## 2-Phase Closed-Loop Stepper Motor Driver

## - Features

- Brake operation for safe control of vertical load at power OFF and alarm occur. (built-in brake type)
- Realized the closed loop with higher cost-efficiency compared to servo motor system
- Rapid response which is advantageous for the short distance continuous operation
- Able to implement Low frequency operation in low speed area and high torque in high speed area
- Easy to use as much as unskilled people can use with tuning unnecessary method (Gain setting with the switch)
- Applicable to the precision equipment such as optical inspection equipment with the features of maintaining torque in stop and having no micro vibration (hunting)
- Various resolutions
- Various alarms out
: overcurrent, over speed, motor connection error, encoder connection error, and etc., overall 12 types
- Frame size $20 \mathrm{~mm}, 28 \mathrm{~mm}, 35 \mathrm{~mm}, 42 \mathrm{~mm}, 56 \mathrm{~mm}, 60 \mathrm{~mm}$ motors supported
- Applied motor: Ai-M series, Ai-M-B series

\section*{| Please read "Safety Considerations" in operation |
| :--- |
| manual before using. |}

## Applications

- Filed requiring preciseness such as semiconductor equipment, 3D printer, Optical inspection equipment, chip mounter, cartesian robot, conveying equipment, and alignment stage.


## Ordering Information


※1: Built-in brake type is only for frame size $42,56,60 \mathrm{~mm}$ motors.
$※ 2$ : Encoder resolution for frame size 20 mm motors.
Microstep control for AiS driver, it controls up to $10,000 \mathrm{PPR}$.
※3: Encoder resolution for frame size $28,35 \mathrm{~mm}$ motors.
$※ 4$ : Encoder resolution for frame size 42, 56, 60 mm motors.

## 2-Phase Closed-Loop Stepper Motor Driver

## Specifications


※1: Based on the ambient temperature $25^{\circ} \mathrm{C}$, ambient humidity $55 \% \mathrm{RH}$, and STOP current $50 \%$.
※2: Max. power consumption during operation. When changing the load rapidly, instantaneous peak current may increase.
The capacity of power supply should be over 1.5 to 2 times of max. power consumption.
$※ 3$ : RUN current varies depending on the input RUN frequency and max. RUN current at the moment varies also.
$※ 4$ : Max. input pulse frequency is max. frequency to be input and is not the same as max. pull-out frequency or max. slewing frequency.
$※ 5$ : The weight includes packaging. The weight in parenthesis is for unit only.
※Environment resistance is rated at no freezing or condensation.

## AiS－D Series

－Configuration Diagram

$\square$ Dimensions


## Driver Status Indicators

| Status indicator | LED color | Function | Descriptions |
| :--- | :--- | :--- | :--- |
| PWR | Green | Power indicator | Turns ON when the unit operates normally after supplying power |
|  |  | Flashes when over load status is maintained |  |
| AL | Red | Alarm indicator | When alarm occurs，it flashes in various ways depending on the situation． <br> Refer to＇⿴囗⿱一一 Control Input／Output $\rightarrow$ O Output $\rightarrow$ 2．Alarm／Warning＇ |
|  | Yellow | In－Position indicator | Turns ON when motor is placed at command position after positioning input． |
| SERVO | Orange | Servo On／Off indicator | Turns ON when servo is operating，turns OFF when servo is not operating． |

## 2-Phase Closed-Loop Stepper Motor Driver

Driver Unit Descriptions
Speed filter/position control gain setting switch (SW1)


## Driver Setting

## © SW1: Speed filter setting switch or position control gain setting switch

-SW1 shifts its mode between the speed filter setting or the position control gain setting, depending on 4th pin in SW4 as follows.
-Modified setting values are not applied in the running status, and the values will be applied after motor stopped.

| 4th pin in SW4 | Setting |
| :--- | :--- |
| OFF | Speed filter |
| ON | Position control gain |

## - Speed filter setting

-Speed filter decides operation responsiveness of the motor to input pulse.
-Set the delay time between the position of input pulse and the position of
motor to prevent load changing or disturbance with soft operation function.
※If the setting value is too high, the synchronous response by command is decreased.

