

ASDM60N70Q 60V N-CHANNEL MOSFET

FEATURES

- Trench Power DTMOS Technology
- Low R_{DS(ON)}
- Low Gate Charge
- Optimized for Fast-switching Applications

APPLICATIONS

- Synchronous Rectification in DC/DC and AC/DC Converters
- Isolated DC/DC Converters in Telecom and Industrial

V _{DSS}	60	V
RDS(ON)-Typ@VGS=10V	6.5	mΩ
ID	64	А

N-Channel

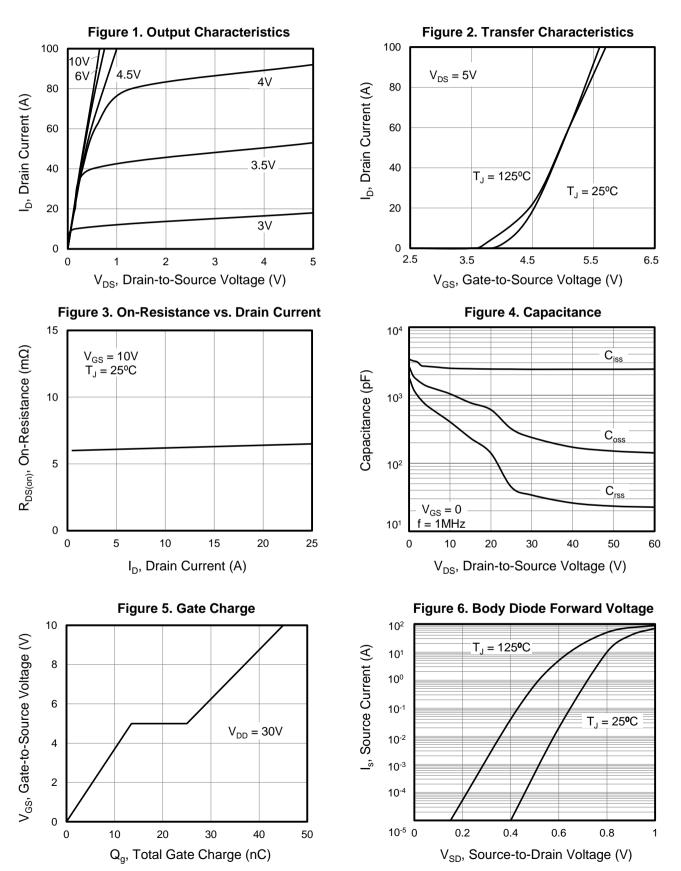
DFN5*6-8

Absolute Maximum Ratings $T_c = 25^{\circ}C$, unless otherwise noted					
Parameter		Symbol	Value	Unit	
Drain-Source Voltage (V _{GS} = 0V)		V _{DSS}	60	V	
Continuous Drain Current		I _D	64	А	
Pulsed Drain Current	(note1)	I _{DM}	256	А	
Gate-Source Voltage		V _{GSS}	±20	V	
Single Pulse Avalanche Energy	(note2)	E _{AS}	65	mJ	
Avalanche Current	(note1)	I _{AS}	36	А	
Power Dissipation (T _C = 25°C)		P _D	56.5	W	
Operating Junction and Storage Temperature	e Range	T _J , T _{stg}	-55~+150	٥C	

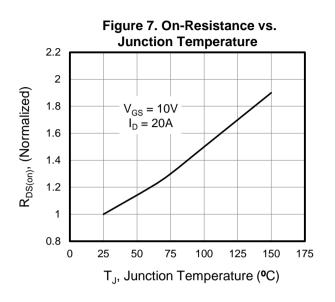
Thermal Resistance				
Parameter	Symbol	Value	Unit	
Thermal Resistance, Junction-to-Case	R _{thJC}	1.7	°C/W	
Thermal Resistance, Junction-to-Ambient	R _{thJA}	50	°C/W	

