec
Т3	Vo rise time, 10% to 90% V_0 of the nominal voltage.	5	-	50	mSec
T4	Delay from output voltages within regulation limits to G_DCOK_C asserted low.	-	-	500	mSec
Т5	Hold up time - Delay from AC loss to main output within regulation (90% Vo of the nominal voltage).	20	-	-	mSec
Т6	Delay from loss of AC input to G_ACOK_C going to low.	5	-	12	mSec
Т7	Delay from INH_EN going to low to G_DCOK_C going to high.	-	-	10	mSec
Т8	Delay from INH_EN going to low to main output within regulation (90% Vo of the nominal voltage).	-	-	50	mSec
Т9	Delay from INH_EN going to high to main output within regulation (90% Vo of the nominal voltage).	-	-	500	mSec


Table 4. System Timing Specifications:

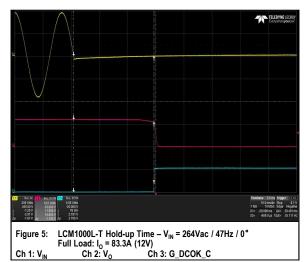
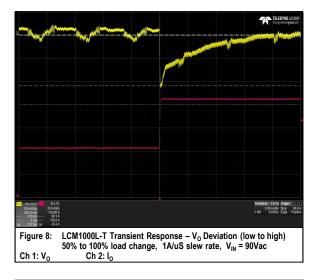
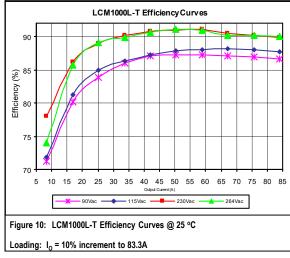

System Timing Specifications

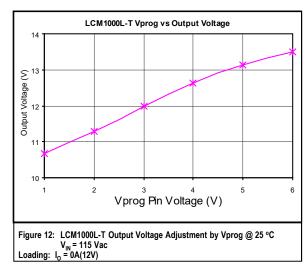

Figure 1. System Timing Diagram:

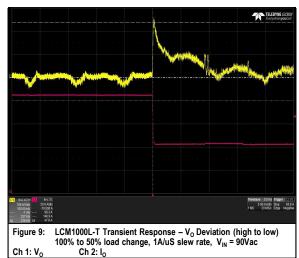




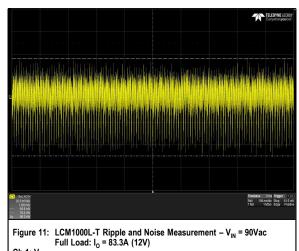
LCM1000L-T Performance Curves

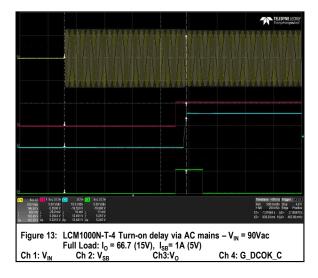




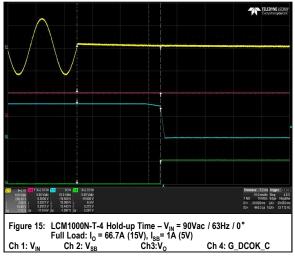

Figure 7: LCM1000L-T Turn Off Characteristic via INH_EN Full Load: I₀ = 83.3A (12V) Ch1: INH_EN Ch 2: V₀ Ch 3: G_DCOK_C

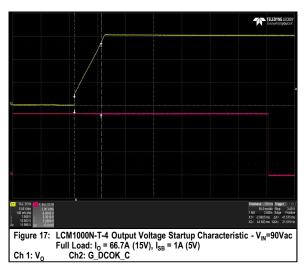


LCM1000L-T Performance Curves








Ch 1: Vo

LCM1000N-T-4 Performance Curves

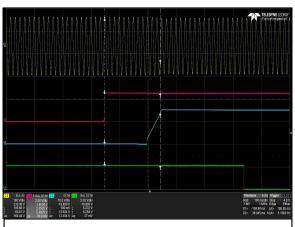
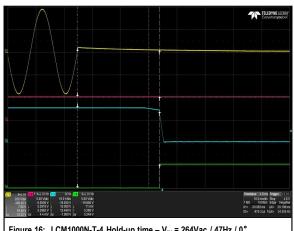
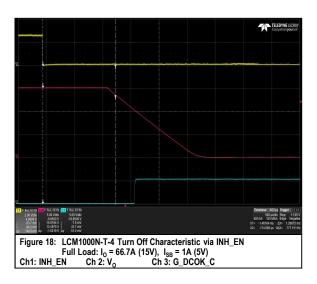
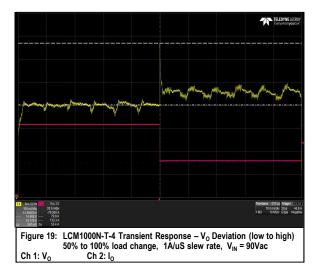
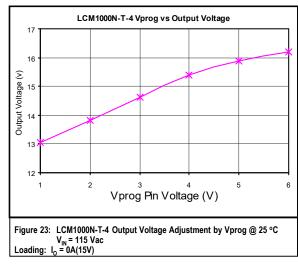




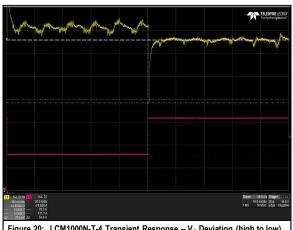
 Figure 14:
 LCM1000N-T-4
 Turn-on delay via INH_EN
 - V_{IN} = 90Vac

 Full Load:
 I₀ = 66.7A (15V), I_{SB} = 1A (5V)
 - V_{IN} = 90Vac
 - V_{IN} = 90Vac

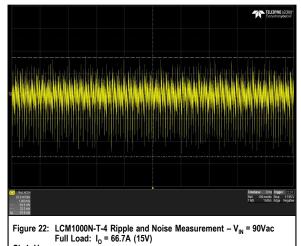

 Ch 1:
 V_{IN}
 Ch 2:
 INH_EN
 Ch 3:
 V₀
 Ch 4:
 G_DCOK_C

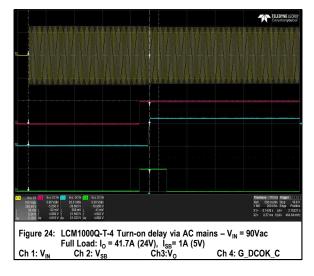




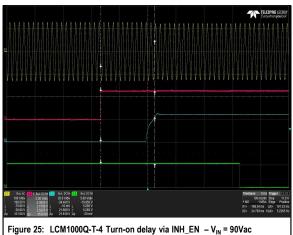


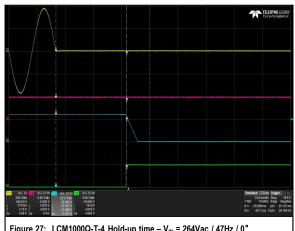
LCM1000N-T-4 Performance Curves

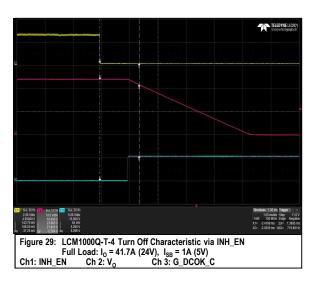


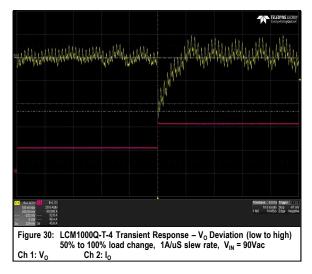

 $\begin{array}{c} \mbox{Figure 20:} & \mbox{LCM1000N-T-4 Transient Response} - V_0 \mbox{ Deviation (high to low)} \\ & 100\% \ to \ 50\% \ load \ change, \ 1A/uS \ slew \ rate, \ V_{IN} = 90Vac \\ \mbox{Ch 1: } V_0 & \mbox{Ch 2: } I_0 \end{array}$