| Setting switch | Setting | Delay time | Setting | Delay time | Position |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | Disable | $8^{* 1}$ | 60ms |  |  |
|  | 1 | 2 ms | 9 | 80 ms |  |  |
|  | 2 | 4 ms | A | 100ms |  |  |
|  | 3 | 6 ms | B | 120 ms |  |  |
|  | 4 | 8ms | C | 140ms |  |  |
|  | 5 | 10 ms | D | 160ms |  |  |
| S.F./Gain | 6 | 20 ms | E | 180ms |  |  |
|  | 7 | 40 ms | F | 200ms |  |  |

## ※1: Factory default

## - Position control gain setting

-Position control gain decides responsiveness of the motor to position command.
-Gain setting in motor stationary state, depending on load of motor, realizes rapid positioning and stabilized performance.
-P_Gain: Adjust vibration in running drive.
-I_Gain: Adjust vibration in accelerating/decelerating drive.

| Setting switch | Setting | Gain |  | Setting | Gain |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | P | I |  | P | I |
|  | 0 | 1 | 1 | 8 (factory default) | 3 | 2 |
|  | 1 | 2 | 1 | 9 | 4 | 2 |
|  | 2 | 3 | 1 | A | 5 | 2 |
|  | 3 | 4 | 1 | B | 1 | 3 |
|  | 4 | 5 | 1 | C | 2 | 3 |
|  | 5 | 6 | 1 | D | 3 | 3 |
|  | 6 | 1 | 2 | E | 4 | 3 |
|  | 7 | 2 | 2 | F | 5 | 3 |

(0) SW2: Resolution setting switch
-Set the resolution of driver.
-Refer to the below table for the number of pulses per 1 rotation by resolution.
-Modified setting values are not applied in the running status, and the values will be applied after motor stopped.

| Setting switch | Setting | Frame size 20mm |  | Frame size 28/35mm |  | Frame size 42/56/60mm |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Pulse/Revolution | Resolution | Pulse/Revolution | Resolution | Pulse/Revolution | Resolution |
|  | 0 (factory default) | 500 | 2.5 | 500 | 2.5 | 500 | 2.5 |
|  | 1 | 1000 | 5 | 1000 | 5 | 1000 | 5 |
|  | 2 | 1600 | 8 | 1600 | 8 | 1600 | 8 |
|  | 3 | 2000 | 10 | 2000 | 10 | 2000 | 10 |
| (5) | 4 | 3600 | 18 | 3600 | 18 | 3200 | 16 |
|  | 5 | 4000 | 20 | 5000 | 25 | 3600 | 18 |
| $80$ | 6 | 5000 | 25 | 6400 | 32 | 5000 | 25 |
| RES. | 7 | 6400 | 32 | 7200 | 36 | 6400 | 32 |
|  | 8 | 7200 | 36 | 10000 | 50 | 7200 | 36 |
|  | 9 | 10000 | 50 | 16000 | 80 | 10000 | 50 |

## © SW3: In-Position setting swtich

-After position command pulse has finished, if the gap between target position and real position is under In-Position setting value, positioning completion pulse is output.
-Modified setting values are not applied in the running status, and the values will be applied after motor stopped.

© SW4: Function selection DIP switch
-Set rotation direction, pulse input method, STOP current, SW1 setting, and test mode.

| Setting switch | No. | Name | Function | Switch position |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | ON | OFF (factory default) |
|  | $1^{* 1}$ | DIR | Rotation direction | CCW | CW |
|  | $2^{* 1}$ | 1P/2P | Pulse input method | 1-pulse input method | 2-pulse input method |
| $\square \square \square \square \square$ | $3^{* 2}$ | C.D. | STOP current | 25\% of max. RUN current | 50\% of max. RUN current |
| 12345 | $4^{* 2}$ | SW1 Mode | SW1 setting | Position control gain | Speed filter |
|  | $5^{* 3}$ | Reserved | Test mode | Test mode | Normal mode |

$※ 1$ : When motor runs or stops, modified setting values will be applied immediately.
※2: Modified setting values are not applied in the running status, and the values will be applied after motor stopped.
$※ 3$ : Set to OFF when using the device. It is only for the operation test in manufacturing process.

