CX Series

DIN W48×H48mm, W72×H72mm LCD Display Counter/Timer

- Features

- Improved visibility with LCD display
- Input method: voltage input (PNP)/no-voltage input (NPN) selectable model (by parameter setting), Free voltage input model
- Setting range of one-shot output time: 0.01 sec to 99.99 sec by 0.01 sec unit
- Mounting space saving with compact design (back length: 64.5 mm)

[Counter]

- Setting range of prescale value: 0.00001 to 99999.9
- Various input/output mode (input: 11 types, output: 11 types)
- Start point (counting value reset) setting
- TOTAL counter display mode
: Displays the present value and the integrated value simultaneously.
[Timer]

- Various output mode (15 types)
- Wide time setting range: 0.001 sec to 99999.9 hour
- '0' time setting function

Please read "Safety Considerations" in operation manual before using.

Manual

For the detail information, please refer to user manual, and be sure to follow cautions written in the technical descriptions (catalog, homepage).
Visit our homepage (www.autonics.com) to download manuals.

Ordering Information

Specifications

CX Series

\square Connections

© CX6S Series

1. Voltage input (PNP), no-voltage input (NPN) selectable model

CONTACT OUT1/OUT2:
250VAC 3A, 30VDC 3A
RESISTIVE LOAD

SOURCE:
24VAC 50/60Hz 5.6VA 24-48VDC 3.6W

2. Free voltage input model

- CX6S-1P $\square F$

CONTACT OUT
: 250VAC 3A, 30VDC 3A
RESISTIVE LOAD
SIGNAL INPUT
: 24-240VAC 50/60Hz, 24-240VDC

SOURCE: 100-240VAC $50 / 60 \mathrm{~Hz} 4.2 \mathrm{VA}$ 24VAC 50/60Hz 3.6VA 24-48VDC 2.5 W

- CX6S-2P2F

CONTACT OUT1/OUT2
250VAC 3A, 30VDC 3A
RESISTIVE LOAD
SIGNAL INPUT
: 24-240VAC 50/60Hz, 24-240VDC

SOURCE: 24VAC 50/60Hz 4.0VA 24-48VDC 2.8 W

CX6S-2P4

CONTACT OUT1/OUT2:
250VAC 3A, 30VDC 3A
RESISTIVE LOAD

SOURCE:
100-240VAC $50 / 60 \mathrm{~Hz}$ 6.7VA

CX6S-2P4F

CONTACT OUT1/OUT2
: 250VAC 3A, 30VDC 3A
RESISTIVE LOAD
SIGNAL INPUT
: 24-240VAC $50 / 60 \mathrm{~Hz}, 24-240 \mathrm{VDC}$

SOURCE: $100-240$ VAC $50 / 60 \mathrm{~Hz} 4.9 \mathrm{VA}$

LCD Display Counter/Timer

\square Connections

© CX6M Series

1. Voltage input (PNP), no-voltage input (NPN) selectable model

- CX6M-1P \square

2. Free voltage input model

- CX6M-1P $\square F$

CONTACT OUT: 250VAC 3A, 30VDC 3A
RESISTIVE LOAD
SIGNAL INPUT: 24-240VAC 50/60Hz, 24-240VDC

※1: AC voltage type: $100-240$ VAC $50 / 60 \mathrm{~Hz}$
AC/DC voltage type: $24 \mathrm{VAC} 50 / 60 \mathrm{~Hz}, 24-48 \mathrm{VDC}$

- CX6M-2P \square

CONTACT OUT1/OUT2: 250VAC 3A, 30VDC 3A

SOURCE: 100-240VAC $50 / 60 \mathrm{~Hz} 7.5 \mathrm{VA}$
$24 \mathrm{VAC} 50 / 60 \mathrm{~Hz} 6.3 \mathrm{VA}$
24-48VDC 4.1 W

- CX6M-2P $\square F$

CONTACT OUT1/OUT2: 250VAC 3A, 30VDC 3A
RESISTIVE LOAD
SIGNAL INPUT: 24-240VAC $50 / 60 \mathrm{~Hz}, 24-240 V D C$

CX Series

\square Dimensions

© CX6S Series

© Panel cut-out

- CX6S Series

© CX6M Series

- CX6M Series

() Bracket
- CX6S Series

- CX6M Series

O) Terminal cover (sold separately)
- CX6S Series
(RSA-COVER, $48 \times 48 \mathrm{~mm}$)

- CX6M Series
(RMA-COVER, $72 \times 72 \mathrm{~mm}$)