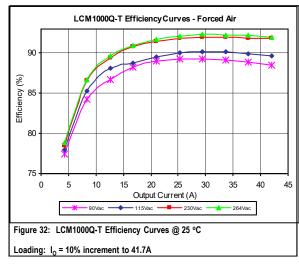
Ch 1: V_o

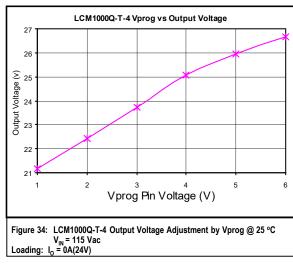


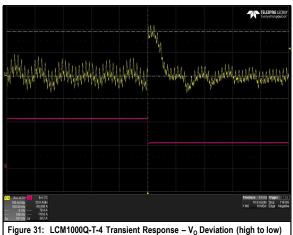

LCM1000Q-T-4 Performance Curves



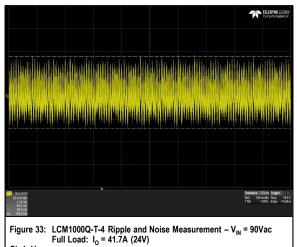


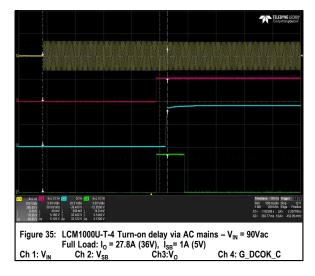


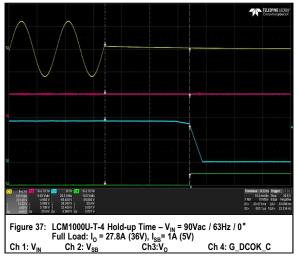


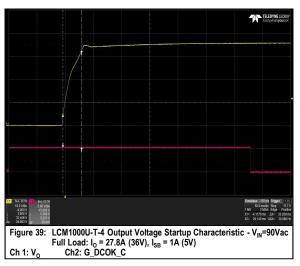


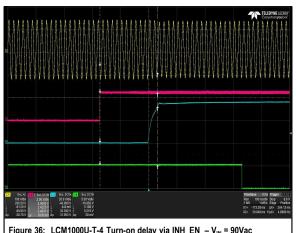
LCM1000Q-T-4 Performance Curves



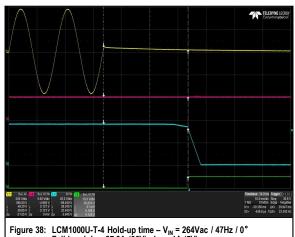
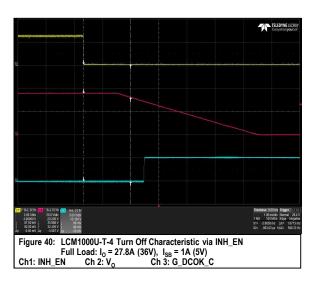
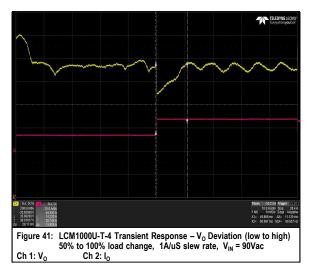

 $\begin{array}{c|c} \mbox{Figure 31:} & \mbox{LCM1000Q-T-4 Transient Response} - V_0 \mbox{ Deviation (high to low)} \\ & 100\% \mbox{ to 50\% load change, 1A/uS slew rate, } V_{\rm IN} = 90Vac \\ \mbox{Ch 1: } V_0 & \mbox{Ch 2: } I_0 \\ \end{array}$

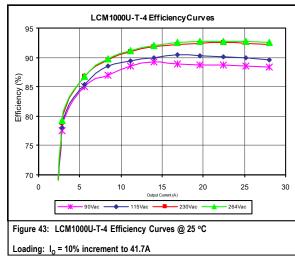


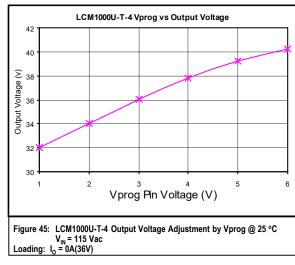

Ch 1: V_o

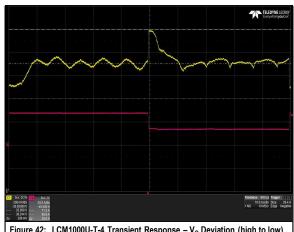


LCM1000U-T-4 Performance Curves

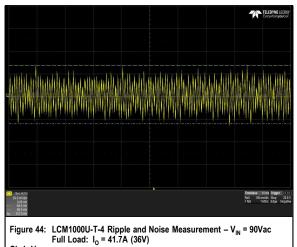




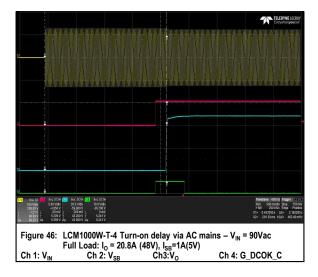

 Figure 38:
 LCM1000U-T-4
 Hold-up time - V_{IN} = 264Vac / 47Hz / 0°
 Full Load:
 Io
 Figure 364Vac / 47Hz / 0°
 Figure 3

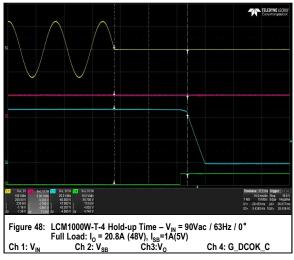


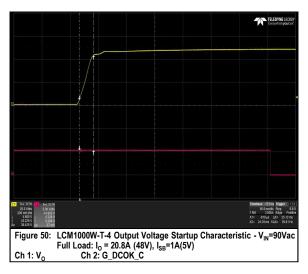


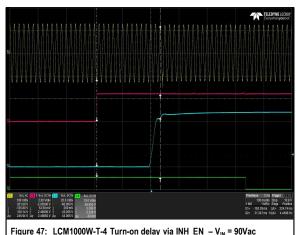
LCM1000U-T-4 Performance Curves



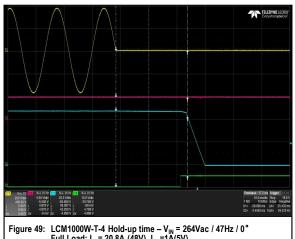

 $\begin{array}{c} \mbox{Figure 42:} \ \ LCM1000U\text{-}T\text{-}4\ \ Transient\ Response - V_0\ Deviation\ (high\ to\ low) \\ 100\%\ to\ 50\%\ load\ change,\ 1A/uS\ slew\ rate,\ \ V_{\rm IN} = 90Vac \\ \mbox{Ch}\ 1:\ V_0 \qquad Ch\ 2:\ I_0 \end{array}$

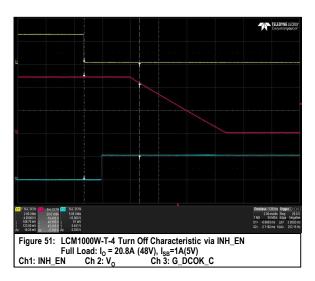



Ch 1: V_o

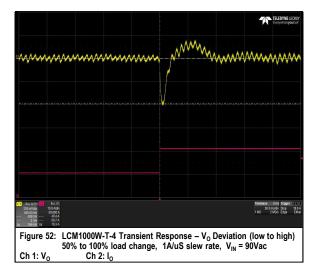


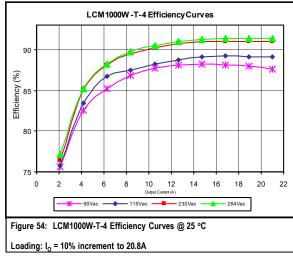
LCM1000W-T-4 Performance Curves

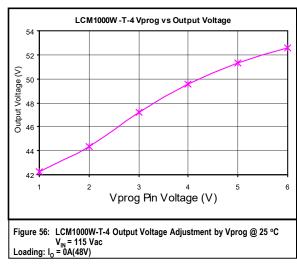


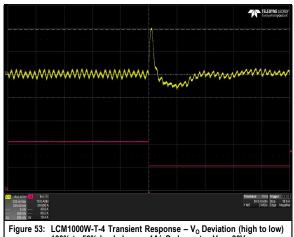


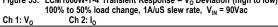
Ch 4: G_DCOK_C

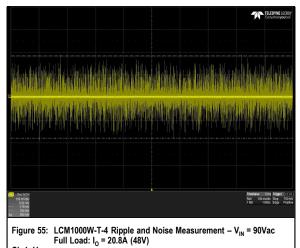



Ch 4: G_DCOK_C






LCM1000W-T-4 Performance Curves



Ch 1: V₀

Page 19

Protection Function Specification

Input Fusing

LCM1000 series power supply is equipped with an internal non user serviceable 30A High Rupturing Capacity (HRC) 250Vac fuse to IEC 127 for fault protection in both the L1 and L2 lines input.

