

ASDM4410S

100V Dual N & P-Channel PowerTrench

Features

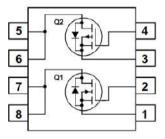
- N-Channel 100V/5A, R_{DS}(ON) = 95 mΩ @ VGS = 10V
- P-Channel -100V/-4A,
 R_{DS}(ON) = 185mΩ @ VGS = -10V

Application

- DC-DC primary bridgeDC-DC Synchronous rectificationHot swap
- •Fan drive

Product Summary

N-Channel


V ds	100	V
R DS(on), Typ@ VGS=10 V	95	mΩ
/ D	5	Α

• P-Channel

VDS	-100	V
R DS(on),Typ@ VGS=-10 V	185	mΩ
/ D	-4	А

Simplified Schematic

Absolute Maximum Ratings $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter		N-CH	P-CH	Units
V _{DSS}	Drain-Source Voltage		100	-100	V
V _{GSS}	Gate-Source Voltage		±20	±20	V
I _D	Drain Current - Continuous	(Note 1a)	5	-4	A
	- Pulsed	Γ	20	-20	
PD	Power Dissipation for Dual Operation		2.5		W
	Power Dissipation for Single Operation	(Note 1a)	1.	.6	
		(Note 1b)	Î		
		(Note 1c)	0.	.9	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to	+150	°C

Thermal Characteristics

R _{0JA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	78	°C/W
R _{θJC}	Thermal Resistance, Junction-to-Case	(Note 1)	40	°C/W

Electrical Characteristics

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units		
Off Char	Off Characteristics								
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 μA V _{GS} = 0 V, I _D = -250 μA	N-CH P-CH	100 -100			V		
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C I_D = -250 µA, Referenced to 25°C	N-CH P-CH		25 -22		mV/°C		
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 V, V_{GS} = 0 V$ $V_{DS} = -24 V, V_{GS} = 0 V$	N-CH P-CH			1 -1	μA		
I _{GSSF}	Gate-Body Leakage, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$	All			100	nA		
I _{GSSR}	Gate-Body Leakage, Reverse	$V_{GS} = -20 V, V_{DS} = 0 V$	All			-100	nA		

 $T_A = 25^{\circ}C$ unless otherwise noted

On Characteristics (Note 2)

$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$ $V_{DS} = V_{GS}, I_D = -250 \ \mu A$	N-CH P-CH	1 -2	1.6 -	3 -4	V
$rac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C I_D = -250 µA, Referenced to 25°C			-4.3 4		mV/°C
$R_{\text{DS(on)}}$	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 4 A, T _J =25°C	N-CH		95	100	mΩ
		V _{GS} = -10 V, I _D = -3 A,T _J =25°C	P-CH		185	200	11152
I _{D(on)}	On-State Drain Current	V _{GS} = 10 V, V _{DS} = 5 V V _{GS} = -10 V, V _{DS} = -5 V	N-CH P-CH	5 -4			A
g fs	Forward Transconductance	V _{DS} = 5 V, I _D = 7 A V _{DS} = -5 V, I _D =-5 A	N-CH P-CH		11 11		S

Dynamic Characteristics

Ciss	Input Capacitance	N-CH	N-CH	620	pF
		V _{DS} = 10 V, V _{GS} = 0 V, f = 1.0 MHz	P-CH	620	-
Coss	Output Capacitance		N-CH	120	pF
		P-CH	P-CH	220	-
C _{rss}	Reverse Transfer Capacitance	V_{DS} = -10 V, V_{GS} = 0 V, f = 1.0 MHz	N-CH	31	pF
			P-CH	65	

Switching Characteristics (Note 2)

t _{d(on)}	Turn-On Delay Time	N-CH	N-CH	12	ns
-()	5	$V_{DD} = 10 V, I_D = 1 A,$	P-CH	14	
t _r	Turn-On Rise Time	V_{GS} = 10V, R_{GEN} = 6 Ω	N-CH	400	ns
			P-CH	160	
t _{d(off)}	Turn-Off Delay Time	P-CH	N-CH	20	ns
. ,	-	$V_{DD} = -10 V, I_D = -1 A,$	P-CH	35	
t _f	Turn-Off Fall Time	V_{GS} = -10V, R_{GEN} = 6 Ω	N-CH	120	ns
			P-CH	60	
Q _g	Total Gate Charge	N-CH	N-CH	12	nC
5		V_{DS} = 15 V, I_{D} = 4 A, V_{GS} = 10 V	P-CH	21	
Q _{gs}	Gate-Source Charge		N-CH	2.5	nC
		P-CH	P-CH	4.6	
Q_{gd}	Gate-Drain Charge	V _{DS} = -15 V, I _D = -3 A,V _{GS} = -10 V	N-CH	9.0	nC
5			P-CH	11.5	