忛 \rightarrow 所

LCD Display Counter／Timer

Unit Description

© CX6S Series

© CX6M Series

1．Counting value display component（white）

RUN mode：Displays counting value for counter operation or time progress value for timer operation．
Function setting mode：Displays parameter．
2．Setting value display component（green）
RUN mode：Displays setting value．
Function setting mode：Displays parameter setting value．
3．Time unit indicator（ $\mathbf{h}: \mathrm{m}: \mathbf{s}$ ）：Turns ON for time unit for timer．
4．Key lock indicator（®）：Turns ON for key lock setting．
5．Reset input indicator（RST）：Turns ON for reset key input or reset signal input．
6．INH indicator（INH）
For the voltage input（PNP）／no－voltage input（NPN）selectable model（CX6 $\square-\square \square$ ），it turns ON for INHIBIT signal input．
（In case of CX6S Series and timer mode，it turns ON for INB／INH signal input．）
For free voltage input model（CX6 $\square \square \square \mathrm{F})$ ，it turns ON for INB／INH signal input for timer．
7．Output indicator（OUT1，OUT2）：Turns ON for the dedicated control output ON．
8．SV checking and changing indicator（SET，SET1，SET2）（green）：Turns ON when checking and changing SV．
9．COUNTER indicator（COUNTER）：Turns ON for counter operation．
10．TOTAL indicator＊${ }^{* 1}$（TOTAL）：In case of TOTAL counter display mode，it turns ON with the COUNTER indicator．
11．TIMER indicator（TIMER）：Flashes（progressing time）or Turns ON（stopping time）for timer operation．
12．RESET key
RUN mode，Function setting mode：Press the RESET key to reset the counting value and turn OFF the output．
TOTAL counter display mode ${ }^{* 1}$ ：Press the RESET key to reset the counting value of TOTAL counter．
13．MODE key
RUN mode：Hold the MODE key over 3 sec to enter function setting mode．
Press the MODE key to select SV2（SET2）／SV1（SET1）／TOTAL counter＊1 display for counter operation．
Function setting mode：Hold the mode key over 3 sec to return RUN mode．
Press the MODE key to save the SV and enter the next setting．
Function setting check mode：Hold the MODE key over 1 sec to return RUN mode．
Changing SV mode：Press the MODE key to save SV and return RUN mode．
14．《，图 key
1） \mathbb{K} key
RUN mode：Press the 《 key to change SV and move SV（SET，SET1，SET2）digits．
Changing SV mode：Press the $\mathbb{<}$ key to change digits．
2）图 key
Changing SV mode：Increases SV．
Function setting mode：Changes the settings．
※1：This is for the voltage input（PNP）／no－voltage input（NPN）selectable model（CX6 $\square-\square \square)$ ．

CX Series

\square Input Connections

© No-voltage input (NPN)

- Solid-state input (standard sensor: NPN output type sensor)

※1: CP1, CP2 (INHIBIT), SET input part
※2: Set counting speed as 1 or 30cps.

- Contact input

© Voltage input (PNP)

- Solid-state input (standard sensor: PNP output type sensor)

- Contact input

※1: CP1, CP2 (INHIBIT), SET input part
$※ 2$: Set counting speed as 1 or 30 cps .

Output Connections

© Contact output

※Select the load which capacity is not over contact capacity.

Solid-state output

※For solid state output, select load power and load not to be over (max. 30VDC, 100 mA), swithching capacity.
※Do not supply reverse polarity voltage.
※1: For using inductive load (relay, etc.), connect surge absorber (diode, varistor etc.) at the both ends of load.

LCD Display Counter/Timer

Operations and Functions (counter/timer)

Counter mode

- Changing SV mode

When input signal is ON during changing SV, it operates counting and output control.
It is available to set SV as '0' and the dedicated output for SV '0' occurs.
There are output mode which cannot set SV as ' 0 '. (the setting value display component flashes three times when SV is set as ' 0 ')

CX Series

- Function setting mode

$※ 1$: In case of free voltage input model (CX6 $\square-\square \square F)$, these parameters do not appear due to fixed setting.
$※ 2$: This parameter is for the voltage input(PNP)/no-voltage input(NPN) selectable model (CX6 $\square-\square \square$).
※: When changing the setting of shaded parameters, all output turn OFF.

-Hold the MODE key over 3 sec in RUN mode and it enters function setting mode.
-Hold the MODE key over 3 sec in function setting mode and it returns to RUN mode.

- Function setting check mode (only for free voltage input model (CX6 $\square-\square \square$ F))
-When checking the saved parameters, press the MODE, ब key to check next item.
-At function setting check mode, the counting value display component displays the parameters and the setting value display component displays the SV of the parameters.
- Checking SV of TOTAL counter
-At TOTAL counter operation, the counting value display component displays the current value and the setting value display component displays TOTAL counter counting value.
※When TOTAL counter counting value is over 999999, it counts from 0 again.
- Switching display of the setting value display component
(only for voltage input (PNP)/no-voltage input (NPN) selectable model (CX6 $\square \square \square$)
-In case of 2-stage setting model(CX6 $\square-2 \mathrm{P} \square \square$), whenever pressing the MODE key, each SET2, SET1, TOTAL COUNTER value displays consecutively.
- Display HOLD output mode for counter
-It displays the over value of prescale value.
-When SV is n multiplied by prescale value and the display value after HOLD output mode and SV are different, the prescale value is not the $1 / n$ time of SV.
- RESET
-In RUN mode, function setting mode, press the RESET key to reset the current value and the output turns OFF. -At TOTAL counter display mode, press the RESET key to reset TOTAL counter counting value and the current counting value.