Over Voltage / Under Voltage Protection (OVP)

The power supply latches off during output overvoltage protected. The OVP trip level is 125%~145% of the nominal main output voltage setting and 110%~125% of the nominal standby output voltage setting. When the OVP circuit is activated, the power supply requires the input power been recycled to remove the fault condition.

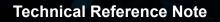
Parameter	Min	Nom	Мах	Unit
V _O Output Overvoltage	125	/	145	% V _o
Standby Voltage Overvoltage	110	/	125	% V _{SB}

Over Current Protection (OCP)

The power supply output will be in automatic mode with a recovery time delay of 20 Sec when the output current hits the OCP limit provided. Over current fault on the standby output will also turn off the Main output.

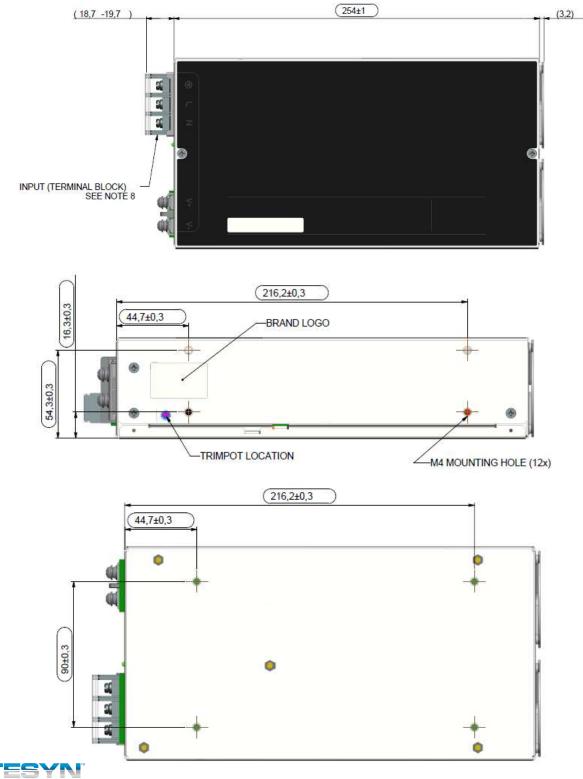
Parameter	Min	Nom	Max	Unit
V _o Output Overcurrent	105	/	125	% I _{O,max}
Standby Voltage Overcurrent	120	/	170	% I _{SB,max}

Short Circuit Protection (SCP)


A short circuit is defined as less than 0.03 ohm resistance between the output terminals. All outputs will be protected against short circuit to ground or other outputs. No damage will result. In the event of short circuit, LCM1000 series power supply will be in bouncing mode with a recovery delay of 20 Sec.

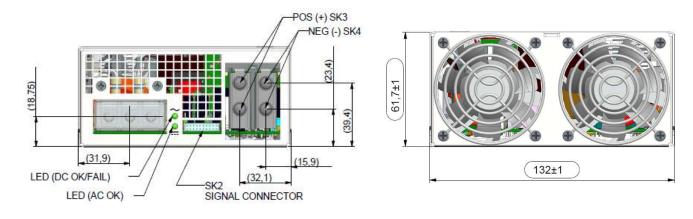
Optional 5V standby, independent of the main output, will also be in bouncing mode once the fault occurred.

Over Temperature Protection (OTP)


The power supply will be internally protected against over temperature conditions. When the OTP circuit is activated, the power supply will shut off and will auto-recover once the over temperature condition is gone. OTP trip-point at full Load is set at a nominal of 55 °C to 65 °C ambient temperature.

Mechanical Specifications

Mechanical Outlines

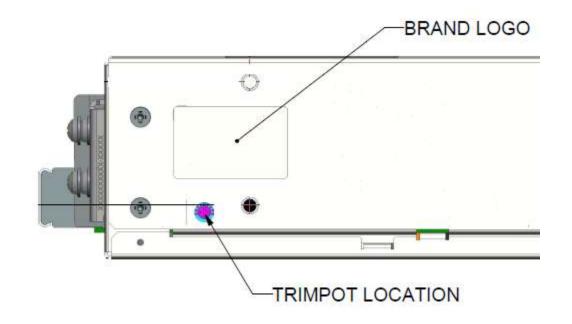


With R

ARTESYN An Advanced Energy Company **Technical Reference Note**

Rev.10.09.20_#2.2 LCM1000 Series Page 21

Mechanical Outlines



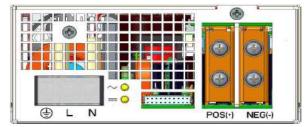
Mechanical Outlines - Voltage Adjustment Pot Location

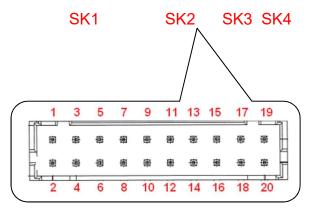
Technical Reference Note

Rev.10.09.20_#2.2 LCM1000 Series Page 23

Connector Definitions

AC Input Connector – SK1


- SK1 Earth Ground
- SK1 Line
- SK1 Neutral

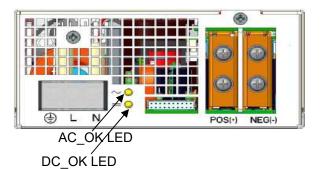

Output Connector – SK3&SK4

- SK3 +Vout
- SK4 GND

Signals Connector – SK2

- Pin 1 A2
- Pin 2 -VPROG
- Pin 3 A1
- Pin 4 -VSense
- Pin 5 ISHARE
- Pin 6 A0
- Pin 7 SDA1
- Pin 8 +VPROG
- Pin 9 SCL1
- Pin 10 +Vsense
- Pin 11 5VSB
- Pin 12 GND
- Pin 13 5VSB
- Pin 14 G_DCOK_C
- Pin 15 N/A
- Pin 16 G_DCOK_E
- Pin 17 GND
- Pin 18 G_ACOK_C
- Pin 19 INH_EN
- Pin 20 G_ACOK_E

Power / Signal Mating Connectors and Pin Types


Table 5. Mating Connectors for LCM1000 Series Power Supply

Reference	On Power Supply	Mating Connector or Equivalent
SK1 - AC Input Connector	DINKLE: DT-7C-B14W-03	-
SK2 - Signal Connector	CI0120P1HD0-LF	LANLANDWIN (LWE PN: 2050S) Housing (LWE PN: 2053T) Contact CVILUX (CX PN: CI0120SD000) Housing (CX PN: CI01TD21PE0) Contact
SK3, SK4 - Output Connector	-	Molex: 19141-0058

With R

LED Indicator Definitions

Two user-friendly LEDs for status and diagnostics shows status of input power, output power and alarm condition valuable troubleshooting aid to reduce system downtime.

Condition	LED Conditions			
Condition	ACOK LED	DCOK LED		
AC present / Output On	Green	Green		
No AC power to PSU	OFF	OFF		
Standby mode/main output off	Green	OFF		
Power supply failure	Green	OFF		

Weight

The LCM1000 series power supply typical weight is 4.354lbs(1.975kg).

Environmental Specifications

EMC Immunity

The LCM1000 series power supply is designed to meet the following EMC immunity specifications.

