General Specifications

COG (NPO) is the most popular formulation of the "temperature-compensating," EIA Class I ceramic materials. Modern COG (NPO) formulations contain neodymium, samarium and other rare earth oxides.
COG (NPO) ceramics offer one of the most stable capacitor dielectrics available. Capacitance change with temperature is $0 \pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ which is less than $\pm 0.3 \% \mathrm{C}$ from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Capacitance drift or hysteresis for COG (NPO) ceramics is negligible at less than $\pm 0.05 \%$ versus up to $\pm 2 \%$ for films. Typical capacitance change with life is less than $\pm 0.1 \%$ for COG (NPO), one-fifth that shown by most other dielectrics. COG (NPO) formulations show no aging characteristics.

PART NUMBER (see page 4 for complete part number explanation)

0805	5	A	101	J	A	T	2	A
$\begin{gathered} \text { Size } \\ \left(\text { L" }^{\prime}\right. \text { W") } \end{gathered}$	Voltage $6.3 \mathrm{~V}=6$ $10 \mathrm{~V}=\mathrm{Z}$	DielectricCOG (NPO) = A	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros	Capacitance Tolerance $B= \pm .10 \mathrm{pF}$ (<10pF) $\mathrm{C}= \pm .25 \mathrm{pF}(<10 \mathrm{pF})$ $\mathrm{D}= \pm .50 \mathrm{pF}$ ($<10 \mathrm{pF}$) $\mathrm{F}= \pm 1 \%$ ($\geq 10 \mathrm{pF}$) $\mathrm{G}= \pm 2 \%(\geq 10 \mathrm{pF})$ $J= \pm 5 \%$ $\mathrm{K}= \pm 10 \%$	Failure Rate A = Not Applicable	$\begin{aligned} & \text { Terminations } \\ & \mathrm{T}=\mathrm{Plated} \mathrm{Ni} \\ & \text { and } \mathrm{Sn} \end{aligned}$	Packaging $2=7 "$ Reel $4=13^{\prime \prime}$ Ree $\mathrm{U}=4 \mathrm{~mm} \mathrm{TR}$ (01005)	Special Code A = Std. Product Factory tiples
	$16 \mathrm{~V}=\mathrm{Y}$							
	$25 \mathrm{~V}=3$ $50 \mathrm{~V}=5$					Factory For		
	$100 \mathrm{~V}=1$					1 = Pd/Ag Term		
	$200 \mathrm{~V}=2$					7 = Gold Plated		
	$250 \mathrm{~V}=\mathrm{V}$					NOT RoHS		
	$500 \mathrm{~V}=7$					COMPLIANT		

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

Specifications and Test Methods

Parameter/Test		NP0 Specification Limits	Measu	nditions
Operating Temperature Range		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Temperatu	le Chamber
Capacitance		Within specified tolerance $<30 \mathrm{pF}$: $\mathrm{Q} \geq 400+20 \times$ Cap Value $\geq 30 \mathrm{pF}: \mathrm{Q} \geq 1000$	Freq.: $1.0 \mathrm{MHz} \pm 10 \%$ for cap $\leq 1000 \mathrm{pF}$ $1.0 \mathrm{kHz} \pm 10 \%$ for cap > 1000 pF Voltage: $1.0 \mathrm{Vrms} \pm .2 \mathrm{~V}$	
Q				
Insulation Resistance		$100,000 \mathrm{M} \Omega$ or $1000 \mathrm{MQ}-\mu \mathrm{F}$, whichever is less	Charge device with rated voltage for 60 ± 5 secs @ room temp/humidity	
Dielectric Strength		No breakdown or visual defects	Charge device with 250% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Note: Charge device with 150% of rated voltage for 500 V devices.	
Resistance to Flexure Stresses	Appearance	No defects	Deflection: 2 mm Test Time: 30 seconds $1 \mathrm{~mm} / \mathrm{sec}$	
	Capacitance Variation	$\pm 5 \%$ or $\pm .5 \mathrm{pF}$, whichever is greater		
	Q	Meets Initial Values (As Above)		
	Insulation Resistance	\geq Initial Value $\times 0.3$		
Solderability		$\geq 95 \%$ of each terminal should be covered with fresh solder	Dip device in eutectic solder at $230 \pm 5^{\circ} \mathrm{C}$ for $5.0 \pm$ 0.5 seconds	
Resistance to Solder Heat	Appearance	No defects, $<25 \%$ leaching of either end terminal	Dip device in eutectic solder at $260^{\circ} \mathrm{C}$ for 60 sec - onds. Store at room temperature for 24 ± 2 hours before measuring electrical properties.	
	Capacitance Variation	$\leq \pm 2.5 \%$ or $\pm .25 \mathrm{pF}$, whichever is greater		
	Q	Meets Initial Values (As Above)		
	Insulation Resistance	Meets Initial Values (As Above)		
	Dielectric Strength	Meets Initial Values (As Above)		
Thermal Shock	Appearance	No visual defects	Step 1: $-55^{\circ} \mathrm{C} \pm 2^{\circ}$	30 ± 3 minutes
	Capacitance Variation	$\leq \pm 2.5 \%$ or $\pm .25 \mathrm{pF}$, whichever is greater	Step 2: Room Temp	≤ 3 minutes
	Q	Meets Initial Values (As Above)	Step 3: $+125^{\circ} \mathrm{C} \pm 2^{\circ}$	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles and measure after 24 hours at room temperature	
Load Life	Appearance	No visual defects	Charge device with twice rated voltage in test chamber set at $125^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ for 1000 hours ($+48,-0$). Remove from test chamber and stabilize at room temperature for 24 hours before measuring.	
	Capacitance Variation	$\leq \pm 3.0 \%$ or $\pm .3 \mathrm{pF}$, whichever is greater		
	$\begin{gathered} \mathrm{Q} \\ (\mathrm{C}=\text { Nominal Cap }) \end{gathered}$	$\geq 30 \mathrm{pF}:$ $\mathrm{Q} \geq 350$ $\geq 10 \mathrm{pF},<30 \mathrm{pF}:$ $\mathrm{Q} \geq 275+5 \mathrm{C} / 2$ $<10 \mathrm{pF}:$ $\mathrm{Q} \geq 200+10 \mathrm{C}$		
	Insulation Resistance	\geq Initial Value x 0.3 (See Above)		
	Dielectric Strength	Meets Initial Values (As Above)		
Load Humidity	Appearance	No visual defects	Store in a test chamber set at $85^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C} / 85 \% \pm$ 5% relative humidity for 1000 hours $(+48,-0)$ with rated voltage applied. Remove from chamber and stabilize at room temperature for 24 ± 2 hours before measuring.	
	Capacitance Variation	$\leq \pm 5.0 \%$ or $\pm .5 \mathrm{pF}$, whichever is greater		
	Q	$\geq 30 \mathrm{pF}:$ $\mathrm{Q} \geq 350$ $\geq 10 \mathrm{pF},<30 \mathrm{pF}:$ $\mathrm{Q} \geq 275+5 \mathrm{C} / 2$ $<10 \mathrm{pF}:$ $\mathrm{Q} \geq 200+10 \mathrm{C}$		
	Insulation Resistance	\geq Initial Value x 0.3 (See Above)		
	Dielectric Strength	Meets Initial Values (As Above)		