- Pulse input method


## ※1-pulse input method

CW: rotation operation signal input
CCW: rotation direction signal input
([H]: forward rotation, [L]: reverse rotation)

※2-pulse input method
CW: forward rotation signal input
CCW: reverse rotation signal input

$※[\mathrm{H}]$ : photocoupler ON (voltage of both ends 4-8VDC)
[L]: photocoupler OFF (voltage of both ends 0-0.5VDC)

## - STOP current

-In order to decrease motor heat and current consumption at motor stopping moment (in case there is no input during the time of the double width of last input pulse), set the stop current supplied to the motor phase.

## 2-Phase Closed-Loop Stepper Motor Driver

## Control Input/Output

Inner signal of all input/output consists of photocoupler.
ON, [H]: photocoupler power ON / OFF, [L]: photocoupler power OFF.
※Brake operation is only for built-in brake type.

## © Input

1. Position command pulse

- Pulse input is selectable from 1-pulse input method and 2-pulse input method. (Refer to '©SW4: Function selection DIP switch'.)
- When using extending cable, it is recommended to connect Common mode choke coil $(2 \mathrm{mH})$ to the CW, CCW terminal in series connection.


## 2. Servo On/Off

-Servo On/Off signal maintains over 1 ms as [H]: Regarded as Servo Off signal and phase current is cut to release torque.
-Servo On/Off signal maintains over 1 ms as [L]: Regarded as Servo On signal and phase current is supplied to gain torque.
※Use this function after stopping the motor.
※Refer to example of input circuit connection.

## 3. Alarm Reset

-This signal is for clearing the alarm.
-Alarm reset signal maintains over 20 ms as [H]: Alarm is cleared, the alarm indicator and alarm output turns OFF,
and the driver returns to normal status. Brake is released.
※If the causes of the alarm are not removed, driver may not be returned to the normal status even with alarm reset.
※Refer to example of input circuit connection.

## 4. Example of input circuit connection

## - Input pulse (CW, CCW)

-It is recommended to use 5VDC at $V_{C C}$ and short the $R_{L}$.
-In case $V_{C C}$ is over 5VDC, calculate $R_{L}$ value using following formula and use $V_{C C}$ below 30VDC. $※ R_{L}=\frac{V_{C C}-2.17 \mathrm{~V}}{0.011 \mathrm{~A}}-220 \Omega$

- In case $V_{C C}$ is $12,24 \mathrm{VDC}$, refer to table on the right for $R_{L}$.

| $\mathrm{V}_{\mathrm{CC}}$ | $\mathrm{R}_{\mathrm{L}}$ |
| :--- | :--- |
| 12VDC | $680 \Omega(\min .0 .25 \mathrm{~W})$ |
| 24 VDC | $1.8 \mathrm{k} \Omega(\min .0 .5 \mathrm{~W})$ |

A. Pull-Up

C. Circuit with NPN (not-reversed)

B. Pull-Down

D. Circuit with PNP (reversed)


## - External input (Servo On/Off, Alarm Reset)


C. Circuit with NPN (not-reversed)


The Servo ON indicator, the In-Position output and indicator turns OFF. Brake operates. The Servo ON indicator, the In-Position output and indicator turns ON. Brake is released.
D. Circuit with PNP (reversed)


## © Output

## 1. In-Position

-In-Position output is output condition of positioning completion signal.
-If the gap between target position and real position is under In-Position setting value after position command pulse has finished, In-Position output turns to $[\mathrm{H}]$ and the In -Position indicator turns ON.
-In reverse, when the gap is over In-Position setting value, In-Position output turns to [L] and In-Position indicator turns OFF.
-For accurate drive, check the In-Position output again and execute the next drive.
※Refer to example of output circuit connection.