Table 6. Environmental Specifications:

Document	Description	
EMC Emission:		
EN55022	Conducted and radiated EMI limits specified in FCC Docket No. 20780 Part 15 Subpart J Class A and the limits specified in EN55022, Level A with a minimum of 6dB margin under the limits.	
EN61000-3-2	EMC limits for harmonic current emissions	
EMC Immunity:		
EN61000-4-2	ESD: +/-8KV air, +/-15kV contact discharge, Level 3	
EN61000-4-3	Conducted Susceptibility: 0.15 - 80 MHz, 10V/m, AM 80% (1KHz), Level 3 – designed to meet	
EN61000-4-4	Fast Transient: 2KV for AC power port, 1.0 KV for DC power, I/O and signal ports, Level 3	
EN61000-4-5	Surges: 2KV common mode and 1KV differential mode for AC power ports and 0.5 KV differential mode for DC power, I/O and signal ports, Level 3	
EN61000-4-8	Power Frequency Magnetic, Level 3	
EN61000-4-11	Voltage Dips and Interruptions: 30% reduction for 500 mS – Criteria B, >95% reduction for 10 mS, Criteria A, >95% reduction for 5000 mS, Level 3	
EN55024: 1998	Information Technology Equipment – Immunity Characteristics, Limits and Method of Measurement	
General Protection Safety:		
IEC60950-1	SELV	

Safety Certifications

The LCM1000 series power supply is intended for inclusion in other equipment and the installer must ensure that it is in compliance with all the requirements of the end application. This product is only for inclusion by professional installers within other equipment and must not be operated as a standard alone product.

Document	File #	Description	
UL 60950-1 2 nd Edition/ CSA C22.2 No. 60950-1- 07, 2nd Edition	E186249-A270-UL-X6	US and Canada Requirements	
UL ANSI/AAMI ES60601- 1 (2005 + C1:09 + A2:10 + A1:12), CAN/CSA- C22.2 No. 60601-1	E182560-V4-S5	US and Canada Medical Electrical Equipment	
UL ANSI/AAMI ES60601- 1 (2005 + C1:09 + A2:10, CAN/CSA-C22.2 No. 60601-1 (2008)	E182560-A37-UL-X1	US and Canada Medical Electrical Equipment	
Tuv EN60950-1	Z2 16 05 13890 02685	European Requirements	
IEC60950-1/EN60950	E186249-A270-CB-2	International Requirements	
IEC60601	SG-MD-00487A1/M2	International Medical Electrical Equipment	
IEC60601-1/EN60601-1	211-400848-201	European and International Electrical Equipment	
CB Certificate and Report	DK-48584-A2-UL	(All CENELEC Countries)	
CE (LVD+RoHS),EN60950-1	16352	European Requirements	
CCC (UL)	2014010907712741	China Requirements	
CCC PoP	FZ1501048980	China Requirements	
IEC 62368-1:2014	DK-92417-UL	International Requirements	
UL 62368-1, 2nd Ed, 2014-12-01, CAN/CSA C22.2 No. 62368-1-14, 2nd Ed	E186249-A6046-UL- X10	US and Canada Requirements	
EN62368-1:2014 /A11:2017, EN 60601- 1:2006/A1:2013	B 013890 3163 Rev. 00	European Requirements	

EMI Emissions

The LCM1000 series power supply has been designed to comply with the Class A limits of EMI requirements of EN55022 (FCC Part 15) for emissions and relevant sections of EN61000 (IEC 61000) for immunity. The unit is enclosed inside a

LCM1000 Series Page 29

Conducted Emissions

The applicable standard for conducted emissions is EN55022 (FCC Part 15). Conducted noise can appear as both differential mode and common mode noise currents. Differential mode noise is measured between the two input lines, with the major components occurring at the supply fundamental switching frequency and its harmonics. Common mode noise, a contributor to both radiated emissions and input conducted emissions, is measured between the input lines and system ground and can be broadband in nature.

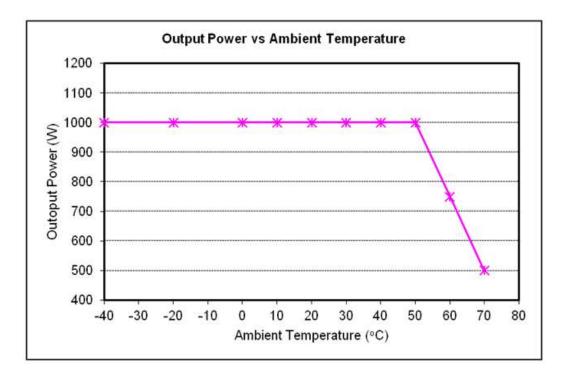
Table 8. Conducted EMI emission specifications of the LCM1000 series power supply

metal box, tested at 1000W using resistive load with cooling fan.

Parameter	Model	Symbol	Min	Тур	Max	Unit
FCC Part 15, class A	All Models	Margin	6	-	-	dB

Radiated Emissions

Unlike conducted EMI, radiated EMI performance in a system environment may differ drastically from that in a stand-alone power supply. The shielding effect provided by the system enclosure may bring the EMI level from Class A to Class B. It is thus recommended that radiated EMI be evaluated in a system environment. The applicable standard is EN55022 Class A (FCC Part 15). Testing ac-dc convertors as a stand-alone component to the exact requirements of EN55022 can be difficult, because the standard calls for 1m leads to be attached to the input and outputs and aligned such as to maximize the disturbance. In such a set-up, it is possible to form a perfect dipole antenna that very few ac-dc convertors could pass. However, the standard also states that an attempt should be made to maximize the disturbance consistent with the typical application by varying the configuration of the test sample.



Operating Temperature

The LCM1000 series power supply maximum output power (1000W) can be loaded up to an ambient temperature of +50 °C .

Only 50%(500W) of the maximum output power can be loaded at ambient temperature of +70 $^{\circ}$ C. Linear derating to 50% nominal output power starts from +50 $^{\circ}$ C. The elapsed time between the application of input power and the attainment steady state values requires 5 minute warm up for -20 $^{\circ}$ C to -40 $^{\circ}$ C operation.

Forced Air Cooling

The LCM1000 series power supply includes internal cooling fans as part of the power supply assembly to provide forced air-cooling to maintain and control temperature of devices and ambient. The standard direction of airflow is from the end of the power supply. The cooling fan is a variable speed fan. Fan will be smart based on internal temperature. Fan noise <45 dB with 80% load @ 30 °C.

Page 31

Storage and Shipping Temperature / Humidity

The LCM1000 series power supply can be stored or shipped at temperatures between -40 ^oC to +85 ^oC and relative humidity from 10% to 95% non-condensing.

<u>Altitude</u>

The LCM1000 series power supply will operate within specifications at altitudes up to 10,000 feet above sea level. The power supply will not be damaged when stored at altitudes of up to 30,000 feet above sea level.

Humidity

The LCM1000 series power supply will operate within specifications when subjected to a relative humidity from 20% to 90% non-condensing. The LCM1000Q-T can be stored in a relative humidity from 10% to 95% non-condensing.

Vibration

The LCM1000 series power supply will pass the following vibration specifications:

Non-Operating Random Vibration

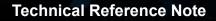
Acceleration	2.70	gRMS		
Frequency Range	10-2000	Hz		
Duration	20	mins		
Direction	3 mutually perpendicular axis			
PSD Profile	<u>FREQ</u> 10 Hz 200 Hz 500 Hz	SLOPE <u>dB/oct</u> -2.66dB/oct 	PSD <u>g²/Hz</u> 0.009 g ² /Hz 0.009 g ² /Hz 0.004 g ² /Hz	

Operating Random Vibration

Acceleration	1.0		gRMS	
Frequency Range	10-500	Hz		
Duration	20	mins		
Direction	3 mutually perpendicular axis			
PSD Profile	FREQ 5 Hz 10-50 Hz 100 Hz	SLOPE <u>dB/oct</u> 11dB/oct -10dB/oct	PSD <u>g²/Hz</u> 0.00003 g²/Hz 0.00004 g²/Hz 0.00003 g²/Hz	

<u>Shock</u>

The LCM1000 series power supply will pass the following vibration specifications:


Non-Operating Half-Sine Shock

Acceleration	30	G
Duration	18	msec
Pulse	Half-Sine	
No. of Shock	3 shock on each of 6 faces	

Operating Half-Sine Shock

Acceleration	4	G
Duration	22	msec
Pulse	Half-Sine	
No. of Shock	3 shock on each of 6 faces	

Power and Control Signal Descriptions

AC Input Connector

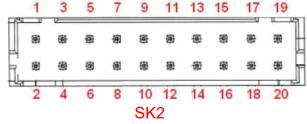
This connector supplies the AC Mains to the LCM1000 series.

