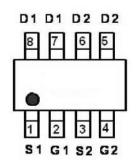


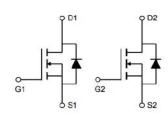
30V Dual N-Channel MOSFET

Features

- Dual N-Channel,5V Logic Level Control
- Enhancement mode
- · Fast Switching
- High Effective

Application


- Power Management in Inverter System
- Synchronous Rectification


Product Summary

V DS	30	V
R DS(on),TYP@ VGS=10 V	15.5	mΩ
I D	9	Α

Maximum ratings, at T_j=25 °C, unless otherwise specified

Symbol	Parameter		Rating	Unit	
$V_{(BR)DSS}$	Drain-Source breakdown voltage		30	V	
I _s	Diode continuous forward current	T _A =25°C	2.3	А	
	$I_{D} \qquad \begin{array}{c} T_{A} = 25^{\circ}C \\ \hline T_{A} = 70^{\circ}C \end{array}$		9	А	
I D			5.0	А	
I _{DM}	Pulse drain current tested ①	T _A =25°C	30	А	
EAS	Avalanche energy, single pulsed ②		9	mJ	
P_{D}	Maximum power dissipation T _A =25°C		2.5	W	
Vgs	Gate-Source voltage		±20	V	
MSL			Level 3		
$T_{\rm STG}$	Storage temperature range		-55 to 150	°C	

Thermal Characteristics

Symbol	Parameter	Typical	Unit	
R _{0JL}	Thermal Resistance-Junction to Lead	40 °C/W		
$R_{ hetaJA}$	Thermal Resistance-Junction to Ambient	50	°C/W	

Electrical Characteristics@T_i=25°C(unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250uA	30	-	-	V
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =10V, I _D =8A		15.5	20	$\mathbf{m}\Omega$
		V_{GS} =4.5V, I_D =6A		21.5	26	$\mathbf{m}\Omega$
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250uA$	1	1.5	2.5	V
g _{fs}	Forward Transconductance	V_{DS} =10V, I_{D} =8A		15		S
I _{DSS}	Drain-Source Leakage Current	V _{DS} =30V, V _{GS} =0V	-	-	10	uA
I _{GSS}	Gate-Source Leakage	V _{GS} = <u>+</u> 12V, V _{DS} =0V	-	-	<u>+</u> 100	nA
Q_g	Total Gate Charge	I _D =8A		4.1		nC
Q_gs	Gate-Source Charge	V _{DS} =15V	-	1.1	-	nC
Q_gd	Gate-Drain ("Miller") Charge	V _{GS} =4.5V	-	2.5	-	nC
$t_{d(on)}$	Turn-on Delay Time	V _{DS} =15V	-	8	-	ns
t _r	Rise Time	I _D =1A	-	7	-	ns
$t_{d(off)}$	Turn-off Delay Time	$R_G=3.3\Omega,V_{GS}=10V$	_	15	-	ns
t _f	Fall Time	R _D =15Ω	-	5	-	ns
C _{iss}	Input Capacitance	V _{GS} =0V	-	685	-	pF
C _{oss}	Output Capacitance	V _{DS} =25V	_	95	-	pF
C _{rss}	Reverse Transfer Capacitance	f=1.0MHz	_	75	-	pF
R_g	Gate Resistance	f=1.0MHz	-	5.6	-	Ω

Source-Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V_{SD}	Forward On Voltage ²	I _S =1.1A, V _{GS} =0V	1	-	1.0	٧
t _{rr}	Reverse Recovery Time	I _S = 8A, V _{GS} =0V,	-	15	-	ns
Q _{rr}	Reverse Recovery Charge	dI/dt=100A/μs	-	14	-	nC

Notes:

- 1. Pulse width limited by Max. junction temperature.
- 2. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%
- 3.Surface mounted on 1 in² copper pad of FR4 board, t ≤10sec ; 125 °C/W when mounted on Min. copper pad.

THIS PRODUCT IS SENSITIVE TO ELECTROSTATIC DISCHARGE, PLEASE HANDLE WITH CAUTION.

USE OF THIS PRODUCT AS A CRITICAL COMPONENT IN LIFE SUPPORT OR OTHER SIMILAR SYSTEMS IS NOT AUTHORIZED.

APEC DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

APEC RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN.