Capacitance Range
PREFERRED SIZES ARE SHADED

Letter	A	B	C	E	G	J	K	M	N	P	Q	X	Y	Z
Max. Thickness	$\begin{array}{\|c\|} \hline 0.33 \\ (0.013) \end{array}$	$\begin{gathered} 0.22 \\ (0.009) \\ \hline \end{gathered}$	$\begin{gathered} 0.56 \\ (0.022) \\ \hline \end{gathered}$	$\begin{gathered} 0.71 \\ (0.028) \\ \hline \end{gathered}$	$\begin{gathered} 0.90 \\ (0.035) \\ \hline \end{gathered}$	$\begin{gathered} 0.94 \\ (0.037) \\ \hline \end{gathered}$	$\begin{gathered} 1.02 \\ (0.040) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.27 \\ (0.050) \\ \hline \end{gathered}$	$\begin{gathered} 1.40 \\ (0.055) \\ \hline \end{gathered}$	$\begin{gathered} 1.52 \\ (0.060) \\ \hline \end{gathered}$	$\begin{gathered} 1.78 \\ (0.070) \\ \hline \end{gathered}$	$\begin{gathered} 2.29 \\ (0.090) \\ \hline \end{gathered}$	$\begin{gathered} 2.54 \\ (0.100) \\ \hline \end{gathered}$	$\begin{gathered} 2.79 \\ (0.110) \\ \hline \end{gathered}$
PAPER														

Capacitance Range

Letter	A	B	C	E	G	J	K	M	N	P	Q	X	Y	Z
Max. Thickness	$\begin{gathered} 0.33 \\ (0.013) \\ \hline \end{gathered}$	$\begin{gathered} 0.22 \\ (0.009) \end{gathered}$	$\begin{gathered} \hline 0.56 \\ (0.022) \\ \hline \end{gathered}$	$\begin{gathered} 0.71 \\ (0.028) \\ \hline \end{gathered}$	$\begin{gathered} 0.90 \\ (0.035) \\ \hline \end{gathered}$	$\begin{gathered} 0.94 \\ (0.037) \\ \hline \end{gathered}$	$\begin{gathered} 1.02 \\ (0.040) \\ \hline \end{gathered}$	$\begin{gathered} 1.27 \\ (0.050) \\ \hline \end{gathered}$	$\begin{gathered} 1.40 \\ (0.055) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.52 \\ (0.060) \\ \hline \end{gathered}$	$\begin{gathered} 1.78 \\ (0.070) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.29 \\ (0.090) \\ \hline \end{gathered}$	$\begin{gathered} 2.54 \\ (0.100) \\ \hline \end{gathered}$	$\begin{gathered} 2.79 \\ (0.110) \\ \hline \end{gathered}$
	PAPER						EMBOSSED							

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for AVX manufacturer:
Other Similar products are found below :
VE17M02750K-- CX2016DB16000D0GPSC1 LIFE_SAMP-1A139-159V001 CWR09HC106KBA PBRC7.37MR50X000 M39014/22-1137-
TUBE 009286001203906 M39014/22-1181 F931A227KNC FFLI6B3007KJE FLBB6O0336K03 12102U101JAT2A KIT5000UZ
KITTYPE1400 LF LD065A332FAB2A SA205C393JAA 308016056000413 SR211A151FAA F931A226MBA FFB24I0755K--
FFVI6A0227KJE CK06BX472K M39014/05-2731 M39014/220476 CWR29JC476KCHC TAJB225M035R TAJD226K035RNJV
TCH9107M035W0055U TLCU336M004XTA TPSE226K035R0125 TPSE226K035R0200 TWAE108K030SBEZ0000
KC3225K3.68640C1GE00 KC7050K50.0000C10E00 06035F271K4T2A 06035F471K4T2A 069296700101000 06035F222K4T2A
069176701902000 07016-092MCCA SR201A152JAA TPSE336K035R0250 TWAD108M050CBEZ0700 CX2520DB16000H0FLJC1
CDR14BP510EJUR CWR09KC106KCC RM055C825KAL360 CCR05CG220FS AR151C103K4R HQCEWM681GAH6A