Drain–Source Diode Characteristics and Maximum Ratings

Is	Maximum Continuous Drain-Source Diode Forward Current		-5	^
-		P-CH	-4	A
V _{SD}	Drain-Source Diode Forward $V_{GS} = 0 V$, $I_S = 1.3 A$ (Note 2	N-CH	1.5	
	Voltage $V_{GS} = 0 V$, $I_S = -1.3 A$ (Note 2	P-CH	-1.2	V

Typical Characteristics:N-channel

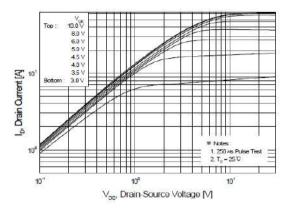
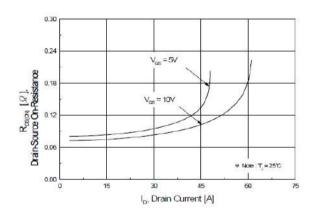
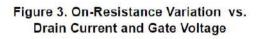




Figure 1. On-Region Characteristics

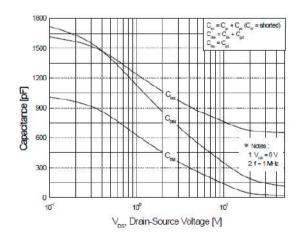
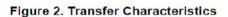
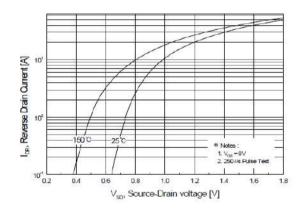




Figure 5. Capacitance Characteristics

V_{cs} , Gate-Source Voltage [V]

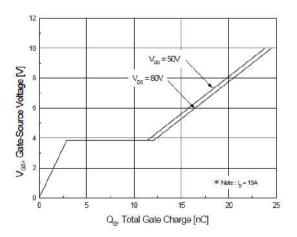
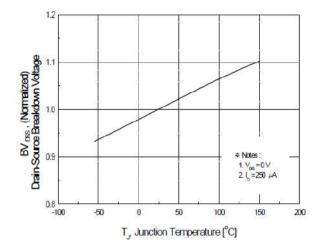
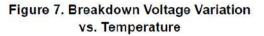



Figure 6. Gate Charge Characteristics



ASDM4410S

100V Dual N & P-Channel PowerTrench

Typical Characteristics:N-channel

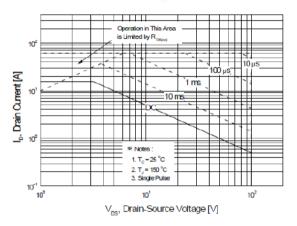


Figure 9. Maximum Safe Operating Area

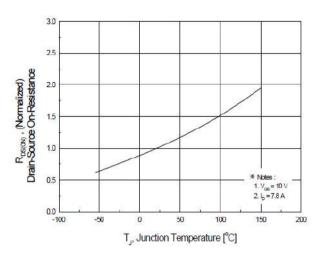


Figure 8. On-Resistance Variation vs. Temperature

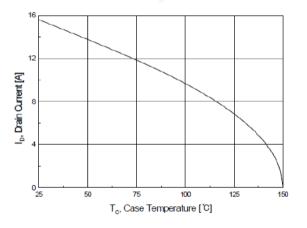
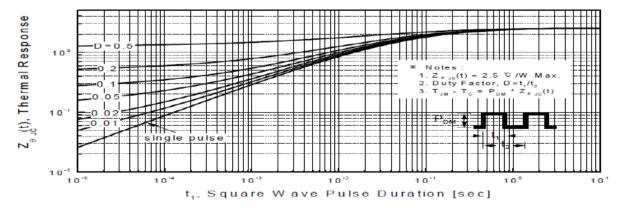
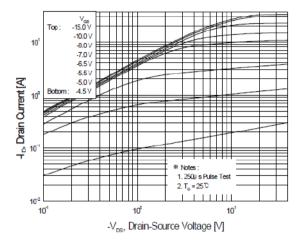