Parameter Setting (Counter)
(MODE key: moves parameters, 园 key: changes parameter setting value)

Parameter	Parameter setting value
Counter/Timer [$[-t$]	
Input mode [${ }^{1}$ N.M.M]	$\begin{aligned} & U P \rightarrow U P-I \rightarrow U P-Z \rightarrow U P-\exists \rightarrow d n \rightarrow d n-1 \neg \\ & 4 U d-\left[*_{1} \leftarrow U d-W^{* 1} \leftarrow U d-R \leftarrow d n-\exists \leftarrow d n-己\right. \end{aligned}$
Output mode [oU'L.M']	- Input mode is UP, UP- $1, U P-2, U P-\exists$ or $d n, d n-1, d n-2, d n-\exists$, ※If max. counting speed is 5 kcps , and output mode is d, max. counting speed is automatically changed as 30 cps , factory default.
Max. counting speed ${ }^{* 2}$ [:P5]	※Max. counting speed is when duty ratio of INA or INB input signal is 1:1. It is applied for INA, or INB input as same. ※When output mode is d, set max. counting speed one among $1 \mathrm{cps}, 30 \mathrm{cps}, 300 \mathrm{cps}$, or 1 kcps .
OUT 2 output time ${ }^{* 3}$ [out2]	※Set one-shot output time of OUT 2. ※Setting range: 00.01 to 99.99 sec ※When output mode is $F, n, 5, t, d$, this parameter does not appear. (fixed as HOLD)
OUT 1 output time ${ }^{* 3}$ [oUt i]	※Set one-shot output time of OUT 1. ※Setting range: 00.01 to 99.99 sec , Hold ※When number of tens digit is flashing, press the $\mathbb{<}$ key once and $H_{0} \mathrm{~L} d$ appears. ※When output mode is $5, t, d$, this parameter does not appear. (fixed as HOLD)
OUT output time ${ }^{* 3}$ [oUL.E]	※Setting range: 00.01 to 99.99 sec ※When output mode is $F, n, 5, t, d$, this parameter does not appear. (fixed as HOLD)
Decimal point ${ }^{* 4}$ [DP]	※Decimal point is applied to PV and SV.
Min. reset time ${ }^{* 2}$ [r E SEt]	$\begin{array}{\|l} \mathrm{I} \longleftrightarrow 20, \text { unit: ms } \\ \text { ※Set min. width of external reset signal input. } \end{array}$
$\begin{aligned} & \text { Input logic }{ }^{* 2} \\ & {[5: 5]} \\ & \hline \end{aligned}$	$\cap P_{\cap}$: No-voltage input, $P_{\cap} P$: Voltage input
Prescale decimal point ${ }^{* 4}$ [5[L.dP]	※Decimal point of prescale should not set smaller than decimal point [$\quad \mathrm{P} P$].
Prescale value [5[L]	※Setting range: 0.00001 to 99999.9 ※Setting range of prescale is linked with prescale decimal point [5[L.dP] setting.
TOTAL counter*1 [tothl]	$\bigcirc \cap \longleftrightarrow$ OFF
Start point value [5tRRt]	※Setting range of start point value is linked with decimal point [dP] setting. (0.00000 to 999999) ※When input mode is $d n$, $d n-1$, $d n-2$, this parameter does not appear. ※When total count function is ON, this parameter does not appear. ${ }^{*}$
Memory protection [dRLR]	$\operatorname{LLr} \longleftrightarrow r E\left[\begin{array}{l}\text { ELLr: Resets the counting value when power OFF. } \\ \text { rEL: Maintains the counting value when power OFF. (memory protection) }\end{array}\right.$
Key lock [Lo[i!]	

※1: For voltage input (PNP), no-voltage input (NPN) model (CX6■-■■).
$※ 2$: For free voltage input model(CX6 $\square \square \square$ F), these parameters do not appear due to fixed setting.
※3: For 1-stage setting model (CX6 $\square-1 \mathrm{P} \square \square$), , U I I does not appear.
The out? output time is displayed as out.t .
(A)

Photoelectric
Sensors
(B)
Fiber

Fiber
Optic
Optic
Sensors
(C)

Door/Area
Sensors
(D)

Proximity
Sensors
(E)

Pressure
Sensors
(F)
Rotar

Encoders

Conn
Connector Cables/
Sensor Distribution Boxes/Sockets
(H)

Temperature
Controllers
(I)

Controllers
(J)

Counters
$\xrightarrow{(K)}$
Timers
(L)

Panel
Meters
(M)
Tacho

Tacho /
Speed / Pulse Speed/Pul
Meters
(N)

Display
Units
(O)
Sens

Sensor
Controllers
(P)
Switching
Mode

Mode Power
Supplies
Supplie
※4: Decimal point and prescale decimal point
-Decimal point: Set the decimal point for display value regardless of prescale value.
-Prescale decimal point: Set the decimal point for prescale value of counting value regardless of display value.