- SK1 Earth Ground
- SK1 Line
- SK1 Neutral

Output Connector – SK3&SK4

These pins provide the main output for the LCM1000 series. The +Vout and the GND pins are the positive and negative rails, respectively, of the V_0 main output of the LCM1000 series. The +Vout is electrically isolated from the power supply chassis.

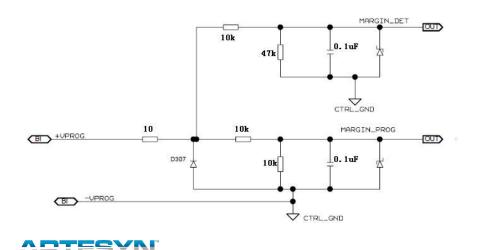
SK3 - +Vout


SK4 – GND

Control Signals – SK2

The LCM1000 series SK2 contains 20 pins control signal header providing analogy control interface, standby power and i²C interface.

A0, A1, A2 - (Pin 6, Pin3, Pin1)


Please refer to "Communication Bus Descriptions" section.

-VPROG, +VPROG - (Pin2, Pin8)

An Advanced Energy Company

Positive and return connection of external supply for Margin Programming. The LCM1000 series power supply has a "margin" pin which accepts a 1-6Vdc signal referenced to a floating return that programs the output the entire adjustment range. -VPROG pin need to connect the main output/standby GND. Applying voltage greater than 6V may result to damage of PSU internal circuit.

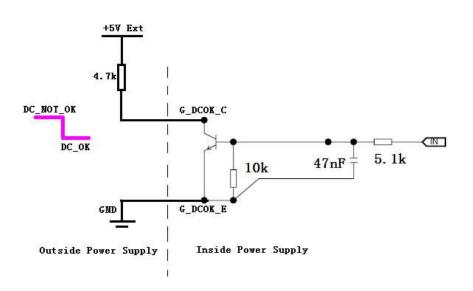
-Vsense, +Vsense – (Pin 4, Pin10)

This remote sense circuit is designed to compensate for a power path drop around the entire loop of 0.5 volt. These pins should be connected as close to the loading as possible, If left open, the power supply will regulate the voltage at its output terminals but the voltage level at the load may go lower than the guaranteed spec.

ISHARE - (Pin 5)

The main output has active load sharing. The output will share within 10% at full load. All current sharing functions are implemented internal to the power supply by making use of the ISHARE signal. The system connects the ISHARE lines between the power supplies. The supplies must be able to load share with up to 10 power supplies in parallel.

SDA1, SCL1, GND – (Pin 7, Pin9, Pin17)


Please refer to "Communication Bus Descriptions" section on Page 27.

5VSB, GND - (Pin11, Pin12, Pin13)

The LCM1000 series power supply provides a regulated 5 volt 2 amp auxiliary output voltage to power critical circuitry that must remain active regardless of the on/off status of the power supply's main output. The standby voltage is available whenever a valid AC input voltage is applied to the unit.

G_DCOK_C, G_DCOK_E – (Pin14, Pin16)

G_DCOK_C is a power good signal and is pulled LOW by the power supply to indicate that the output is within regulation. When any output voltage falls out of regulation, G_DCOK_C will be de-asserted to a HIGH state. Below is the connection of G_DCOK_C and G_DCOK_E.

LCM1000 Series Page 35

N/A - (Pin15)

Unused Pin

G_ACOK_C, G_ACOK_E - (Pin18, Pin20)

G-ACOK_C signal is used to indicate presence of AC input to the power supply. A logic "Low" level on this signal indicates AC input to the power supply is present. A Logic "High" on this signal indicates a loss of AC input to the power supply. Below is the connection of G_ACOK_C and G_ACOK_E.

INH_EN - (Pin19)

0.0 - 0.5V on this Pin will disable the Main output. If left it open, the Main output will enable.

Communication Bus Descriptions

I²C Bus Signals

The LCM1000 series contains enhanced monitor and control functions implemented via the I^2 C bus. The LCM1000 series I^2 C functionality (PMBusTM and FRU data) can be accessed via the output connector control signals. The communication bus is powered either by the internal 3.3V supply or from an external power source connected to the StandBy Output (ie: accessing an unpowered power supply as long as the StandBy Output of another power supply connected in parallel is on).

If units are connected in parallel or in redundant mode, the StandBy Outputs must be connected together in the system. Otherwise, the I²C bus will not work properly when a unit is inserted into the system without the AC source connected.

Note: PMBus[™] functionality can be accessed only when the PSU is powered-up. Guaranteed communication I²C speed is 100KHz.

SDA1, SCL1 (I²C Data and Clock Signals) – (pin7, pin 9)

I²C serial data and clock bus - these pins are internally pulled up to internal digital system controller.

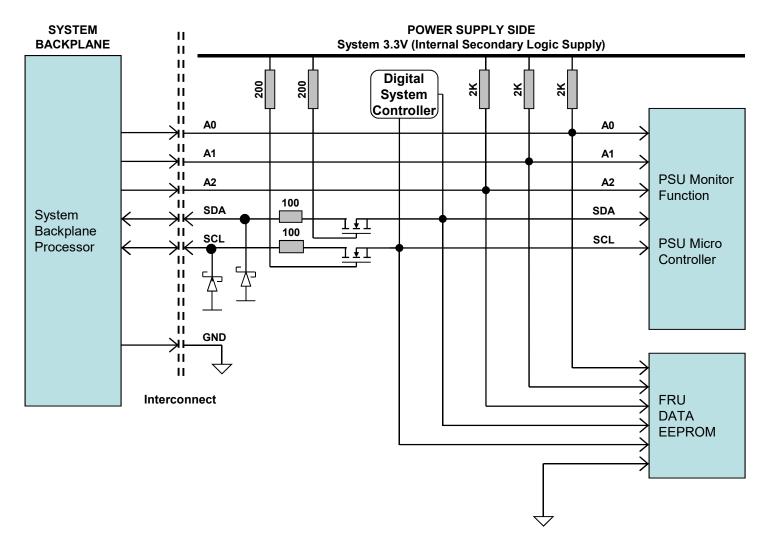
A0, A1, A2 (I²C Address BIT 0, BIT1, BIT2 Signals) – (pin6, pin3, pin1)

These three input pins are the address lines A0, A1 and A2 to indicate the slot position the power supply occupies in the power bay and define the power supply addresses for FRU data and PMBus[™] data communication. This allows the system to assign different addresses for each power supply. During I²C communication between system and power supplies, the system will be the master and power supplies will be slave.

Each of A0, A1 and A2 pulled up to internal 3.3V supply with a 2K resistor.

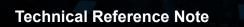
I²C Bus Communication Interval

The interval between two consecutive I²C communications to the power supply should be at least 50ms to ensure proper monitoring functionality.


I²C Bus Signal Integrity

Recommend to pull up the SDA and SCL pin with 2.2K resistors in the system side. The noise on the I²C bus (SDA, SCL lines) due to the power supply will be less than 450mV peak-to-peak. This noise measurement should be made with an oscilloscope bandwidth limited to 20MHz.

I²C Bus Internal Implementation, Pull-ups and Bus Capacitances

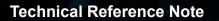


I²C Bus - Recommended external pull-ups:

Electrical and Interface specifications of I²C signals (referenced to StandBy Output Return pin, unless otherwise indicated):

Parameter	Condition	Symbol	Min	Тур	Max	Unit
SDA, SCL recommended external bus capacitance		C _{ext}	-	5	-	pF
Recommended external pull-up resistor	1 to 5 PSU	R _{ext}	-	2.2	-	Kohm

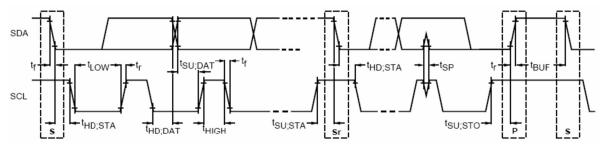
Device Addressing


The LCM1000 series will respond to supported commands on the I^2C bus that are addressed according to pins A0, A1 and A2 of output connector.

