

COG (NPO) is the most popular formulation of the "temperature-compensating," EIA Class I ceramic materials. Modern COG (NPO) formulations contain neodymium, samarium and other rare earth oxides. COG (NPO) ceramics offer one of the most stable capacitor dielectrics available. Capacitance change with temperature is $0 \pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ which is less than $\pm 0.3 \% \mathrm{C}$ from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Capacitance drift or hysteresis for COG (NPO) ceramics is negligible at less than $\pm 0.05 \%$ versus up to $\pm 2 \%$ for films. Typical capacitance change with life is less than $\pm 0.1 \%$ for COG (NPO), one-fifth that shown by most other dielectrics. COG (NPO) formulations show no aging characteristics.

PART NUMBER (see page 4 for complete part number explanation)

0805	5	A	101	J	A	T	2	A
$\begin{aligned} & \text { Size } \\ & \left(\mathrm{L}^{\prime \prime} \times \mathrm{W}^{\prime \prime}\right) \end{aligned}$	$\begin{array}{r} \text { Voltage } \\ 6.3 \mathrm{~V}=6 \\ 10 \mathrm{~V}=\mathrm{Z} \\ 16 \mathrm{~V}=\mathrm{Y} \\ 25 \mathrm{~V}=3 \\ 50 \mathrm{~V}=5 \\ 100 \mathrm{~V}=1 \\ 200 \mathrm{~V}=2 \\ 250 \mathrm{~V}=\mathrm{V} \\ 500 \mathrm{~V}=7 \end{array}$	DielectricCOG (NPO) = A	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros	Capacitance Tolerance $\mathrm{B}= \pm .10 \mathrm{pF}$ (<10pF) $\mathrm{C}= \pm .25 \mathrm{pF}(<10 \mathrm{pF})$ $\mathrm{D}= \pm .50 \mathrm{pF}(<10 \mathrm{pF})$ $\mathrm{F}= \pm 1 \%(\geq 10 \mathrm{pF})$ $\mathrm{G}= \pm 2 \%(\geq 10 \mathrm{pF})$ $\mathrm{J}= \pm 5 \%$ $\mathrm{K}= \pm 10 \%$	Failure Rate A = Not Applicable	$\begin{aligned} & \text { Terminations } \\ & \mathrm{T}=\text { Plated } \mathrm{Ni} \\ & \text { and } \mathrm{Sn} \end{aligned}$	$\begin{gathered} \text { Packaging } \\ 2=7 " \text { Reel } \\ 4=13^{\prime R} \text { Re } \\ U=4 \mathrm{~mm} \text { TF } \\ (01005) \end{gathered}$	Special Code A = Std. Product
						Contact		
						Factory For		
						1 = Pd/Ag Term		
						7 = Gold Plated		
						NOT RoHS		
						COMPLIANT		