CX Series

\square Input Operation Mode (Counter)

Input mode	Counting chart	Operation
$\left\lvert\, \begin{array}{\|l\|} \mathrm{UP} \\ {[U P]} \end{array}\right.$		※When INA is counting input, INB is no counting input. When INB is counting input, INA is no counting input.
$\left\lvert\, \begin{aligned} & \mathrm{UP}-1 \\ & {[U P-1]} \end{aligned}\right.$		※When INA input signal is rising ($\boldsymbol{\sim}$), it counts. ※INA: Counting input ※INB: No counting input
$\left\lvert\, \begin{aligned} & \mathrm{UP}-2 \\ & {[U P-z]} \end{aligned}\right.$		※When INA input signal is falling (\downarrow), it counts. ※INA: Counting input ※INB: No counting input
$\begin{aligned} & \mathrm{UP}-3 \\ & {[U P-3]} \end{aligned}$		※When INA or INB input signal is rising ($\boldsymbol{F}^{\text {(}}$), it counts. ※INA: Counting input ※INB: Counting input
Down [dn]		※When INA is counting input, INB is no counting input. When INB is counting input, INA is no counting input.
$\left[\begin{array}{l} \text { Down-1 } \\ {\left[\begin{array}{ll} \text { D } & \text { 1] } \end{array}\right.} \end{array}\right.$		※When INA input signal is rising ($\boldsymbol{\sim}$) , it counts. ※INA: Counting input ※INB: No counting input
Down-2		※When INA input signal is falling (\downarrow) , it counts. ※INA: Counting input ※INB: No counting input

LCD Display Counter/Timer

Input Operation Mode (Counter)

Input mode	Counting chart	Operation
$\begin{aligned} & \text { Down-3 } \\ & {[d n-3]} \end{aligned}$		※When INA or INB input signal is rising ($\boldsymbol{\Omega}$), it counts. ※INA: Counting input ※INB: Counting input
		※INA: Counting input INB: Counting command input ※When INB is "L", counting command is up. When INB is " H ", counting command is down.
		※INA: Up counting input INB: Down counting input ※When INA and INB input signals are rising ($\boldsymbol{\sim}$) at the same time, it maintains previous value.
Up/ Down-C [$\mathrm{Ud}-\mathrm{C}$]		※When connecting encoder output A, B phase with counter input, INA, INB, set input mode $[\mathrm{I} . \overline{\mathrm{n}}]$ as phase different input [$\mathrm{Ud}-〔$] for counter operation.

$※ A$: over min. signal width, B : over than $1 / 2$ of min. signal width. If the signal is smaller than these width, it may cause counting error (± 1).

※The meaning of "H", "L"

$\left.$| Character | Input method | Voltage input
 (PNP) |
| :--- | :--- | :--- | | No-voltage input |
| :--- |
| (NPN) | \right\rvert\, | H | $5-30 \mathrm{VDC}$ | Short |
| :--- | :--- | :--- |
| L | $0-2 \mathrm{VDC}$ | Open |

※Min. signal width by counting speed

[CX6■-■ \square]		[CX6 $\square \square \square \mathrm{F}$]	
Counting speed	Min. signal width	Counting speed	Min. signal width
1cps	500 ms	20cps	25 ms
30cps	16.7 ms		
300cps	1.67 ms		
1kcps	0.5 ms		
5 kcps	0.1 ms		

Output Operation Mode (Counter)

Output mode	Input mode			Operation
	Up, Up-1, 2, 3	Down, Down-1, 2, 3	Up/Down A, B, C	
$\left[\begin{array}{l} F \\ {[F]} \end{array}\right.$				※After count-up, counting display value increases or decrease until reset signal is applied and retained output is maintained.
$\left\lvert\, \begin{aligned} & \mathrm{N} \\ & {[\mathrm{n}]} \end{aligned}\right.$				※After count- up, counting display value and retained output are maintained until reset signal is applied.
$\left[\begin{array}{l} \mathrm{C} \\ {[\underline{-}]} \end{array}\right.$				※When count-up, counting display value will be reset and count simultaneously. ※OUT1 retained output will be off after OUT2 one- shot time. ※The one-shot output time of OUT1 one-shot output time is operated regardless of OUT2 output.
$\left[\begin{array}{l} \mathrm{R} \\ {[r} \end{array}\right.$				※After count-up, counting value display is reset after one-shot output time of OUT2 and it counts simultaneously. ※OUT1 retained output will be off after OUT2 one-shot time. ※OUT1 one-shot output time is operated regardless of OUT2 output.
$\left[\begin{array}{l} \mathrm{K} \\ {\left[L^{\prime}\right]} \end{array}\right.$				※After count-up, counting display value increases or decreases until RESET input is applied. ※OUT1 retained output is off after OUT2 one-shot time. ※OUT1 one-shot output time is operated regardless of OUT2 output.
$\left[\begin{array}{l} \mathrm{P} \\ {[P]} \end{array}\right.$				※After count-up, counting display value is maintained while OUT2 output is on. Counting value is internally reset and counts simultaneously. ※When OUT2 output is off, displays counting value while OUT2 is ON, and it increases or decreases. ※OUT1 retained output is off after OUT2 one-shot time. ※OUT1 one-shot output time is operated regardless of OUT2 output.
$\begin{aligned} & \mathrm{Q} \\ & {[9]} \end{aligned}$				※After count-up, counting display value increases or decreases during OUT2 one-shot time. ※OUT1 retained output is off after OUT2 one-shot time. ※OUT1 one-shot output time is operated regardless of OUT2 output.
$\left[\begin{array}{l} \mathrm{A} \\ {[R]} \end{array}\right.$				※After count-up, counting display value and OUT1 retained output are maintained until RESET input is applied. ※OUT1 one-shot output time is operated regardless of OUT2 output.