Address pins are held HIGH by default via pull up to internal 3.3V supply with a 2K resistor. To set the address as "0", the corresponding address line should be pulled down to logic ground level. Below tables show the address of the power supply with A0, A1 and A2 pins set to either "0" or "1".

DSU Slot		Slot ID Bits		PMBus [™] Address	
PSU Slot	A2	A1	A0	PMBus ¹ Address	
1	0	0	0	B0	
2	0	0	1	B2	
3	0	1	0	B4	
4	0	1	1	B6	
5	1	0	0	B8	
6	1	0	1	BA	
7	1	1	0	BC	
8	1	1	1	BE*	

* Default PMBus™ address is BE


Logic Levels

LCM1000 series power supply I²C Communication Bus will respond to logic levels as per below:

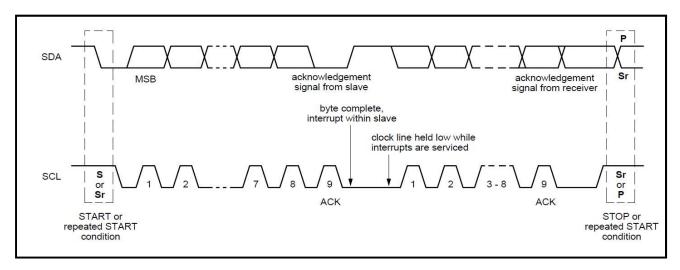
Logic High: 3.3V Nominal (2.1V to 5.5V)** Logic Low: 500mV nominal (800mV max)**

** Note: Philips[™] I²C adapter was used.

Timings

Demonster	Cumb al	Standard-	Mode Soecs			l l mit
Parameter	Symbol	Min	Мах		tual	Unit
SCL Clock Frequency	f _{SCL}	0	100	g	8	KHz
Hold time (repeated) START condition	t _{HD;STA}	4.0	-	4	.5	us
LOW period of SCL clock	t _{LOW}	4.7	-	5	.9	us
HIGH period of SCL clock	t _{HIGH}	4.0	-	4	.3	us
Setup time for repeated START condition	t _{su;sta}	4.7	-	4.5		us
Data hold time	t _{HD;DAT}	0	3.45	1.2		us
Data setup time	t _{SU;DAT}	250	-	45	00	ns
Rise time	t _r	-	1000	SCL =850	SDA =903	ns
Fall time	t _f	-	300	SCL =298 SDA =590		ns
Setup time for STOP condition	t _{su;sto}	4.0	-	5.2		us
Bus free time between a STOP and START condition	t _{BUF}	4.7	-	60	***	us

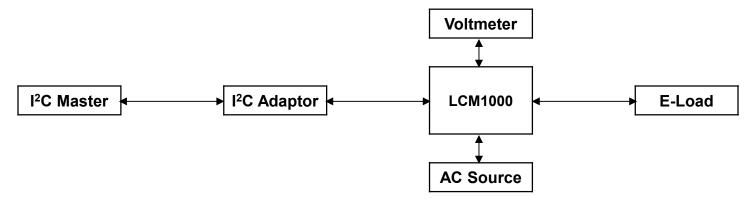
*** Note Philips[™] I2C adapter and bundled software (USB-to-I2C) was used



I²C Clock Synchronization

The LCM1000 series power supply might apply clock stretching. An addressed slave power supply may hold the clock line (SCL) low after receiving (or sending) a byte, indicating that it is not yet ready to process more data. The system master that is communicating with the power supply will attempt to raise the clock to transfer the next bit, but must verify that the clock line was actually raised. If the power supply is clock stretching, the clock line will still be low (because the connections are open-drain).

The maximum time out condition for clock stretching for LCM1000 series power supply is 100 msec.


PMBus[™] Interface Support

The LCM1000 series power supply is compliant with the industry standard PMBus[™] protocol for monitoring and control of the power supply via the I²C interface port.

LCM1000 series power supply PMBus[™] General Instructions

Equipment Setup

The following is typical I²C communication setup:

PMBus[™] Writing Instructions

When writing to any PMBus[™] R/W registers, ALWAYS do the following:

Disable Write Protect (command 10h) by writing any of the following accordingly:

Levels: 00h - Enable writing to all writeable commends

- 20h Disable write except 10h, 01h, 00h, 02h and 21h commands
- 40h Disable write except 10h, 01h, and 00h commends
- 80h Disable write except 0x00h

To save changes on the USER PMBus[™] Table:

Use send byte command: 15h STORE_USER_ALL

To save changes on the DEFAULT PMBus[™] Table:

Use send byte command: 11h STORE_DEFAULT_ALL

Wait for 5 seconds, turn-off the PSU, wait for another 5 seconds before turning it on.

LCM1000 Series Power Supply Support PMBus[™] Command List

The LCM1000 series power supply is compliant with the industry standard PMBus[™] protocol for monitoring and control of the power supply via the I²C interface port.

LCM1000 series power supply supported PMBus[™] command List:

Command Code	Command Name	Default Value	Access Type	Data Bytes	Data Format	Description
01h	OPERATION	80	R/W	1	В	Used to turn the unit ON/OFF in conjunction with the input INH_EN pin.
02h	ON_OFF_CONFIG	1E	R	1	В	Configures the combination of INH_EN pin and serial communication commands needed to turn the unit ON/OFF.
03h	CLEAR_FAULTS	-	S	1		
10h	WRITE_PROTECT	80	R/W	1	MSF	Used to Control Writing to the PMBus Device 80h - Disables write except 10h 40h - Disables write except 10h, 01h, 00h 20h - Disables write except 10h,01h,00h,02h and 21h commands 00 -Enables write to all writeable commands.
15h	STORE_USER_ALL	-	S	0		Copies the Operating memory table to the matching USER non-volatile memory.
20h	VOUT_MODE	17	R	1	В	Specifies the mode and parameters of Output Voltage related Data Formats
21h	VOUT_COMMAND	-	R	2	Linear	Sets the Output Voltage Reference Default Value: LCM1000L: 1800(12V) LCM1000Q: 3000(24V) LCM1000W: 6000(48V) LCM1000U: 4800(36V) LCM1000N: 1E00(15V)
24h	VOUT_MAX	-	R	2	Linear	Sets the max adjustable output voltage limit. Default Value: LCM1000L: 1A66((13.12V) LCM1000Q: 34CC(26.40V) LCM1000W: 6999(52.80V) LCM1000U: 4F33(39.60V) LCM1000N: 2100(16.5V)
40h	VOUT_OV_FAULT_LIMIT	-	R/W	2	Linear	Sets Output Over voltage threshold. Default Value: LCM1000L: 2066(16.20V) LCM1000Q: 40CC(32.40V) LCM1000W:8199(64.80V) LCM1000U: 6133(48.60V) LCM1000N: 2700(19.5V)
41h	VOUT_OV_FAULT_RESPONSE	80	R	1	MSF	Unit Latches OFF. Resets on INH_EN or CONTROL pin recycle or AC recycle.
42h	VOUT_OV_WARN_LIMIT	-	R	2	Linear	Sets Over-voltage Warning threshold. Default Value: LCM1000L: 1C57(14.16V) LCM1000Q:35DC(26.93V) LCM1000W: 6E66(55.19V) LCM1000U: 5500(42.50V) LCM1000N: 2366(1770V)
43h	VOUT_UV_WARN_LIMIT	-	R	2	Linear	Sets Under-voltage Warning threshold. Default Value: LCM1000L: 1466(10.20V) LCM1000Q: 28CC(20.40V) LCM1000W: 4CCC(38.40V) LCM1000N: 1800(12V)

LCM1000 series power supply supported PMBus[™] command List:

