General Specifications
X7R formulations are called "temperature stable" ceramics and fall into EIA Class II materials. X7R is the most popular of these intermediate dielectric constant materials. Its temperature variation of capacitance is within $\pm 15 \%$ from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. This capacitance change is non-linear.

Capacitance for X7R varies under the influence of electrical operating con-ditions such as voltage and frequency.
X7R dielectric chip usage covers the broad spectrum of industrial applications where known changes in capacitance due to applied voltages are acceptable.

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.
Contact factory for non-specified capacitance values.

Specifications and Test Methods

		X7R Specification Limits	Measuring Conditions	
$\frac{\text { Parameter/Test }}{\text { Operating Temperature Range }}$		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Temperature Cycle Chamber	
Capacitance		Within specified tolerance	Freq.: $1.0 \mathrm{kHz} \pm 10 \%$Voltage: $1.0 \mathrm{Vrms} \pm .2 \mathrm{~V}$For Cap > $10 \mu \mathrm{~F}, 0.5 \mathrm{Vrm} @ 120 \mathrm{~Hz}$	
Dissipation Factor		$\leq 10 \%$ for $\geq 50 \mathrm{~V}$ DC rating $\leq 12.5 \%$ for 25 V DC rating $\leq 12.5 \%$ for 25 V and 16 V DC rating $\leq 12.5 \%$ for $\leq 10 \mathrm{~V}$ DC rating Contact Factory for DF by PN		
Insulation Resistance		$100,000 \mathrm{M} \Omega$ or $1000 \mathrm{M} \Omega-\mu \mathrm{F}$, whichever is less	Charge device with rated voltage for 120 ± 5 secs @ room temp/humidity	
Dielectric Strength		No breakdown or visual defects	Charge device with 250% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Note: Charge device with 150% of rated voltage for 500 V devices.	
Resistance to Flexure Stresses	Appearance	No defects	Deflection: 2 mm Test Time: 30 seconds	
	Capacitance Variation	$\leq \pm 12 \%$		
	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	\geq Initial Value $\times 0.3$		
Solderability		$\geq 95 \%$ of each terminal should be covered with fresh solder	Dip device in eutectic solder at $230 \pm 5^{\circ} \mathrm{C}$ for 5.0 ± 0.5 seconds	
Resistance to Solder Heat	Appearance	No defects, <25\% leaching of either end terminal	Dip device in eutectic solder at $260^{\circ} \mathrm{C}$ for 60 seconds. Store at room temperature for 24 ± 2 hours before measuring electrical properties.	
	Capacitance Variation	$\leq \pm 7.5 \%$		
	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	Meets Initial Values (As Above)		
	Dielectric Strength	Meets Initial Values (As Above)		
Thermal Shock	Appearance	No visual defects	Step 1: $-55^{\circ} \mathrm{C} \pm 2^{\circ}$	30 ± 3 minutes
	Capacitance Variation	$\leq \pm 7.5 \%$	Step 2: Room Temp	≤ 3 minutes
	Dissipation Factor	Meets Initial Values (As Above)	Step 3: $+125^{\circ} \mathrm{C} \pm 2^{\circ}$	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles and measure after 24 ± 2 hours at room temperature	
Load Life	Appearance	No visual defects	Charge device with \geq rated voltage in test chamber set at $125^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ for 1000 hours ($+48,-0$).	
	Capacitance Variation	$\leq \pm 12.5 \%$		
	Dissipation Factor	\leq Initial Value $\times 2.0$ (See Above)	Remove from test chamber and stabilize at room temperature for 24 ± 2 hours before measuring.	
	Insulation Resistance	\geq Initial Value $\times 0.3$ (See Above)	Contact AVX for datasheet of specific parts.	
	Dielectric Strength	Meets Initial Values (As Above)		
Load Humidity	Appearance	No visual defects	Store in a test chamber set at $85^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C} / 85 \% \pm 5 \%$ relative humidity for 1000 hours ($+48,-0$) with rated voltage applied.	
	Capacitance Variation	$\leq \pm 12.5 \%$		
	Dissipation Factor	\leq Initial Value $\times 2.0$ (See Above)		
	Insulation Resistance	\geq Initial Value $\times 0.3$ (See Above)	Remove from chamber and stabilize at room temperature and humidity for 24 ± 2 hours before measuring.	
	Dielectric Strength	Meets Initial Values (As Above)		