※alt \mid is available to set as ' 0 ' regardless of output mode. The output for ' 0 ' setting executes.

LCD Display Counter/Timer

Output Operation Mode (Counter)
Retained output

Output mode	Input mode	Operation
	Up/Down A, B, C	
$\begin{aligned} & \mathrm{S} \\ & {[5]} \end{aligned}$		※OUT1 keeps ON status in following condition : Counting display value \geq SET1 ※OUT2 keeps ON status in following condition : Counting display value \geq SET2
$\begin{aligned} & \mathrm{T} \\ & {[\mathrm{~L}, ~]} \end{aligned}$		※OUT1 output is off : Counting display value \geq SET1 (when SET1 is 0, OUT1 output maintains ON state.) ※OUT2 keeps ON status in following condition : Counting display value \geq SET2
$\left\lvert\, \begin{aligned} & \mathrm{D} \\ & {[\mathrm{~d}]} \end{aligned}\right.$		※When counting display value is equal to setting value (SET1, SET2) only, OUT1 or OUT2 output keeps ON status. ※When setting 1 kcps for counting speed, solid state contact output should be used. (when using contact output, it is difficult to execute normal output operation due to contact reaction time.)

※altt I is available to set as ' 0 ' regardless of output mode. The output for ' 0 ' setting executes.
※In case of $[, r, P, 9$ output mode for out 2 , setting ' 0 ' is not available.

Output Operation for Other Conditions

(O) When Start Point is larger or equal than setting value

($u P, U P-1, U P-2, U P-\exists, U d-A, U d-b, U d-\Gamma$ mode)

- When setting SET2>Start Point>SET1

-UP, UP-I, UP-2, UP- ヨ mode: Output of out । does not execute. When PV is same as SET2, output of out ᄅ turns ON. -Ud-A, Ud- $b^{* 1}, U d-\left[^{* 1}\right.$ mode: When PV counts down and is same as SET1, output of out 1 turns ON.

- When setting SET2>Start Point=SET1

-In case of $U P, U P-I, U P-2, U P-\exists, U d-A, U d-b^{* 1}, U d-\left[^{* 1}\right.$ mode, output of OUT1 turns ON when RESET ON to OFF.
※1: This is for the voltage input(PNP)/no-voltage input(NPN) selectable model (CX6 $\square-\square \square$).
© When SET1 is larger or equal than SET2 at down mode

- When SET2>SET1
-Output of out | does not execute.
- When SET2=SET1
-Output of $\begin{aligned} & \text { a } \\ & \text { I turns } \text { ON for RESET OFF. }\end{aligned}$

CX Series

\square Prescale Function (Counter)

This function is to set and display calculated unit for actual length, liquid, position, etc. It is called "prescale value" for measured length, liquid, or position, etc per 1 pulse. For example, when moving L, the desired length to be measured, and P, the number of pulses per 1 revolution of a rotary encoder, occurs, prescale value is L/P.
E.g.) Positioning control by counter and encoder

[Diameter (D) of pulley connected with encoder= 22 mm , the number of pulses by 1 rotation of encoder $=1,000$]
-Prescale value

$$
\begin{aligned}
& =\frac{\pi \times \text { Diameter (D) of pulley }}{\begin{array}{c}
\text { The number of pulses by } 1 \text { rotation } \\
\text { of encoder }
\end{array}} \\
& =\frac{3.1416 \times 22}{1000} \\
& =0.069 \mathrm{~mm} / \text { pulse }
\end{aligned}
$$

Set decimal point[dP] as [-----.], prescale decimal point [5[L.dP] as [---.--], prescale value [5[L] as [0.069] at function setting mode. It is available to control conveyer position by 0.1 mm unit.

Start Point Function (Counter)

In case of counter operation, set the start value for counting at Start point [5tRrt].

- It is not available for $d n, d n-1, d n-2, d n-\exists$ input mode.
- When pressing the RESET key, PV is reset as the start point value.
- In case of $[, r, P, q$ output mode, it counts up and PV starts from the start point value.

LCD Display Counter/Timer

Timer mode

- Changing SV mode

When input signal is ON during changing SV, it operates counting and output control.
It is available to set SV as '0' and the dedicated output for SV '0' occurs.
There are output mode which cannot set SV as ' 0 '. (the setting value display component flashes three times when SV is set as '0')

Press the $<$ key to enter changing SV mode in RUN mode.
When entering changing SV mode, the counting value display component displays the current value and the setting value display component displays SV.

After setting SV at each parameter, press the MODE key to save SV and it moves next parameter setting or returns to RUN mode.

- Function setting mode

$※ 1$: In case of free voltage input model (CX6 $\square \square \square F)$, these parameters do not appear due to fixed setting.
$※ 2$: This parameter is for the voltage input(PNP)/no-voltage input(NPN) selectable model (CX6 $\square-\square \square)$.
※ : When changing the setting of shaded parameters, all output turn OFF.