## 2. Alram/Warning

- Alarm
-This function stops motor to protect driver, depending on the error status such as over current or over speed.
-In case of normal status, output is [H], and in case of alarming status, output is [L].
-When supplying alarm reset, driver returns to the normal status.
※Refer to example of output circuit connection.
- Warning
- This function notices dangers with the alarm indicator prior to over load alarm.
- When turning out from the alarming condition, driver returns to the normal status automatically.

| Alarm indicator | No. of flashing | Alarm type |  | Descriptions | Motor stop | Maintain torque |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{AL} \\ & \text { (red) } \end{aligned}$ | 1 | Over current error |  | When over current flows at motor RUN element | 0 | - |
|  | 2 | Over speed error |  | When motor speed is over 4,000rpm |  |  |
|  | 3 | Position tracking error |  | When the gap between position command value and current position value is over $90^{\circ}$ |  |  |
|  | 4 | Over load error |  | When applying load over the rated load for over 1 sec |  |  |
|  | 5 | Over heat error |  | When driver inner temperature is over $80^{\circ} \mathrm{C}$ |  |  |
|  | 6 | Motor connection error |  | When motor cable connection error occurs at driver |  |  |
|  | 7 | Encoder connection error |  | When encoder cable connection error occurs at driver |  |  |
|  | 8 | Regenerative voltage error |  | When regenerative voltage is over 78 V |  |  |
|  | 9 | Motor misalignment |  | When motor is in misalignment |  |  |
|  | 10 | Command pulse error |  | When Input pulse is over 3,500rpm |  |  |
|  | 11 | Input voltage error | $\begin{array}{\|l} \hline \text { Frame size } \\ 20,28,35 \mathrm{~mm} \\ \hline \end{array}$ | When Input voltage is out of 21-27VDC $\pm 5 \%$ |  |  |
|  |  |  | $\begin{array}{\|l\|} \hline \text { Frame size } \\ 42,56,60 \mathrm{~mm} \\ \hline \end{array}$ | When Input voltage is out of $24 \mathrm{VDC} \pm 10 \%$ |  |  |
|  | 12 | In-Position error |  | When position error (over 1) is kept over 3 sec , after motor stopped. |  |  |
| Warning indicator | No. of flashing | Warning type |  | Descriptions | Motor stop | Maintain torque |
| PWR (green) | 4 | Over load warning |  | When maximum load is kept connected over 10 sec . (motor or driver can be overheated) | $\times$ | O |

※Even though warning occurs, it drives as normal status and it may cause damage by fire.
It is recommend not to use the unit during warning status.
※Depending on the alarm/warning type, it flashes for 0.4 sec interval and it turns OFF for 0.8 sec repeatedly.


## 3. Example of output circuit connection

-It is recommend to use below 50 VDC at $\mathrm{V}_{\mathrm{cc}}$.
Use the $R_{L}$ for $I_{C}$ (collector current of secondary detector) of photocoupler inside the driver to be within 25 mA following the below formula.
※: $R_{L}=\frac{V_{C C}-0.3 V-V_{F}}{0.025 A}-10 \Omega$
$※ B, C: R_{L}=\frac{V_{C c}-0.3 V}{0.025 A}-10 \Omega$
( $\mathrm{V}_{\mathrm{F}}$ is LED forward voltage of primary photocoupler.)

## A. Circuit with photocoupler


B. Circuit with pull up (reversed)

C. Circuit with pull down (not-reversed)


## 2-Phase Closed-Loop Stepper Motor Driver

## 4. Encoder output waveforms


(O) Frame size 42, 56, 60mm

※It is recommended to use Line driver output (corresponding to 26C32) at RECEIVER end of encoder output and terminating resisters (100-150 ) in parallel at both ends of each phase (A, $\bar{A}, B, \bar{B}, Z, \bar{Z}$, corresponding to 26C31).

## 5. Brake output

-In order to reduce heat in the brake, connected to the motor, the driver outputs DC power to turn off the brake.