X7R Dielectric

Capacitance Range

PREFERRED SIZES ARE SHADED

SIZE		0101*	0201					0402						0603								0805								1206								
Soldering		Reflow Only	Reflow Only					Reflow/Wave						Reflow/Wave								Reflow/Wave								Reflow/Wave								
Packaging		Paper/ Embossed	All Paper					All Paper						All Paper								Paper/Embossed								Paper/Embossed								
(L) Length	$\begin{array}{\|c\|c\|} \hline \mathrm{min}_{\text {(in.) }} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 0.40 \pm 0.02 \\ (0.016 \pm 0.0008) \\ \hline \end{array}$	$\begin{gathered} 0.60 \pm 0.09 \\ (0.024 \pm 0.004) \\ \hline \end{gathered}$					$\begin{gathered} 1.00 \pm 0.10 \\ (0.040 \pm 0.004) \\ \hline \end{gathered}$						$\begin{gathered} 1.60 \pm 0.15 \\ (0.063 \pm 0.006) \\ \hline \end{gathered}$								$\begin{aligned} 2.01 & \pm 0.20 \\ (0.079 & \pm 0.008) \end{aligned}$								$\begin{gathered} 3.20 \pm 0.30 \\ (0.126 \pm 0.012) \end{gathered}$								
W) Width	$\begin{gathered} \mathrm{mm} \\ \text { (in.) } \end{gathered}$	$\begin{array}{\|c\|} \hline 0.20 \pm 0.02 \\ (0.008 \pm 0.0008) \\ \hline \end{array}$	$\begin{gathered} 0.30 \pm 0.09 \\ (0.011 \pm 0.004) \\ \hline \end{gathered}$					$\begin{gathered} 0.50 \pm 0.10 \\ (0.020 \pm 0.004) \end{gathered}$						$\begin{gathered} 0.81 \pm 0.15 \\ (0.032 \pm 0.006) \end{gathered}$								$\begin{gathered} 1.25 \pm 0.20 \\ (0.049 \pm 0.008) \end{gathered}$								$\begin{gathered} 1.60 \pm 0.30 \\ (0.063 \pm 0.012) \end{gathered}$								
(t) Terminal ${ }_{\text {(in }}$	$\begin{array}{\|c\|c\|} \hline m & 0.10 \pm 0.04 \\ \mathrm{n} .) & (0.004 \pm 0.0016) \\ \hline \end{array}$		$\begin{gathered} 0.15 \pm 0.05 \\ (0.006 \pm 0.002) \\ \hline \end{gathered}$					$\begin{gathered} 0.25 \pm 0.15 \\ (0.010 \pm 0.006) \\ \hline \end{gathered}$						$\begin{gathered} 0.35 \pm 0.15 \\ (0.014 \pm 0.006) \\ \hline \end{gathered}$								$\begin{gathered} 0.50 \pm 0.25 \\ (0.020 \pm 0.010) \\ \hline \end{gathered}$								$\begin{gathered} 0.50 \pm 0.25 \\ (0.020 \pm 0.010) \\ \hline \end{gathered}$								
WVDC		16	6.3	10	10	25	50	6.3	10	16	25	50	100	6.3	10	16	25	501	100	200	250	6.3	10	16	25	50	100	200	250	6.3	10	16	25	50	100	200	250	500
Cap 100	101	B	A	A	A A	A	A	C	C	C	c	c	C	G	G	G	G	G	G	J	J													G	G	N	N	N
(pF) 150	151	B	A	A	A A	A	A	c	c	C	C	c	C	G	G	G	G	G	G	J	J									G	G	G	G	G	G	N	N	N
220	221	B	A	A	A A	A	A	c	c	C	C	c	C	G	G	G	G	G	G	J	J	E	E	E	E	E	E	E	J	J	J	J	J	J	J	N	N	P
330	331	B	A	A	A	A	A	c	c	c	c	c	c	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	P
470	471	B	A	A	A	A	A	C	c	C	c	C	c	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	P
680	681	B	A	A	A	A	A	c	c	C	c	c	c	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	P
1000	102	B	A	A	A	A	A	C	c	c	c	C	c	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	P
1500	152		A	A	A A	A		c	c	c	c	c	c	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	P
2200	222		A	A	A ${ }^{\text {A }}$	A		c	c	C	C	c	C	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	P
3300	332		A	A	A A	A		c	c	c	c	c	c	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	P
3900	392		A	A	A A	A																																
4700	472		A	A	A	A		c	c	c	c	c	C	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	P
5600	562		A	A	A A	A																																
6800	682		A	A	A A	A		c	c	c	c	c	c	G	G	G	G	G	G	J	J		J	J	J	J	J	P	P	J	J	J	J	J	J	N	N	P
Cap 0.01	103		A	A	A A	A		c	c	C	C	c	C	G	G	G	G	G	G	J	J		J	J	J	J	J	P	P	J	J	J	J	J	J	N	N	P
($\mu \mathrm{F}$) 0.012	123																																					
0.015	153							c	c	C	C	E		G	G	G	G	G	J	J	J		J	J	J	J	J	P	P	J	J	J	J	J	J	N	N	Q
0.018	183																																					
0.022	223		A	A	A A			c	c	C	C	E		G	G	G	G	G	J	J	J		J	J	J	J	J	P	P	J	J	J	J	J	J	P	P	Q
0.027	273																																					
0.033	333							C	C	C	C	E		G	G	G	G	J	J	J			J	J	J	J	P	P	P	J	J	J	J	J	J	Q	Q	Q
0.039	393																																					
0.047	473							c	c	C	C	E		G	G	G	G	J	J	J			J	J	J	J	P	P	P	J	J	J	J	J	J	Q	Q	Q
0.068	683							c	c	C	C	E		G	G	G	G	J	J	J			J	J	J	J	P	P		J	J	J	J	J	P	Q	Q	
0.082	823																																					
0.1	104		A					C	C	C	C	E		G	G	G	G	J	J	J			J	J	J	J	P	P		J	J	J	J	J	P	Q	Q	
0.12	124																																					
0.15	154													G	G	G	J	J					N	N	N	N	P			K	K	K	K	K	Q	Q	Q	
0.22	224							c	c	c	c			G	G	J	J	J					N	N	N	N	P			K	K	K	K	K	Q	Q	Q	
0.33	334													J	J	J	J	J					P	P	P	P	P			K	K	K	K	N	Q			
0.47	474							c	C					J	J	J	J	J					P	P	P	P	P			M	M	M	M	X	X			
0.68	684													J	J	J							P	P	P					M	M	M	M	X	X			
1.0	105							C						J	J	J	J	J					P	P	P	P				M	M	M	M	X	X			
2.2	225													J	J	K							P	P	P	P				M	M	M	x	X	X			
4.7	475													K									P	P	P					X	X	X	x	Z				
10	106																					P	P	P						X	x	X	x					
22	226																													X	X	X						
47	476																																					
100	107																																					
WVDC		16	6.3	10	116	25	50	6.3	10	16	25	50	100	6.3	10	16	25	501	100	200	250	6.3	10	16	25	50	100	200	250	6.3	10	16	25	50	100	200	250	500
SIZE		0101*			0201					04	02							603								805								120	206			