-Hold the MODE key over 3 sec in RUN mode and it enters function setting mode. -Hold the MODE key over 3 sec in function setting mode and it returns to RUN mode.

CX Series

- Switching display of the setting value display component

Select the display value at the setting value display component.
Depends on output mode, there are manual display switching and auto display switching.
-Manual display switching

2) In run mode, whenever pressing the MODE key, the setting value display component displays SET1, SET2 SV in turn.

In case of 1-stage setting model (CX6 $\square-1 \mathrm{P} \square \square$), it is not available.
-Auto display switching
 model (CX6 $\square-2 \mathrm{P} \square \square$), the setting value display component automatically displays the set times depends on the operation status.

- RESET

-In RUN mode, function setting mode, press the RESET key to reset the current value and the output is also reset.

- Display type of the setting value display component by output mode
 It displays the each SV and the SET1, SET2 indicator turns ON when displaying or setting the each SV.
-In case of 1 -stage setting model (CX6 $\square-1 \mathrm{P} \square \square$), SET is available and there is one setting value.
-In case of 1 -stage setting model (CX6 $\square-1 \mathrm{P} \square \square$), i ML. 2 output mode is not available.
-FL $!$ output mode has t.oFF, t.oil setting values. In case of 2 -stage setting model (CX6 $\square-2 \mathrm{P} \square \square$) and 1 -stage setting model
(CX6 \square-1P $\square \square$), each SET2, SET display is available.
(t.oFF, t.on setting value is for OUT2 output. It displays SET2 or SET.)
-The other output modes display SET2 or SET and have one setting value.
(only for 1-stage setting model (CX6 $\square-1 \mathrm{P} \square \square$))

- Zero blanking display

PV is displayed with zero blanking for the highest unit.
E.g.)When time range is 99 m 59.99 s and PV is 00 m 04.05 s , zero blanking is applied to minute which is the highest unit. At the below digits of decimal point, it is not applied.
It displays as "0:04.05".
\square Parameter Setting（Timer）
（MODE key：moves parameters，园 key：changes parameter setting value）

Parameter	Parameter setting value
Counter／Timer ［ $[-t$ ］	
Up／Down mode $\left[\begin{array}{ll} {[-d]} \end{array}\right.$	$U P \longleftrightarrow d n$ $※ U P:$ Time progresses from＇0＇to the setting time． $d n$ ：Time progresses from the setting time to＇ 0 ＇．
Output mode ［oUと．${ }^{\text {M1 }}$ ］	
Time range $\left[\right.$ L．RNL］${ }^{* 3}$	99．999 $\rightarrow 9999.99 \rightarrow 99999.9 \rightarrow 999999 \rightarrow 99.59 .99 \rightarrow 999: 59.9$
output ON TIME range ［ロパRNら］${ }^{* 4}$ ， output OFF TIME range ［oFF．RNU］${ }^{* 4}$	
OUT 2 output time ${ }^{* 5}$ ［oUt2］	※Set one－shot output time of OUT 2. ※Setting range： 00.01 to 99.99 sec ，Hold ※When number of tens digit is flashing，press the 《 key once and HoLd appears．
OUT 1 output time ${ }^{* 5}$ ［out 1］	※Set one－shot output time of OUT 1. ※Setting range： 00.01 to 99.99 sec ，Hold ※When number of tens digit is flashing，press the 《 key once and HoL d appears．
OUT output time ${ }^{* 5}$ ［out．t］	※Setting range： 00.01 to 99.99 sec ，Hold ※When number of tens digit is flashing，press the $\mathbb{<}$ key once and HoLd appears．
$\begin{array}{\|l} \hline \begin{array}{l} \text { Input logic*6 } \\ {[5: c} \end{array} \\ \hline \end{array}$	$\cap P_{n}$ ：No－voltage input，$P_{\cap} P$ ：Voltage input
Input signal time ${ }^{* 6}$ ［ B N－ t ］	$\begin{aligned} & \stackrel{\rightharpoonup}{\longleftrightarrow} \stackrel{0}{\longleftrightarrow} \text {, unit: ms } \\ & ※ \text { Set min. width of INA, INHIBIT, RESET, TOTAL RESET signal } \end{aligned}$
Memory protection ［ \triangle ALA］	［Lr $\longleftrightarrow r E[$ ※［Lr：Resets the counting value when power OFF． $\ulcorner E[$ ：Maintains the counting value when power OFF．（memory protection）
Key lock ［Lo［K］	

（A） Photoelectric Sensors
（B） Fiber Optic Sensors
（C） Door／Area Sensors
（D） Proximity Sensors
（E） Pressure Sensors
（F） Rotary Encoders
（G） Connectors／ Connector Cables／ Sensor Distribution Boxes／Sockets
（H） Temperature Controllers
（I） SSRs／Power Controllers
（J） Counters
$\begin{array}{\|l} \left(\begin{array}{l} \text { (K) } \\ \text { Timers } \end{array}\right. \end{array}$
（L） Panel Meters
（M） Tacho／ Speed／Pulse Meters
（N） Display Units
（0） Sensor Controllers
（P） Switching Mode Power Supplies
（Q） Stepper Motors \＆Drivers \＆Controllers
（R） Graphic／ Logic Panels
（S） Field Network Devices
（T） Software