Figure 10. Maximum Drain Current vs. Case Temperature




Figure 11. Transient Thermal Response Curve

ASDM4410S

100V Dual N & P-Channel PowerTrench

Typical Characteristics:P-channel

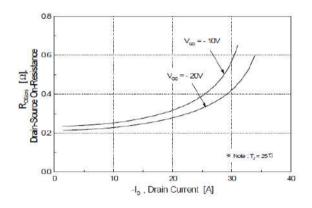


Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

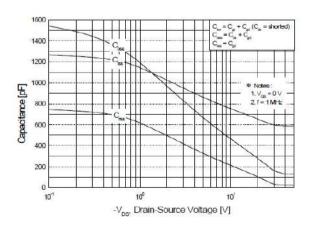


Figure 5. Capacitance Characteristics



Figure 2. Transfer Characteristics

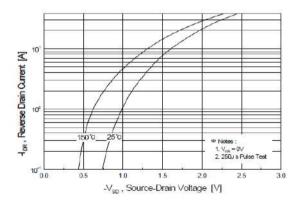


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

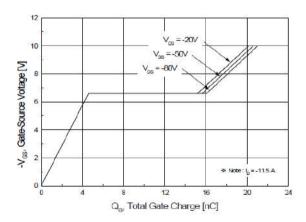
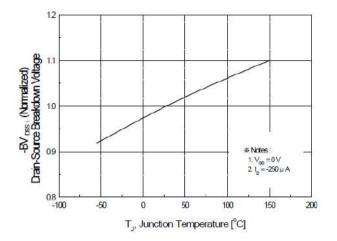
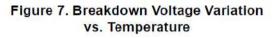




Figure 6. Gate Charge Characteristics

Typical Characteristics:P-channel

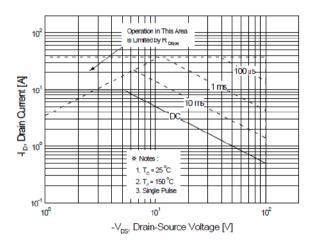


Figure 9. Maximum Safe Operating Area

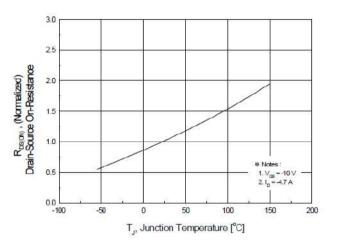


Figure 8. On-Resistance Variation vs. Temperature

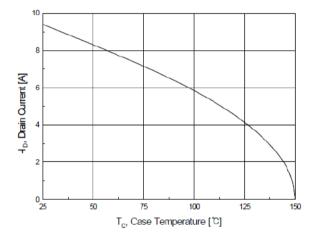


Figure 10. Maximum Drain Current vs. Case Temperature

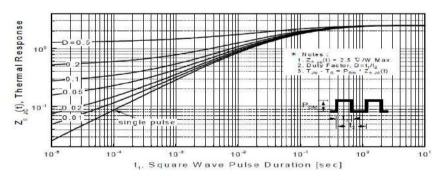
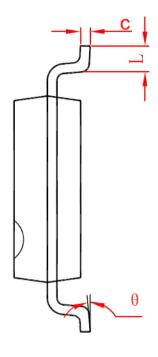


Figure 11. Transient Thermal Response Curve

Ordering and Marking Information


Ordering Device No.	Marking	Package	Packing	Quantity
ASDM4100S-R	4100	SOP-8	Tape&Reel	4000

PACKAGE	MARKING
SOP-8	AS □□□ 4100 □□□□ → Date Code

D Ξ ΓT. b

C. m.h. a l	Dimensions Ir	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
A	1. 350	1. 750	0. 053	0. 069
A1	0. 100	0. 250	0.004	0. 010
A2	1. 350	1. 550	0.053	0. 061
b	0. 330	0. 510	0.013	0. 020
С	0. 170	0. 250	0.006	0. 010
D	4. 700	5. 100	0. 185	0. 200
E	3.800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270 (BSC)		0. 050	(BSC)
Ĺ	0. 400	1. 270	0.016	0. 050
θ	0°	8°	0°	8°

SOP-8 PACKAGE IN FORMATION

IMPORTANT NOTICE

Xi'an Ascend Semiconductor incorporated MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Xi'an Ascend Semiconductor Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Xi'an Ascend Semiconductor Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Xi'an Ascend Semiconductor Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume.

all risks of such use and will agree to hold Ascendsemi Incorporated and all the companies whose products are represented on Xi'an Ascend Semiconductor Incorporated website, harmless against all damages.

Xi'an Ascend Semiconductor Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Xi'an Ascend Semiconductor Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Xi'an Ascend Semiconductor Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

www.ascendsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Ascend manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 IRFF430 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ AOD464 2SK2267(Q) 2SK2545(Q,T) 405094E 423220D MIC4420CM-TR VN1206L 614234A 715780A SSM6J414TU,LF(T 751625C BSC884N03MS G BSF024N03LT3 G PSMN4R2-30MLD TK31J60W5,S1VQ(O 2SK2614(TE16L1,Q) DMN1017UCP3-7 EFC2J004NUZTDG FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE2384 NTE2969 NTE6400A DMN2080UCB4-7 DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 SSM6P54TU,LF DMP22D4UFO-7B IPS60R3K4CEAKMA1 DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 STU5N65M6 C3M0021120D DMN13M9UCA6-7 BSS340NWH6327XTSA1 MCM3400A-TP DMTH10H4M6SPS-13 IRF40SC240ARMA1 IPS60R1K0PFD7SAKMA1