(A)

Photoelectric
Sensors
(B)
Fiber

Optic
Sensors
(C)
Door/Area Door/Area
Sensors
(D) Proximity Sensors
(E)
Pres Pressure
Sensors Sensors
(F)
Rotary

Encoders
(G) Connector Cables/ Sensor Distribution Boxes/Sockets
(H)

Temperature
Controllers
Controllers
(I)
SSR / Power
Controllers

Controllers
(J)
Counters
$\underset{\text { Time }}{(\mathbf{K})}$
Timers
(L)

Panel
Meters
(M)

Tacho /
Speed / Pulse Meters
(N)
Display

Display
Units
(O)
Sensor

Sensor
Controllers
(P)
Swit

Switching
Mode Power
Supplies
Supplies
(Q) Stepper Motors \& Drivers
\& Controllers
(R)
Graphic/

Logic
Panels
(S)
Field

Field
Network
Network
Devices
(T)
Software

| Pin arrangement | Pin no. | Function | Pin no. | Function |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 | GND | 8 | +5VDC |
| 1413 ........ 98 | 2 | Encoder A | 9 | Encoder $\overline{\mathrm{A}}$ |
| $\square$ $\square$ $\square$ $\square$ $\square$ $\square$ $\square$ <br> 1       | 3 | Encoder B | 10 | Encoder $\overline{\text { B }}$ |
|  | 4 | Encoder Z | 11 | Encoder $\overline{\mathrm{Z}}$ |
| $\square$ $\square$ $\square$ $\square$ $\square$ $\square$ $\square$ | 5 | F.G. | 12 | N.C |
| $766 \ldots \ldots .21$ | 6 | Motor A | 13 | Motor B |
|  | 7 | Motor $\overline{\mathrm{A}}$ | 14 | Motor $\overline{\mathrm{B}}$ |

## Connection Connectors of Driver

- CN3: I/O connector



## © Connector specifications

| Type |  |  | Specifications |  |  | Manufacture |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Connector | Connector terminal | Housing |  |
| CN1 | Driver |  | 0039301020 | - | - | Molex |
|  | Power |  | CHD1140-02 | CTD1140 | - | HANLIM |
| CN2 | Driver |  | 35318-1420 | - | - | Molex |
|  | Motor+ <br> Encoder | Frame size 20, 28, 35 mm | 5557-14R | 5556 T2 |  | Molex |
|  |  | Frame size 42, 56, 60 mm |  | 5556T |  |  |
| CN3 | Driver |  | 10220-52A2 PL | - | - | 3M |
|  | I/O connector |  | 10120-3000PE | - | 10320-52F0-008 | 3M |
|  |  |  | CJ-MP20-HP (sold separately) | - | - | Autonics |

※Above connectors are suitable for AiS-D Series. You can use equivalent or substitute connectors.

## $\square$ Sold Separately

## © Power cable

## -CJ-PW-


※ $\square$ of model name indicates cable length $(010,020)$
E.g.) CJ-PW-010: 1 m power cable.
© I/O cable

- CJ-MP20-HP $\square$
(standard: AiS TAG)


| Pin no. | Function (name tag) | Cable color | Dot line colornumbers | Pin no. | Function (name tag) | Cable color | Dot line colornumbers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | CW+ | Yellow | Black-1 | 11 | IN POSITION+ | White | Black-1 |
| 2 | CW- |  | Red-1 | 12 | IN POSITION- |  | Red-1 |
| 3 | CCW+ |  | Black-2 | 13 | BRAKE+ |  | Black-2 |
| 4 | CCW- |  | Red-2 | 14 | BRAKE- |  | Red-2 |
| 5 | SERVO ON/OFF+ |  | Black-3 | 15 | ENCODER A+ |  | Black-3 |
| 6 | SERVO ON/OFF- |  | Red-3 | 16 | ENCODER A- |  | Red-3 |
| 7 | ALARM OUT+ |  | Black-4 | 17 | ENCODER B+ |  | Black-4 |
| 8 | ALARM OUT- |  | Red-4 | 18 | ENCODER B- |  | Red-4 |
| 9 | ALARM RESET+ |  | Black-5 | 19 | ENCODER Z+ |  | Black-5 |
| 10 | ALARM RESET- |  | Red-5 | 20 | ENCODER Z- |  | Red-5 |

$※ \square$ of model name indicates cable length (010, 020, 030, 050, 070, 100, 150, 200) E.g.) CJ-MP20-HP070: $7 \mathrm{~m} \mathrm{I/O}$ cable.