$※ 1$ ：This is for the voltage input（PNP）／no－voltage input（NPN）selectable model（CX6 $\square \square \square$ ）．
$※ 2$ ： $1 n t .2$ mode is available only for 2－stage setting model（CX6 $\square-2 \mathrm{P} \square \square)$ ．

$※ 5$ ：In case of 1 －stage setting model（CX6 $\square-1 \mathrm{P} \square \square$ ），oUt I output time does not appear． out 2 output time is displayed as out．t．
※6：In case of free voltage input model（CX6 $\square \square \square F$ ），this parameter does not appear due to fixed setting．

[^0]※Power Hold: There is memory protection.
(memorizes the display value at the moment of power off, indicates the memorized display value when power is resupplied.)

LCD Display Counter/Timer

(A)

Photoelectric Sensors
(B)
Fiber

Optic
Sensors
(C)

Door/Area
Sensors
(D)

Proximity
Sensors
(E)

Pressur
Sensors
(F)
Rotar

Encoder
(G)

Connectors/
Connector Cables/
Sensor Distribution Boxes/Sockets
(H)
Temperature
Controllers
(I)
SSRs / Power

SSRs / Power
Controllers
(J)
Cou

Counters
(K)

Timers
(L)
Pane

Panel
Meters
(M)
Tacho

Tacho /
Speed / Pulse Speed/ Pul
Meters
(N)

Display
Units
(0)

Sensor
Controllers
(P)

Switching
Mode Power
Supplies
(Q)
Step

Stepper Motors
\& Drivers
\& Controllers
(R)
Graphic

Logic
Panels
(S)
Field

Field
Network
Devices
(T)
Software

[^1]
LCD Display Counter/Timer

[^2]
LCD Display Counter/Timer

\square Output Operation Mode (Timer)		to 99.99 sec) One-shot output Retained output 1	(A) Photoelectric Sensors
Output mode	Time chart	Operation	
On Time Display [ont.d]	When memory protection setting is OFF	※ON time indicate mode of INA signal. 1)Time reset start operates when INA signal turns ON. 2)Time progress stops while INA signal is OFF. 3)When INA signal is OFF, if INA input time is greater than the setting time, the display value flashes and the operation stops until RESET signal ON. ${ }^{* 1}$ 4)When time progress stops and power turns OFF, the progressed time is reset.	(B) Fiber Sensors (C) Door/Area Sensors (D) Proximity Sensors (E) Pressure Sensors
	When memory protection setting is ON	※ON time indicate mode of INA signal. 1)Time reset start operates when INA signal turns ON. 2)Time progress stops while INA signal is OFF. 3)When time progress stops and power turns OFF, the progressed time at the moment of power OFF is memorized.	(F) Rotary Encoders (G) Connectors Connector Cables Sensor Distribution Boxes/Sockets (H) Temperature Controllers (I) SSRs / Power Controllers (J)
$※ 1$: For free voltage input model (CX6 $\square-\square \square \mathrm{F}$). ※Power RESET: There is no memory protection. (resets the display value when power is off) ※Power Hold: There is memory protection. (memorizes the display value at the moment of power off, indicates the memorized display va ※When memory protection setting is OFF, it does not memorize the display value when power (the display value is reset when power turns OFF) ※When memory protection setting is ON, it memorizes the display value when power turns OFF When re-suppling the power, it displays the memorized value.		ue when power is resupplied.)	(K) ${ }_{\text {(K) }}^{\text {Timers }}$
		urns OFF.	(L) Panel Meters
			(M) Tacho / Speed / Pulse Meters
			(N) Display Units
			(0) Sensor Controllers
			(P) Switching Mode Power Supplies
			(Q) Stepper Motors \& Drivers \& Controllers
			(R) Graphic Logic Panel
			(S) Field Network Devices
			$\begin{aligned} & \text { (T) } \\ & \text { Software } \end{aligned}$

CX Series

\square Timer '0' Time Setting

© Available output operation mode to set ' 0 ' time setting

and, and. I, and.2, and. 3 , nFd, nFd. 1

Retained output
One-shot output Retained output
© Operation according to output mode (at 0 time setting)

1) OND (Signal ON Delay) mode [ond]

- Set '0' for setting time1.

2) OND. 1 (Signal ON Delay 1) mode [ond. i]

- Set '0' for setting time1 .

3) OND. 2 (Power ON Delay 2) mode [ond.2]

- Set '0' for setting time1.

4) OND. 3 (Power ON Delay 3) mode [ond.3] - Set '0' for setting time1.

5) NFD (ON-OFF Delay) mode [$n \mathrm{Fd}$]

- Set '0' for Off_Delay setting time.