Letter	A	B	C	E	G	J	K	M	N	P	Q	X	Y	z
Max. Thickness	$\begin{gathered} 0.33 \\ (0.013) \\ \hline \end{gathered}$	$\begin{gathered} 0.22 \\ (0.009) \\ \hline \end{gathered}$	$\begin{gathered} 0.56 \\ (0.022) \\ \hline \end{gathered}$	$\begin{gathered} 0.71 \\ (0.028) \\ \hline \end{gathered}$	$\begin{gathered} 0.90 \\ (0.035) \\ \hline \end{gathered}$	$\begin{gathered} 0.94 \\ (0.037) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.02 \\ (0.040) \\ \hline \end{gathered}$	$\begin{gathered} 1.27 \\ (0.050) \\ \hline \end{gathered}$	$\begin{gathered} 1.40 \\ (0.055) \\ \hline \end{gathered}$	$\begin{gathered} 1.52 \\ (0.060) \\ \hline \end{gathered}$	$\begin{gathered} 1.78 \\ (0.070) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.29 \\ (0.090) \\ \hline \end{gathered}$	$\begin{gathered} 2.54 \\ (0.100) \\ \hline \end{gathered}$	$\begin{gathered} 2.79 \\ (0.110) \\ \hline \end{gathered}$
	PAPER						EMBOSSED							

NOTE: Contact factory for non-specified capacitance values
*EIA 01005
**Contact Factory for Specifications