60V N-CHANNEL MOSFET

Parameter	0h.e.l		Value				
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Static			-				
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0V, I_{D} = 250\mu A$	60			V	
Zara Cata Valtaga Drain Current	I _{DSS}	$V_{DS} = 60V, V_{GS} = 0V, T_{J} = 25^{\circ}C$			1	μA	
Zero Gate Voltage Drain Current		$V_{DS} = 60V, V_{GS} = 0V, T_{J} = 150^{\circ}C$			100		
Gate-Source Leakage	I _{GSS}	V_{GS} = $\pm 20V$			±100	nA	
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2.5		4	V	
Drain-Source On-Resistance (Note3)	R _{DS(on)}	V _{GS} = 10V, I _D = 20A		6.5	9	mΩ	
Forward Transconductance (Note3)	g _{fs}	$V_{DS} = 5V, I_{D} = 20A$		85		S	
Dynamic							
Input Capacitance	C _{iss}	$\mathcal{M} = \mathcal{O}\mathcal{M}$		2455		pF	
Output Capacitance	C _{oss}	$V_{GS} = 0V,$ $V_{DS} = 30V,$		240			
Reverse Transfer Capacitance	C _{rss}	f = 1.0MHz		34			
Total Gate Charge	Q _g			45		nC	
Gate-Source Charge	Q_{gs}	$V_{DD} = 30V, I_{D} = 20A, V_{GS} = 10V$		13.5			
Gate-Drain Charge	Q_{gd}	65 -		11.5			
Turn-on Delay Time	t _{d(on)}			8			
Turn-on Rise Time	t _r	V _{DD} = 30V, I _D = 20A,		3			
Turn-off Delay Time	t _{d(off)}	$R_{G} = 3\Omega$		25		ns ns	
Turn-off Fall Time	t _f			4			
Drain-Source Body Diode Characteris	stics		-				
Continuous Body Diode Current	I _S	T 0500			64	^	
Pulsed Diode Forward Current	I _{SM}	$T_{\rm C} = 25^{\circ}{\rm C}$			256	A	
Body Diode Voltage	V _{SD}	$T_J = 25^{o}C, I_{SD} = 1A, V_{GS} = 0V$		0.72	1	V	
Reverse Recovery Time	t _{rr}	I _F = 20A,		25		ns	
Reverse Recovery Charge	Q _{rr}	di _F /dt = 500A/µs		110		nC	


Notes

- 1. Repetitive Rating: Pulse Width limited by maximum junction temperature
- 2. I_{AS} = 36A, V_{DD} = 50V, R_{G} = 25 Ω , Starting T_{J} = 25 $^{\circ}C$
- 3. Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 1%


ASDM60N70Q

60V N-CHANNEL MOSFET

Typical Characteristics $T_J = 25^{\circ}C$, unless otherwise noted

Typical Characteristics $T_J = 25^{\circ}C$, unless otherwise noted

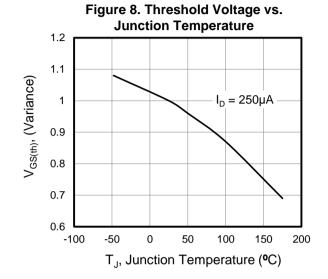
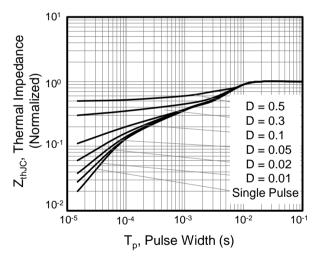