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

Specifications and Test Methods

Parameter/Test		NP0 Specification Limits	Measur	onditions
Operating Temperature Range		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Temperatu	le Chamber
Capacitance		Within specified tolerance $<30 \mathrm{pF}$: Q $\geq 400+20 \times$ Cap Value $\geq 30 \mathrm{pF}: \mathrm{Q} \geq 1000$	Freq.: $1.0 \mathrm{MHz} \pm 10 \%$ for cap $\leq 1000 \mathrm{pF}$ $1.0 \mathrm{kHz} \pm 10 \%$ for cap $>1000 \mathrm{pF}$ Voltage: $1.0 \mathrm{Vrms} \pm .2 \mathrm{~V}$	
Q				
Insulation Resistance		$100,000 \mathrm{M} \Omega$ or $1000 \mathrm{M} \Omega-\mu \mathrm{F}$, whichever is less	Charge device with rated voltage for 60 ± 5 secs @ room temp/humidity	
Dielectric Strength		No breakdown or visual defects	Charge device with 250% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Note: Charge device with 150% of rated voltage for 500 V devices.	
Resistance to Flexure Stresses	Appearance	No defects	Deflection: 2 mm Test Time: 30 seconds $1 \mathrm{~mm} / \mathrm{sec}$	
	Capacitance Variation	$\pm 5 \%$ or $\pm .5 \mathrm{pF}$, whichever is greater		
	Q	Meets Initial Values (As Above)		
	Insulation Resistance	\geq Initial Value x 0.3		
Solderability		$\geq 95 \%$ of each terminal should be covered with fresh solder	Dip device in eutectic solder at $230 \pm 5^{\circ} \mathrm{C}$ for 5.0 ± 0.5 seconds	
Resistance to Solder Heat	Appearance	No defects, <25\% leaching of either end terminal	Dip device in eutectic solder at $260^{\circ} \mathrm{C}$ for $60 \mathrm{sec}-$ onds. Store at room temperature for 24 ± 2 hours before measuring electrical properties.	
	Capacitance Variation	$\leq \pm 2.5 \%$ or $\pm .25 \mathrm{pF}$, whichever is greater		
	Q	Meets Initial Values (As Above)		
	Insulation Resistance	Meets Initial Values (As Above)		
	Dielectric Strength	Meets Initial Values (As Above)		
Thermal Shock	Appearance	No visual defects	Step 1: $-55^{\circ} \mathrm{C} \pm 2^{\circ}$	30 ± 3 minutes
	Capacitance Variation	$\leq \pm 2.5 \%$ or $\pm .25 \mathrm{pF}$, whichever is greater	Step 2: Room Temp	≤ 3 minutes
	Q	Meets Initial Values (As Above)	Step 3: $+125^{\circ} \mathrm{C} \pm 2^{\circ}$	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles and measure after 24 hours at room temperature	
Load Life	Appearance	No visual defects	Charge device with twice rated voltage in test chamber set at $125^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ for 1000 hours (+48, -0). Remove from test chamber and stabilize at room temperature for 24 hours before measuring.	
	Capacitance Variation	$\leq \pm 3.0 \%$ or $\pm .3 \mathrm{pF}$, whichever is greater		
	$\begin{gathered} \mathrm{Q} \\ (\mathrm{C}=\text { Nominal Cap) } \end{gathered}$	$\begin{array}{ll} \geq 30 \mathrm{pF}: & \mathrm{Q} \geq 350 \\ \geq 10 \mathrm{pF},<30 \mathrm{pF}: & \mathrm{Q} \geq 275+5 \mathrm{C} / 2 \\ <10 \mathrm{pF}: & \mathrm{Q} \geq 200+10 \mathrm{C} \end{array}$		
	Insulation Resistance	\geq Initial Value x 0.3 (See Above)		
	Dielectric Strength	Meets Initial Values (As Above)		
Load Humidity	Appearance	No visual defects	Store in a test chamber set at $85^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C} / 85 \% \pm$ 5% relative humidity for 1000 hours $(+48,-0)$ with rated voltage applied.	
	Capacitance Variation	$\leq \pm 5.0 \%$ or $\pm .5 \mathrm{pF}$, whichever is greater		
	Q	$\geq 30 \mathrm{pF}:$ $\mathrm{Q} \geq 350$ $\geq 10 \mathrm{pF},<30 \mathrm{pF}:$ $\mathrm{Q} \geq 275+5 \mathrm{C} / 2$ $<10 \mathrm{pF}:$ $\mathrm{Q} \geq 200+10 \mathrm{C}$		
	Insulation Resistance	\geq Initial Value x 0.3 (See Above)	Remove from chamber and stabilize at room temperature for 24 ± 2 hours before measuring.	
	Dielectric Strength	Meets Initial Values (As Above)		

Capacitance Range

PREFERRED SIZES ARE SHADED

Letter	A	B	C	E	G	J	K	M	N	P	Q	X	Y	Z
Max. Thickness	$\begin{gathered} 0.33 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.22 \\ (0.009) \end{gathered}$	$\begin{gathered} 0.56 \\ (0.022) \end{gathered}$	$\begin{gathered} 0.71 \\ (0.028) \end{gathered}$	$\begin{gathered} 0.90 \\ (0.035) \end{gathered}$	$\begin{gathered} 0.94 \\ (0.037) \end{gathered}$	$\begin{gathered} 1.02 \\ (0.040) \end{gathered}$	$\begin{gathered} 1.27 \\ (0.050) \end{gathered}$	$\begin{gathered} 1.40 \\ (0.055) \end{gathered}$	$\begin{gathered} 1.52 \\ (0.060) \end{gathered}$	$\begin{gathered} 1.78 \\ (0.070) \end{gathered}$	$\begin{gathered} 2.29 \\ (0.090) \end{gathered}$	$\begin{gathered} 2.54 \\ (0.100) \end{gathered}$	$\begin{gathered} 2.79 \\ (0.110) \end{gathered}$
	PAPER						EMBOSSED							