## Motor+Encoder cable

 - Normal: CID14M- $\square$, Moving: CIDF14M- $\square$

## 2-Phase Closed-Loop Stepper Motor Driver

## Connection for Motor and Driver

## © Frame size 20, 28, 35mm



Speed/
Meters

## AiS-D Series

## $\square$ Connection for Motor and Driver

## © Frame size 42, 56, 60mm



## 2-Phase Closed-Loop Stepper Motor Driver

## Troubleshooting

1. When motor does not rotate
(1) Check the connection status between controller and driver, and pulse input specifications (voltage, width).
(2)Check the pulse and direction signal are connected correctly.
2. When motor rotates to the opposite direction of the designated direction
(1) When RUN mode is 1-pulse input method, CCW input $[H]$ is for forward, $[L]$ is for backward.
(2)When RUN mode is 2-pulse input method, check CW and CCW pulse input are changed or not.

## 3. When motor drive is unstable

(1)Check that driver and motor are connected correctly.
(2) Check the driver pulse input specifications (voltage, width).

## Proper Usage

- Follow instructions in 'Proper Usage'. Otherwise, it may cause unexpected accidents.
- 24 VDC power supply should be insulated and limited voltage/current or Class 2, SELV power supply device.
- Re-supply power after min. 1 sec from disconnected power.
- Do not input CW, CCW signal at the same time in 2-pulse input method.
- When the signal input voltage is exceeded the rated voltage, connect additional resistance at the outside.
- Use twisted pair (over $0.2 \mathrm{~mm}^{2}$ ) for the signal cable which should be shorter than 2 m .
- The thickness of cable should be same or thicker than the motor cable's when extending the motor cable.
- Keep the distance between power cable and signal cable more than 10 cm .
- Motor vibration and noise can occur in specific frequency period.
(1)Change motor installation method or attach the damper.
(2)Use the unit out of the dedicated frequency range when vibration and noise occurs due to changing motor RUN speed.
- For using motor, it is recommended to maintenance and inspection regularly.
(1)Unwinding bolts and connection parts for the unit installation and load connection
(2)Strange sound from ball bearing of the unit
(3)Damage and stress of lead cable of the unit
(4)Connection error with motor
(5) Inconsistency between the axis of motor output and the center, concentric (eccentric, declination) of the load, etc.
- This product does not prepare protection function for a motor.
- This unit may be used in the following environments.
(1)Indoors (in the environment condition rated in 'Specifications')
(2)Altitude max. $2,000 \mathrm{~m}$
(3)Pollution degree 2
(4) Installation category II


## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Motor/Motion/Ignition Controllers \& Drivers category:
Click to view products by Autonics manufacturer:
Other Similar products are found below :
LV8133JA-ZH LV8169MUTBG LV8774Q-AH LV8860PV-TLM-H MC33931EKR2 MC34GD3000EP FSB50250UTD FSB50550TB2 FSBF15CH60BTH MP6507GR-P MP6508GF MSVCPM2-63-12 MSVGW45-14-2 MSVGW54-14-5 NTE7043 CAT3211MUTAG LA6245P-CL-TLM-E LA6245P-TLM-E LA6565VR-TLM-E LB11650-E LB1694N-E LB1837M-TLM-E LB1845DAZ-XE LC898111AXBMH LC898300XA-MH SS30-TE-L-E STK531-345A-E STK581U3A0D-E STK58AUNP0D-E STK621-068C-E STK621-140C STK621-728S-E STK625-728-E STK672-400B-E STK672-432AN-E STK672-432BN-E STK672-440AN-E STK672-442AN-E AMIS30621AUA FSB50550ASE 26700 LV8161MUTAG LV8281VR-TLM-H LV8702V-TLM-H LV8734VZ-TLM-H LV8773Z-E LV8807QA-MH MC33932EK MCP8024T-H/MP TND027MP-AZ