Figure 9. Transient Thermal Impedance

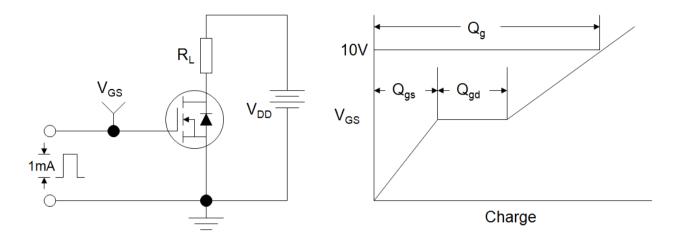


Figure B: Resistive Switching Test Circuit and Waveform

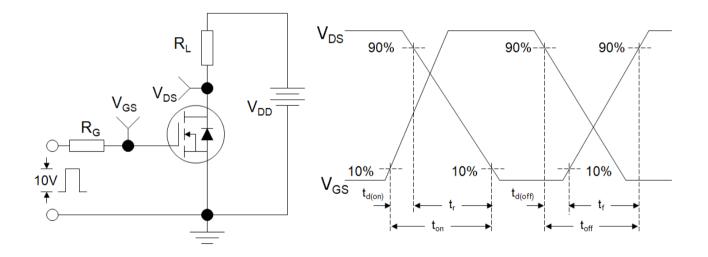
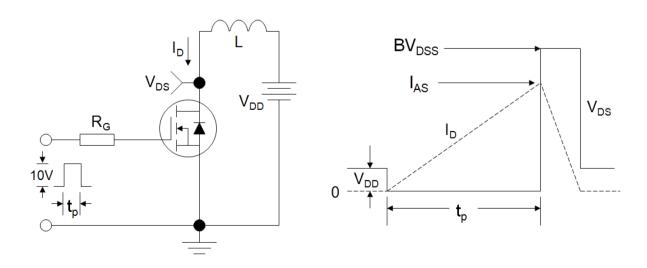
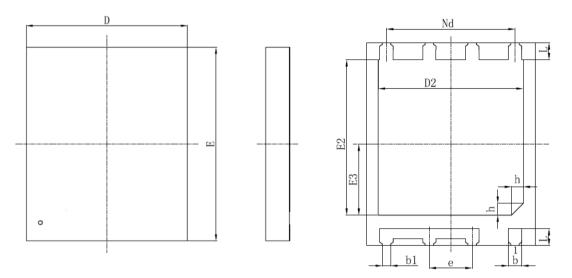
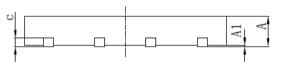



Figure C: Unclamped Inductive Switching Test Circuit and Waveform

Ordering and Marking Information


Ordering Device No.	Marking	Package	Packing	Quantity
ASDM60N70Q-R	60N70	DFN5*6-8	Tape&Reel	4000/Reel

PACKAGE	MARKING
DFN5*6-8	AS □□□ 60N70 □□□□ → Date Code



TOP VIEW

BOTTOM VIEW

TOP VIEW

SYMBOL	MILLIMETER			
SIMDOL	MIN	NOM	MAX	
А	0.70	0.75	0.80	
A1	0	0.02	0.05	
b	0.35	0.40	0.45	
b1	0.25REF			
с	0.18	0.203	0.25	
D	4.90	5.00	5.10	
D2	4.20	4.30	4.40	

SYMBOL	MILLIMETER			
SIMDUL	MIN NOM		MAX	
Nd	3.81BSC			
e	1.27BSC			
Е	5.90	6.00	6.10	
E2	4.50	4.60	4.70	
E3	2.00	2.10	2.20	
L	0.45	0.50	0.55	
h	0.30	0.35	0.40	

ASDM60N70Q

60V N-CHANNEL MOSFET

IMPORTANT NOTICE

Xi'an Ascend Semiconductor incorporated MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Xi'an Ascend Semiconductor Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Xi'an Ascend Semiconductor Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Xi'an Ascend Semiconductor Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume

all risks of such use and will agree to hold Ascendsemi Incorporated and all the companies whose products are represented on Xi'an Ascend Semiconductor Incorporated website, harmless against all damages.

Xi'an Ascend Semiconductor Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Xi'an Ascend Semiconductor Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Xi'an Ascend Semiconductor Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

www.ascendsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Ascend manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 IRFF430 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ AOD464 2SK2267(Q) 2SK2545(Q,T) 405094E 423220D MIC4420CM-TR VN1206L 614234A 715780A SSM6J414TU,LF(T 751625C BSC884N03MS G BSF024N03LT3 G PSMN4R2-30MLD TK31J60W5,S1VQ(O 2SK2614(TE16L1,Q) DMN1017UCP3-7 EFC2J004NUZTDG FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE2384 NTE2969 NTE6400A DMN2080UCB4-7 DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 SSM6P54TU,LF DMP22D4UFO-7B IPS60R3K4CEAKMA1 DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 STU5N65M6 C3M0021120D DMN13M9UCA6-7 BSS340NWH6327XTSA1 MCM3400A-TP DMTH10H4M6SPS-13 IRF40SC240ARMA1 IPS60R1K0PFD7SAKMA1