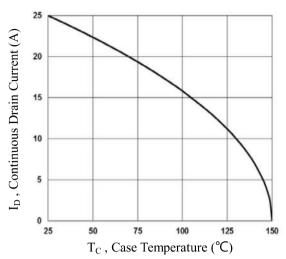


Fig.1 Continuous Drain Current vs. T_{c}

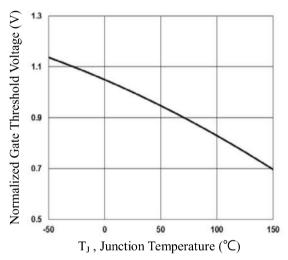


Fig.3 Normalized V_{th} vs. T_{J}

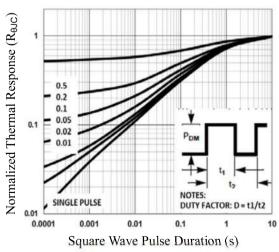


Fig.5 Normalized Transient Response

Fig.2 Normalized RDSON vs. T,

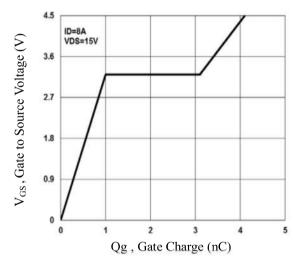


Fig.4 Gate Charge Waveform

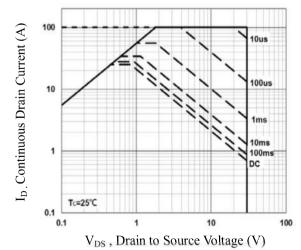


Fig.6 Maximum Safe Operation Area

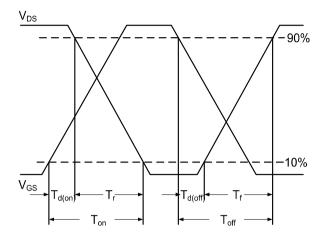


Fig.7 Switching Time Waveform

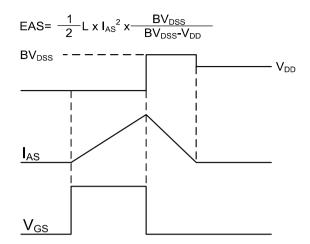
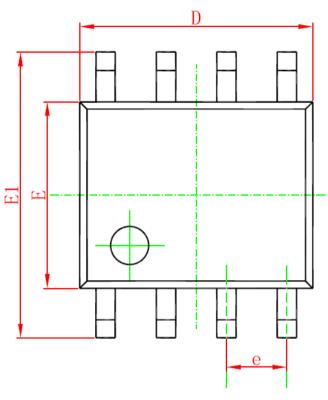
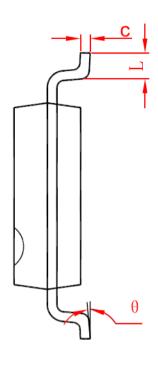
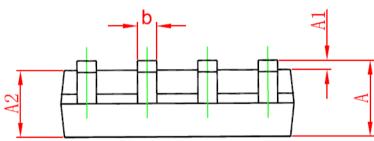


Fig.8 EAS Waveform


Ordering and Marking Information


Ordering Device No.	Marking	Package	Packing	Quantity
ASDM3010S-R	3010	SOP-8	Tape&Reel	4000


PACKAGE	MARKING		
SOP-8	AS 3010 Date Code		

SOP-8 PACKAGE IN FORMATION

Ch a l	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	1. 350	1. 750	0. 053	0. 069	
A1	0. 100	0. 250	0.004	0. 010	
A2	1. 350	1. 550	0.053	0. 061	
b	0. 330	0. 510	0. 013	0. 020	
С	0. 170	0. 250	0.006	0. 010	
D	4. 700	5. 100	0. 185	0. 200	
Е	3. 800	4. 000	0. 150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
е	1. 270	(BSC)	0. 050 (BSC)		
L	0. 400	1. 270	0. 016	0. 050	
θ	0°	8°	0°	8°	

30V Dual N-Channel MOSFET

IMPORTANT NOTICE

Xi'an Ascend Semiconductor incorporated MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Xi'an Ascend Semiconductor Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Xi'an Ascend Semiconductor Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Xi'an Ascend Semiconductor Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume

all risks of such use and will agree to hold Ascendsemi Incorporated and all the companies whose products are represented on Xi'an Ascend Semiconductor Incorporated website, harmless against all damages.

Xi'an Ascend Semiconductor Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Xi'an Ascend Semiconductor Incorporated products for any unintended or

unauthorized application, Customers shall indemnify and hold Xi'an Ascend Semiconductor Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application. www.ascendsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Ascend manufacturer:

Other Similar products are found below:

614233C 648584F NTNS3A92PZT5G IRFD120 IRFF430 JANTX2N5237 2N7000 2SK2464-TL-E FCA20N60_F109 FDZ595PZ AOD464 2SK2267(Q) 2SK2545(Q,T) 405094E 423220D MIC4420CM-TR VN1206L 614234A 715780A SSM6J414TU,LF(T 751625C IPP60R600P6XKSA1 RJK60S5DPK-M0#T0 PSMN4R2-30MLD TK31J60W5,S1VQ(O 2SK2614(TE16L1,Q) DMN1017UCP3-7 EFC2J004NUZTDG FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE2384 NTE2969 NTE6400A DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 SSM6P54TU,LF DMP22D4UFO-7B IPS60R3K4CEAKMA1 DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 STU5N65M6 C3M0021120D DMN13M9UCA6-7 BSS340NWH6327XTSA1 MCM3400A-TP DMTH10H4M6SPS-13 IRF40SC240ARMA1