Command Code	Command Name	Default Value (HEX)	Access Type	Data Bytes	Data Format	Description
44h	VOUT_UV_FAULT_LIMIT	2800	R/W	2	Linear	Sets Under-voltage Fault threshold. Default Value: LCM1000L: 1400(10.0V) LCM1000Q: 28CC(20.40V) LCM1000W:4CCC(38.40V) LCM1000U: 3C00(30V) LCM1000N: 1799(11.79V)
45h	VOUT_UV_FAULT_RESPONSE	80	R	1	MSF	Turn PSU OFF
46h	IOUT_OC_FAULT_LIMIT	-	R/W	2	Linear	Sets the Over current threshold in Amps. Default Value:
47h	IOUT_OC_FAULT_RESPONSE	C0	R	1	MSF	OCP ride through. If OCP persists.
4Ah	IOUT_OC_WARN_LIMIT	-	R	2	Linear	Sets the Over Current Warning threshold in Amps.
4Fh	OT_FAULT_LIMIT	-	R	2	Linear	Secondary ambient temperature Fault threshold, in °C. LCM1000L: EBB0 (118 °C) LCM1000Q: EB80 (112 °C) LCM1000W: EBB0 (118 °C) LCM1000U: EBB0 (118 °C) LCM1000N: EBB0(118 °C)
50h	OT_FAULT_RESPONSE	F8	R	1	MSF	Turn PSU OFF and will retry indefinitely
51h	OT_WARN_LIMIT	-	R	2	Linear	Secondary ambient temperature warning threshold, in °C. Default Value: LCM1000L: EB90 (114 °C) LCM1000Q: EB60 (108 °C) LCM1000W: EB48 (105 °C) LCM1000U: EB90 (114 °C) LCM1000N: EB90 (114 °C)
5Eh	POWER_GOOD_ON	-	R	2	Linear	Sets the threshold by which the Power Good signal is asserted. Default Value: LCM1000L: 1357(9.67V) LCM1000Q: 2E00(23.0V) LCM1000W: 5C28(46.08V) LCM1000U: 40CC(32.40V) LCM1000N: 1957(12.67V)
5Fh	POWER_GOOD_OFF	-	R	2	Linear	Sets the threshold by which the Power Good signal is de-asserted. Default Value: LCM1000L: 1199(8.79V) LCM1000Q: 2B33(21.60V) LCM1000W: 5C28(46.08V) LCM1000U: 4000(32.00V) LCM1000N: 1900(12.5V)
60h	TON_DELAY	EB20	R	2	Linear	Sets the time (sec), from start condition (Power ON) until the output starts to rise.
61h	TON_RISE	DA80	R	2	Linear	Sets the time (ms), for the output rises from 0 to regulation. LCM1000L: DA80 (20ms) LCM1000Q: DA80 (20ms) LCM1000W: DBC0 (30ms) LCM1000U: DA80 (20ms) LCM1000N: DA80(20ms)

W

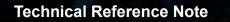
LCM1000 series power supply supported PMBus[™] command List:

Command Code	Command Name	Default Value	Access Type	Data Bytes	Data Format	Description
64h	TOFF_DELAY	DA80	R	2	Linear	Sets the time (ms), from a stop condition (Power OFF) until the output starts to drop (converter OFF).
78h	STATUS_BYTE	00	R	1	Binary	Returns the summary of critical faults
	b7 – BUSY					A fault was declared because the device was busy and unable to respond.
	b6 – OFF					Unit is OFF
	b5 – VOUT_OV					Output over-voltage fault has occurred
	b4 – IOUT_OC					Output over-current fault has occurred
	b3 – VIN_UV					An input undervoltage fault has occurred
	b2 – TEMPERATURE					A temperature fault or warning has occurred
	b1 – CML					A communication, memory or logic fault has occurred.
	b0 – NONE OF THE ABOVE					A Fault Warning not listed in bits[7:1] has occurred.
79h	STATUS_WORD	0000	R	2	Binary	Summary of units Fault and warning status.
	b15 – VOUT					An output voltage fault or warning has occurred
	b14 – IOUT/POUT					An Output current or power fault or warning has occurred.
	b13 – INPUT					An input voltage, current or power fault or warning as occurred.
	b12 – MFR					A manufacturer specific fault or warning has occurred.
	b11 – POWER GOOD#					The POWER_GOOD signal is de-asserted
	b10 – FANS					A fan or airflow fault or warning has occurred.
	b9 – OTHER					A bit in STATUS_OTHER is set.
	b8 – UKNOWN					A fault type not given in bits [15:1] of the STATUS WORD has been detected.
	b7 – BUSY					A fault was declared because the device was busy and unable to respond.
	b6 – OFF					Unit is OFF
	b5 – VOUT_OV					Output over-voltage fault has occurred
	 b4 – IOUT_OC					Output over-current fault has occurred
	b3 – VIN UV					An input under-voltage fault has occurred
	b2 – TEMPERATURE					A temperature fault or warning has occurred
	b1 – CML					A communication, memory or logic fault has occurred.
	b0 - NONE_OF_THE_ABOVE					A fault or warning not listed in bits[7:1] of this byte has occurred.
7Ah	STATUS_VOUT	00	R	1	Binary	Output voltage related faults and warnings
	b7				Í	VOUT Overvoltage Fault
	b6					VOUT Over-voltage warning
	b5		1			VOUT Under-voltage Warning
	b4					VOUT Under-voltage Fault
	b3					VOUT_MAX Warning, an attempt has been made to set output to a value higher that the highest permissible voltage.
	b2				1	TON_MAX_FAULT
	b1					TOFF_MAX Warning
	b0		1		1	reserved

W

LCM1000 series power supply supported PMBus[™] command List:

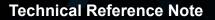
Command Code	Command Name	Default Value	Access Type	Data Bytes	Data Format	Description
7Bh	STATUS_IOUT	00	R	1	Binary	Output Current related faults and warnings
	b7					IOUT Over current Fault
	b6					IOUT Over current And Low Voltage shutdown Fault
	b5					VOUT Under-voltage Warning
	b4					VOUT Under-voltage Fault
	b3					VOUT_MAX Warning, an attempt has beer made to set output to a value higher that the highest permissible voltage.
	b2					TON_MAX_FAULT
	b1					TOFF_MAX Warning
	b0					reserved
7Dh	STATUS_TEMPERATURE	00	R	1	Binary	Temperature related faults and warnings
	 b7				,	Overtemperature Fault
	B6					Overtemperature Warning
	B5					Under temperature Warning
	B4					Under temperature Fault
	b3,b2,b1,b0					reserved
7Eh	STATUS CML	00	R	1	Binary	Communications, Logic and Memory
80h	STATUS_MFR_SPECIFIC	0	R	1	Binary	Manufacturer Status codes
88h	READ VIN	-	R	2	Linear	Returns input Voltage in Volts ac
8Bh	READ_VIN	-	R	2	Linear	Returns the actual, measured voltage in Volts.
8Ch	READ_VOOT		R	2	Linear	Returns the output current in amperes.
		-	R			
8Dh	READ_TEMPERATURE_1	-		2	Linear	PSU Air inlet temp (inside PSU)
8Eh	READ_TEMPERATURE_2	-	R	2	Linear	PSU Air inlet temp (inside PSU)
96h	READ_POUT	-	R	2	Linear	Returns the output power, in Watts.
97h	READ_PIN	-	R	2	Linear	Returns the input power, in Watts
99h	MFR_ID	4E,59,53,45,54, 52,41,07	R/W	8	ASCII	ARTESYN
9Ah	MFR_MODEL	-	R/W	8	ASCII	
9Bh	MFR_REVISION	-	R/W	2	ASCII	
9Ch	MFR_LOCATION	-	R/W	8	ASCII	Laguna
9Dh	MFR_DATE	-	R/W	8	ASCII	Manufacture Date, ASCII format structure : YYMMDD
9Eh	MFR_SERIAL	-	R/W	13	ASCII	13 CHAR
A0h	MFR_VIN_MIN	EAD0	R	2	Linear	Minimum Input Voltage (90Vac)
A1h	MFR_VIN_MAX	FA10	R	2	Linear	Maximum Input Voltage (264Vac)
A2h	MFR_IIN_MAX	DA60	R	2	Linear	Maximum Input Current (19A)
A4h	MFR_VOUT_MIN	-	R	2	Linear	Minimum Output Voltage Regulation Window. Default Value: LCM1000L: 1599 (10.80V) LCM1000Q: 2B33 (21.60V) LCM1000W: 5600 (43.0V) LCM1000U: 40CC (32.40V)
A5h	MFR_VOUT_MAX	-	R	2	Linear	Maximum Output Voltage. Default Value: LCM1000L:1A66 (13.20V) LCM1000Q:34CC (26.40V) LCM1000W:6999 (52.80V) LCM1000U: 4F33 (39.60V)