Capacitance Range

PREFERRED SIZES ARE SHADED

SIZE		1210							1812						1825			2220					2225		
Soldering		Reflow Only							Reflow Only						Reflow Only			Reflow Only					Reflow Only		
Packaging		Paper/Embossed							All Embossed						All Embossed			All Embossed					All Embossed		
(L) Length	$\begin{gathered} \mathrm{mm} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} 3.30 \pm 0.4 \\ (0.130 \pm 0.016) \\ \hline \end{gathered}$							$\begin{gathered} 4.50 \pm 0.40 \\ (0.177 \pm 0.016) \\ \hline \end{gathered}$						$\begin{gathered} 4.50 \pm 0.40 \\ (0.177 \pm 0.016) \\ \hline \end{gathered}$			$\begin{gathered} 5.70 \pm 0.50 \\ (0.224 \pm 0.020) \\ \hline \end{gathered}$					$\begin{gathered} 5.70 \pm 0.40 \\ (0.224 \pm 0.016) \\ \hline \end{gathered}$		
W) Width	$\underset{\text { (in.) }}{\substack{m m}}$	$\begin{gathered} 2.50 \pm 0.30 \\ (0.098 \pm 0.012) \\ \hline \end{gathered}$							$\begin{gathered} 3.20 \pm 0.40 \\ (0.126 \pm 0.016) \\ \hline \end{gathered}$						$\begin{gathered} 6.40 \pm 0.40 \\ (0.252 \pm 0.016) \\ \hline \end{gathered}$			$\begin{gathered} 5.00 \pm 0.40 \\ (0.197 \pm 0.016) \\ \hline \end{gathered}$					$\begin{gathered} 6.30 \pm 0.40 \\ (0.248 \pm 0.016) \\ \hline \end{gathered}$		
(t) Terminal	$\mathrm{mm}_{\text {(in.) }}$	$\begin{gathered} 0.50 \pm 0.25 \\ (0.020 \pm 0.010) \\ \hline \end{gathered}$							$\begin{gathered} 0.61 \pm 0.36 \\ (0.024 \pm 0.014) \\ \hline \end{gathered}$						$\begin{gathered} 0.61 \pm 0.36 \\ (0.024 \pm 0.014) \\ \hline \end{gathered}$			$\begin{gathered} 0.64 \pm 0.39 \\ (0.025 \pm 0.015) \\ \hline \end{gathered}$					$\begin{gathered} 0.64 \pm 0.39 \\ (0.025 \pm 0.015) \\ \hline \end{gathered}$		
WVDC		10	16	25	50	100	200	500	16	25	50	100	200	500	50	100	200	25	50	100	200	500	50	100200	
Cap 100	101																					$\rightarrow<{ }_{W}$			
(pF) 150	151																								
220	221				K	K	K	M																	
330	331				K	K	K	M			N	N	N	N											
470	471				K	K	K	M			N	N	N	N								${ }^{\circ}+$			
680	681				K	K	K	M			N	N	N	N											
1000	102	K	K	K	K	K	K	M	N	N	N	N	N	N	X	X	X		X	X	X	X	X	X	x
1500	152	K	K	K	K	K	K	M	N	N	N	N	N	N	X	X	x		X	x	x	X	X	X	X
2200	222	K	K	K	K	K	K	M	N	N	N	N	N	N	X	X	X		X	X	X	X	X	X	X
3300	332	K	K	K	K	K	K	P	N	N	N	N	N	N	X	X	X		X	X	X	X	X	X	X
4700	472	K	K	K	K	K	K	P	N	N	N	N	N	P	X	X	X		X	X	X	X	X	X	X
6800	682	K	K	K	K	K	K	P	N	N	N	N	N	P	X	X	X		X	X	X	X	X	X	X
Cap 0.01	103	K	K	K	K	K	K	P	N	N	N	N	N	P	X	X	X		X	X	X	X	X	X	X
($\mu \mathrm{F}$) 0.015	153	K	K	K	K	K	K	P	N	N	N	N	N	P	X	X	X		X	X	X	X	X	X	X
0.022	223	K	K	K	K	K	P	Q	N	N	N	N	N	P	X	X	X		X	X	X	X	X	X	X
0.033	333	K	K	K	K	K	P	X	N	N	N	N	N	X	X	X	X		X	X	X	X	X	X	X
0.047	473	K	K	K	K	K	P	X	N	N	N	N	P	X	X	X	X		X	X	X	X	X	X	X
0.068	683	K	K	K	K	K	P	X	N	N	N	N	P	X	X	X	X		X	X	X	X	X	X	X
0.1	104	K	K	K	K	K	P	X	N	N	N	P	P	X	X	X	X		X	X	X	X	X	X	X
0.15	154	K	K	K	M	P	Z	Z	N	N	N	P	P	Z	X	X	X		X	X	X	X	X	X	X
0.22	224	K	K	K	M	P	z		N	N	N	P	Q	z	X	X	X		X	X	X	X	X	X	X
0.33	334	K	K	K	M	Q	Z		N	N	N	P	X	Z	X	X	X		X	X	X	X	X	X	X
0.47	474	M	M	M	P	Q	Z		N	N	N	Q	X	Z	X	X	X		X	X	X	X	X	X	X
0.68	684	M	M	P	X	X	Z		Q	Q	Q	Q	Z		X	X	X		X	X	X		X	X	X
1.0	105	P	P	P	X	Z			Q	Q	Q	X	z		X	X	X		X	X	X		X	X	X
1.5	155	N	N	Z	Z	Z				Z	Z	Z			X	X	Z		X	X	Z		X	X	Z
2.2	225	X	X	Z	Z	Z				Z	Z	Z			X	X	z		X	X	Z		X	X	Z
3.3	335	X	X	Z	Z	z				Z	Z	z			X	X			X	Z			X	X	
4.7	475	Z	Z	z	Z	Z				Z	Z	Z			X	X			Z	Z			X	X	
10	106	Z	Z	z	Z				Z	z	Z				Z	Z			Z	Z			Z	Z	
22	226	Z	Z	Z														Z							
47	476	Z																							
100	107																								
WVDC		10	16	25	50	100	200	500	16	25	50	100	200	500	50	100	200	25	50	100	200	500	50	00	200
SIZE					1210											1825				2220				225	