6）NFD． 1 （ON－OFF Delay1）mode［ \cap Fd．i］
－Set＇0＇for Off＿Delay setting time．

－Set＇0’ for On＿Delay setting time．

© When SET1 is greater than SET2

In case of OND［ond］，OND．1［ond．i］，OND．2［ond．2］，or OND．3［ond．3］output mode，
－UP mode：When timer setting value 1 （SET1）is greater than setting value 2 （SET2），out I output does not turn ON．
－DOWN mode：When timer setting value 1 （SET1）is greater than setting value 2 （SET2），out 1 oututput does not turn ON． When timer setting value 1 （SET1）and setting value 2 （SET2）are same，oUt l output turns ON when applied the start signal．

Factory Default

	Parameter	Factory default	
		CX6■－■■	CX6■－ロロF
Counter		Ud－［	Ud－A
	－－Lt．M	F	F
	［P5	30	－
		HoLd（fixed）	HoLd（fixed）
	－吅 1＊1	00.10	00.10
	d^{P}	－－－－－－	－－－－－－
	rESEL	20 ms	－
	51 ■	$n \mathrm{P}$ п	－
	5［L．dP	－．－－－－－	－．－－－－－
	5 CL	1.00000	1.00000
	tothi ${ }^{* 2}$	of F	－
	StRRE	000000	000000
	dRta	clr	［Lr
Timer	U－d	UP	$U P$
	－ULE．19	and	and
	－U乚こ（out．と ${ }^{* 1}$ ）	Hold	HoLd
	－屹 1＊${ }^{\text {＊}}$	00.10	00.10
	L．RNU	999.999 s	999.999 s
	51 ¢ ${ }^{\text {＊2 }}$	$\square \mathrm{P}$ п	－
	$1 \mathrm{~N}-\mathrm{t}$	20 ms	－
LoL！		L．oFF	L．oFF
SET1		1000	1000
SET2		5000	5000

※1：For 1－stage setting model（CX6 $\square-1 \mathrm{P} \square \square$ ），out 1 does not appear．

$$
\text { The output time of } a \cup t 2 \text { is displayed as aut.t. }
$$

$※ 2$ ：This is for the voltage input（PNP）／no－voltage input（NPN）selectable model（CX6 $\square-\square \square$ ）．

\square Cautions during Use

－Follow instructions in＇Cautions during Use＇．Otherwise，it may cause unexpected accidents．
－In case of $24-48 V D C, 24 V A C$ model，power supply should be insulated and limited voltage／current or Class 2 ，SELV power supply device．
－Use the product， 0.1 sec after supplying power．
－When supplying or turning off the power，use a switch or etc．to avoid chattering．
－Install a power switch or circuit breaker in the easily accessible place for supplying or disconnecting the power．
－Keep away from high voltage lines or power lines to prevent inductive noise．
In case installing power line and input signal line closely，use line filter or varistor at power line and shielded wire at input signal line．
Do not use near the equipment which generates strong magnetic force or high frequency noise．
－This unit may be used in the following environments．
（1）Indoors（in the environment condition rated in＇Specifications＇）
（2）Altitude max． $2,000 \mathrm{~m}$
（3）Pollution degree 2
（4）Installation category II

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Counters \& Tachometers category:
Click to view products by Autonics manufacturer:
Other Similar products are found below :
LC2H-FE-2K-N H7CN-XLN DC12-48 LC24-F-N H7CXAWD1NDC1224AC24 H7ER-NV1-H H7CX-A114S-N AC100-240 H7CX-AWSD-N-DC12-24 H7CX-AU-N AC100-240 GPMZC-SET CX6S-1P2F CX6S-1P4F CX6S-2P2F CX6S-2P4F H127.010A01H H5KLR-11 100240V AC/DC H7CX-AUD1-N H7CX-AW-N 3.550.401.075 3.550.401.351 LC2H-C-2K-N LC2H-C-30-N LC2H-F-DL-2KK LC4H-R4AC240VS LC4H-R6-AC240V $1.150 .510 .012 .550 \underline{1.150 .510 .054 .550} \underline{1.150 .510 .056 .550}$ 6.520.012.300 6.560.010.300 SLE-73-1400-1-4-01 SLIK-94-1521-1-3-001 SLN-94-1421-1-3 SPI-73-1411-1-3-011 CT6S-1P4 Y-50 LC4H-R4-AC24V LC4H-R4-DC24V CT6S-2P4 LC2H-F-DL-2KK-B LC2H-FE-DL-2KK-B LC2H-FE-FV-30 H127.010A01G H5KLR-8B 12-48 AC/DC H7CX-A11-N H7CX-AD-N H7CX-AU-N H7ER-NV1 H8DA 12-48V AC/DC 8762206299776901

[^0]: ※Power RESET: There is no memory protection. (resets the display value when power is off)

[^1]: ※Power RESET: There is no memory protection. (resets the display value when power is off) ※Power Hold: There is memory protection.
 (memorizes the display value at the moment of power off, indicates the memorized display value when power is resupplied.)

[^2]: ※Power RESET: There is no memory protection. (resets the display value when power is off) ※Power Hold: There is memory protection.
 (memorizes the display value at the moment of power off, indicates the memorized display value when power is resupplied.)
 ※When memory protection setting is OFF, it does not memorize the display value when power turns OFF.
 (the display value is reset when power turns OFF)
 ※When memory protection setting is ON, it memorizes the display value when power turns OFF.
 When re-suppling the power, it displays the memorized value.