Capacitance Range

PREFERRED SIZES ARE SHADED

Letter	A	B	C	E	G	J	K	M	N	P	Q	X	Y	Z
Max. Thickness	$\begin{gathered} 0.33 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.22 \\ (0.009) \end{gathered}$	$\begin{gathered} 0.56 \\ (0.022) \end{gathered}$	$\begin{gathered} 0.71 \\ (0.028) \end{gathered}$	$\begin{gathered} 0.90 \\ (0.035) \end{gathered}$	$\begin{gathered} 0.94 \\ (0.037) \end{gathered}$	$\begin{gathered} 1.02 \\ (0.040) \end{gathered}$	$\begin{gathered} 1.27 \\ (0.050) \end{gathered}$	$\begin{gathered} 1.40 \\ (0.055) \end{gathered}$	$\begin{gathered} 1.52 \\ (0.060) \end{gathered}$	$\begin{gathered} 1.78 \\ (0.070) \end{gathered}$	$\begin{gathered} 2.29 \\ (0.090) \end{gathered}$	$\begin{gathered} 2.54 \\ (0.100) \end{gathered}$	$\begin{gathered} 2.79 \\ (0.110) \end{gathered}$
	PAPER						EMBOSSED							

IMPORTANT INFORMATION/DISCLAIMER

All product specifications, statements, information and data (collectively, the "Information") in this datasheet or made available on the website are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on AVX's knowledge of typical operating conditions for such applications, but are not intended to constitute and AVX specifically disclaims any warranty concerning suitability for a specific customer application or use.

ANY USE OF PRODUCT OUTSIDE OF SPECIFICATIONS OR ANY STORAGE OR INSTALLATION INCONSISTENT WITH PRODUCT GUIDANCE VOIDS ANY WARRANTY.

The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by AVX with reference to the use of AVX's products is given without regard, and AVX assumes no obligation or liability for the advice given or results obtained.

Although AVX designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

> Unless specifically agreed to in writing, AVX has not tested or certified its products, services or deliverables for use in high risk applications including medical life support, medical device, direct physical patient contact, water treatment, nuclear facilities, weapon systems, mass and air transportation control, flammable environments, or any other potentially life critical uses. Customer understands and agrees that AVX makes no assurances that the products, services or deliverables are suitable for any high-risk uses. Under no circumstances does AVX warrant or guarantee suitability for any customer design or manufacturing process.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multilayer Ceramic Capacitors MLCC - SMD/SMT category:
Click to view products by AVX manufacturer:
Other Similar products are found below :
M39014/01-1467 M39014/02-1218V M39014/02-1225V M39014/02-1262V M39014/02-1301 M39014/22-0631 1210J5000102JCT
1210J2K00102KXT 1210J5000103KXT 1210J5000223KXT D55342E07B379BR-TR D55342E07B523DR-T/R 1812J1K00103KXT
1812J1K00473KXT 1812J2K00680JCT 1812J4K00102MXT 1812J5000102JCT 1812J5000103JCT 1812J5000682JCT NIN-FB391JTRF
NIN-FC2R7JTRF NPIS27H102MTRF C1206C101J1GAC C1608C0G1E472JT000N C2012C0G2A472J 2220J2K00101JCT
KHC201E225M76N0T00 LRC-LRF1206LF-01R025FTR1K 1812J1K00222JCT 1812J2K00102KXT 1812J2K00222KXT
1812J2K00472KXT 2-1622820-7-CUT-TAPE 2220J3K00102KXT 2225J2500824KXT CCR07CG103KM CGA2B2C0G1H010C
CGA2B2C0G1H040C CGA2B2C0G1H050C CGA2B2C0G1H060D CGA2B2C0G1H070D CGA2B2C0G1H151J CGA2B2C0G1H1R5C
CGA2B2C0G1H2R2C CGA2B2C0G1H3R3C CGA2B2C0G1H680J CGA2B2C0G1H6R8D CGA2B2X8R1H221K CGA2B2X8R1H472K CGA3E1X7R1C474K