W

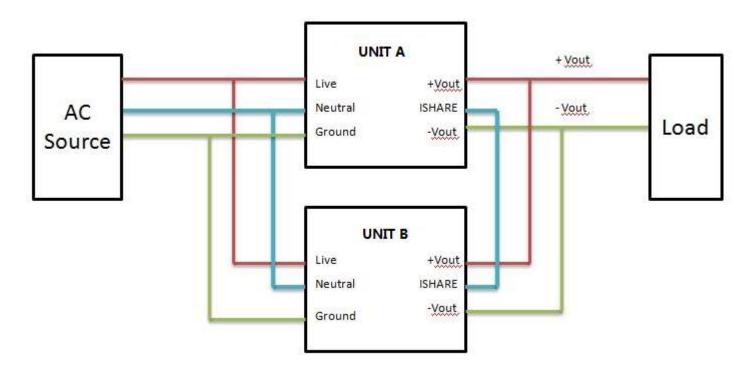
LCM1000 series power supply supported PMBus[™] command List:

Command Code	Command Name	Default Value	Access Type	Data Bytes	Data Format	Description
A6h	MFR_IOUT_MAX	-	R	2	Linear	Maximum Output Current
A7h	MFR_POUT_MAX	0B0C	R	2	Linear	Maximum Output Power
A8h	MFR_TAMBIENT_MAX	EA30	R	2	Linear	Maximum Operating Ambient Temperature (Secondary Ambient) (70 °C)
A9h	MFR_TAMBIENT_MIN	-	R	2	Linear	Minimum Operating Ambient Temperature (Secondary Ambient)

W.

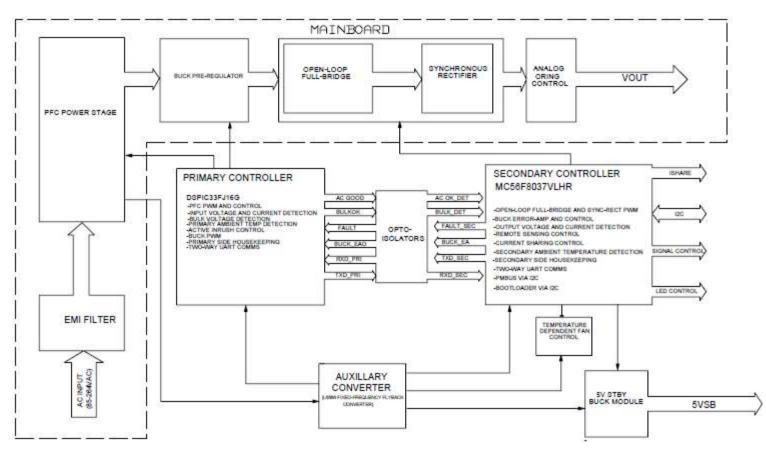

Application Notes

Current Sharing


The LCM1000 series main output is equipped with current sharing capability. This will allow up to 10 power supplies to be connected in parallel for higher power application. Current share accuracy is typically 10% of full load. The l²C Line should be connected separately. The minimum load at parallel operation is 1% of the total Output current that the units can deliver. The table below shows the derated maximum power capacity when units are in parallel configuration. This is to consider the 10% load sharing tolerance.

Number of Units in Parallel (N)	Maximum Output power Rated + [(N-1) x 0.9] x Rated, Where: Rated - 1000W, N - Number of PSU in Parallel
Stand-alone	1000W
2	1900W
3	2800W
10	9100W

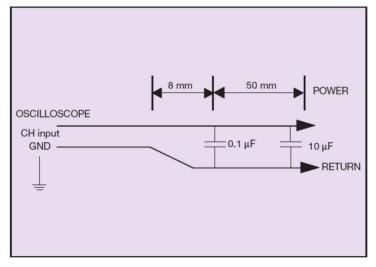
Redundant Operation Connection Diagram


- Note 1 Above figure shows connection for two power supply. Similar connection must below followed for higher number of power supplies connected. The maximum number of power supply is 10.
- Note 2 PMbus Address should be set unique per power supply.
- Note 3 The G_DCOK_C pins and G_ACOK_C pins can be connected together to the system DCOK and ACOK input pins. This can also be wired separately so the system will still continue to operate in case 1 PSU fails.
- Note 4 Read I_0 per power supply. The reported I_0 power supply should be the same or similar.

Application Notes

Block Diagram

Below is the block diagram of the LCM1000 series power supply.


. . . .

Output Ripple and Noise Measurement

The setup outlined in the diagram below has been used for output voltage ripple and noise measurements on the LCM1000 series power supply. When measuring output ripple and noise, a scope jack in parallel with a 0.1uF ceramic chip capacitor, and a 10 uF aluminum electrolytic capacitor should be used. Oscilloscope should be set to 20 MHz bandwidth for this measurement.

Technical Reference Note

Rev.10.09.20_#2.2 LCM1000 Series Page 51

Record of Revision and Changes

Issue	Date	Description	Originators
1.0	05.14.2015	First Issue	L. Lee
1.1	10.10.2015	Updated the "EMC" Section	L. Lee
1.2	01.07.2016	Updated the I ² C detail	L. Lee
1.3	04.27.2016	Update the LCM1000L and LCM1000W Performance Curve	L. Lee
1.4	05.04.2016	Update remote sense description	K. Wang
1.5	12.17.2016	Update the LCM1000U and LCM1000N Performance Curve	L. Lee
1.6	04.28.2017	Update the leakage current to 240Vac 0.3mA per safety confirm	K. Wang
1.7	05.14.2019	Update mating connector	K. Wang
1.8	10.18.2019	Update model numbers and altitude	L.Lee
1.9	03.26.2020	Update isolation voltage	L.Lee
2.0	05.30.2020	Update the leakage current	K. Wang
2.1	06.17.2020	Update 62368-1 cert information	L.Lee
2.2	10.09.2020	Update PFC and DC DC Switching Frequency	K. Wang

WORLDWIDE OFFICES

Americas

2900 South Diablo Way Suite B100 Tempe, AZ 85282 USA +1 888 412 7832 Europe (UK) Ground Floor Offices Barberry House, 4 Harbour Buildings Waterfront West, Brierley Hill West Midlands, DY5 1LN, UK +44 (0) 1384 842 211 Asia (HK) 14/F, Lu Plaza 2 Wing Yip Street Kwun Tong, Kowloon Hong Kong +852 2176 3333

An Advanced Energy Company

www.artesyn.com

For more information: www.artesyn.com For support: productsupport.ep@artesyn.com

Artesyn Embedded Technologies, Artesyn Embedded Power, Artesyn, and all Artesyn related logos are trademarks and service marks of Artesyn Embedded Technologies, Inc. All other names and logos referred to are trade names, trademarks, or registered trademarks of their respective owners. Specifications are subject to change without notice. © 2019 Artesyn Embedded Technologies, Inc. All rights reserved. For full legal terms and conditions, please visit www.artesyn.com/legal.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rack Mount Power Supplies category:

Click to view products by Artesyn Embedded Technologies manufacturer:

Other Similar products are found below :

 G08-M02
 HFE2500BP
 PET1300-12-054NAE
 HFE1600BP
 73-311-0001
 73-317-0148
 73-495-0233
 750-1016
 SFP450-S101G

 FUP550SNRPS
 VRA.00335.0
 VRA.00334.0
 VRA.00333.0
 HFE1600-KIT
 RKP-1UI
 PFE1100-12-054ND
 FND300-1012G
 73-951-0001T

 73-954-0001C
 DS550DC-3
 RCP-2000-24
 TSR10
 TET2000-12-086NA
 PET2000-12-074RA
 RCP-MU
 605-10144-2AC
 6609006-5

 D1U54P-W-1200-12-HC4PC
 DS450-3
 DS450DC-3
 DS650DC-3
 HPR12K-00-001
 LCM300W-T-4
 LCM600N-T-4-A
 FNP600-48G
 FNR-3

 48G
 FNR-5-12G
 PFS1200-12-054RAH
 PFS1200-12-054RD
 SPSPFE3-05G
 TET3200-12-069RA
 IEC-A-1
 FXX1600PCRPS 915606
 DHP

 1UT-A
 DRP-3200-24
 RCP-1000-12
 RCP-1000-12-C
 RCP-1000-24-C
 RCP-1000-48
 PI