Letter	A	B	C	E	G	J	K	M	N	P	Q	X	Y	Z
Max. Thickness	$\begin{gathered} 0.33 \\ (0.013) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.22 \\ (0.009) \\ \hline \end{gathered}$	$\begin{gathered} 0.56 \\ (0.022) \\ \hline \end{gathered}$	$\begin{gathered} 0.71 \\ (0.028) \\ \hline \end{gathered}$	$\begin{gathered} 0.90 \\ (0.035) \\ \hline \end{gathered}$	$\begin{gathered} 0.94 \\ (0.037) \\ \hline \end{gathered}$	$\begin{gathered} 1.02 \\ (0.040) \\ \hline \end{gathered}$	$\begin{gathered} 1.27 \\ (0.050) \\ \hline \end{gathered}$	$\begin{gathered} 1.40 \\ (0.055) \\ \hline \end{gathered}$	$\begin{gathered} 1.52 \\ (0.060) \\ \hline \end{gathered}$	$\begin{gathered} 1.78 \\ (0.070) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.29 \\ (0.090) \\ \hline \end{gathered}$	$\begin{gathered} 2.54 \\ (0.100) \\ \hline \end{gathered}$	$\begin{gathered} 2.79 \\ (0.110) \\ \hline \end{gathered}$
	PAPER						EMBOSSED							

NOTE: Contact factory for non-specified capacitance values

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for AVX manufacturer:
Other Similar products are found below :
VE17M02750K-- CX2016DB16000D0GPSC1 LIFE_SAMP-1A139-159V001 CWR09HC106KBA PBRC7.37MR50X000 M39014/22-1137-
TUBE 009286001203906 M39014/22-1181 F931A227KNC FFLI6B3007KJE FLBB6O0336K03 12102U101JAT2A KIT5000UZ
KITTYPE1400 LF LD065A332FAB2A SA205C393JAA 308016056000413 SR211A151FAA F931A226MBA FFB24I0755K--
FFVI6A0227KJE CK06BX472K M39014/05-2731 M39014/220476 CWR29JC476KCHC TAJB225M035R TAJD226K035RNJV
TCH9107M035W0055U TLCU336M004XTA TPSE226K035R0125 TPSE226K035R0200 TWAE108K030SBEZ0000
KC3225K3.68640C1GE00 KC7050K50.0000C10E00 $069296700101000 \underline{069176701902000} \underline{07016-092 M C C A}$ SR201A152JAA
TPSE336K035R0250 TWAD108M050CBEZ0700 CX2520DB16000H0FLJC1 CDR14BP510EJUR CWR09KC106KCC
RM055C825KAL360 CCR05CG220FS AR151C103K4R HQCEWM681GAH6A 18125A103JAT2A 18125C105MAT2A 18255A153JAT2A

