General Specifications

X7R formulations are called "temperature stable" ceramics and fall into EIA Class II materials. X7R is the most
 popular of these intermediate dielectric constant materials. Its temperature variation of capacitance is within $\pm 15 \%$ from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. This capacitance change is non-linear.
Capacitance for X7R varies under the influence of electrical operating con-ditions such as voltage and frequency.
X7R dielectric chip usage covers the broad spectrum of industrial applications where known changes in capacitance due to applied voltages are acceptable.

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.
Contact factory for non-specified capacitance values.

Specifications and Test Methods

Parameter/Test		X7R Specification Limits	Measuring Conditions	
Operating Temperature Range		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Temperature Cycle Chamber	
Capacitance		Within specified tolerance	Freq.: $1.0 \mathrm{kHz} \pm 10 \%$ Voltage: $1.0 \mathrm{Vrms} \pm .2 \mathrm{~V}$ For Cap > 10 FF, $0.5 \mathrm{Vrm} @ 120 \mathrm{~Hz}$	
Dissipation Factor		$\leq 10 \%$ for $\geq 50 \mathrm{~V}$ DC rating $\leq 12.5 \%$ for 25 V DC rating $\leq 12.5 \%$ for 25 V and 16 V DC rating $\leq 12.5 \%$ for $\leq 10 \mathrm{~V}$ DC rating Contact Factory for DF by PN		
Insulation Resistance		$100,000 \mathrm{M} \Omega$ or $1000 \mathrm{M} \Omega-\mu \mathrm{F}$, whichever is less	Charge device with rated voltage for 120 ± 5 secs @ room temp/humidity	
Dielectric Strength		No breakdown or visual defects	Charge device with 250% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Note: Charge device with 150% of rated voltage for 500 V devices.	
Resistance to Flexure Stresses	Appearance	No defects	Deflection: 2mm Test Time: 30 seconds	
	Capacitance Variation	$\leq \pm 12 \%$		
	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	\geq Initial Value x 0.3		
Solderability		$\geq 95 \%$ of each terminal should be covered with fresh solder	Dip device in eutectic solder at $230 \pm 5^{\circ} \mathrm{C}$ for 5.0 ± 0.5 seconds	
Resistance to Solder Heat	Appearance	No defects, $<25 \%$ leaching of either end terminal	Dip device in eutectic solder at $260^{\circ} \mathrm{C}$ for 60 seconds. Store at room temperature for $24 \pm$ 2 hours before measuring electrical properties.	
	Capacitance Variation	$\leq \pm 7.5 \%$		
	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	Meets Initial Values (As Above)		
	Dielectric Strength	Meets Initial Values (As Above)		
Thermal Shock	Appearance	No visual defects	Step 1: $-55^{\circ} \mathrm{C} \pm 2^{\circ}$	30 ± 3 minutes
	Capacitance Variation	$\leq \pm 7.5 \%$	Step 2: Room Temp	≤ 3 minutes
	Dissipation Factor	Meets Initial Values (As Above)	Step 3: $+125^{\circ} \mathrm{C} \pm 2^{\circ}$	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles and measure after 24 ± 2 hours at room temperature	
Load Life	Appearance	No visual defects	Charge device with 1.5 rated voltage ($\leq 10 \mathrm{~V}$) in test chamber set at $125^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ for 1000 hours $(+48,-0)$ If $\mathrm{RV}>10 \mathrm{~V}$ then Life Test voltage will be $2 x \mathrm{RV}$ but there are exceptions (please contact AVX for further details on exceptions) Remove from test chamber and stabilize at room temperature for 24 ± 2 hours before measuring.	
	Capacitance Variation	$\leq \pm 12.5 \%$		
	Dissipation Factor	\leq Initial Value $\times 2.0$ (See Above)		
	Insulation Resistance	\geq Initial Value x 0.3 (See Above)		
	Dielectric Strength	Meets Initial Values (As Above)		
Load Humidity	Appearance	No visual defects	Store in a test chamber set at $85^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C} / 85 \% \pm$ 5% relative humidity for 1000 hours ($+48,-0$) with rated voltage applied. Remove from chamber and stabilize at room temperature and humidity for 24 ± 2 hours before measuring.	
	Capacitance Variation	$\leq \pm 12.5 \%$		
	Dissipation Factor	\leq Initial Value x 2.0 (See Above)		
	Insulation Resistance	\geq Initial Value $\times 0.3$ (See Above)		
	Dielectric Strength	Meets Initial Values (As Above)		

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order

X7R Dielectric

Capacitance Range

PREFERRED SIZES ARE SHADED

SIZE		0101*	0201					0402					0603								0805								1206								
Soldering		Reflow Only	Reflow Only					Reflow/Wave					Reflow/Wave								Reflow/Wave								Reflow/Wave								
Packaging		Paper/Embossed	All Paper					All Paper					All Paper								Paper/Embossed								Paper/Embossed								
(L) Length mm (in.)		$\begin{gathered} 0.40 \pm 0.02 \\ (0.016 \pm 0.0008) \\ \hline \end{gathered}$	$\begin{gathered} 0.60 \pm 0.09 \\ (0.024 \pm 0.004) \\ \hline \end{gathered}$					$\begin{gathered} 1.00 \pm 0.10 \\ (0.040 \pm 0.004) \\ \hline \end{gathered}$					$\begin{gathered} 1.60 \pm 0.15 \\ (0.063 \pm 0.006) \end{gathered}$								$\begin{gathered} 2.01 \pm 0.20 \\ (0.079 \pm 0.008) \\ \hline \end{gathered}$								$\begin{gathered} 3.20 \pm 0.20 \\ (0.126 \pm 0.008) \\ \hline \end{gathered}$								
w) Width	mm (in.)	$\begin{gathered} 0.20 \pm 0.02 \\ (0.008 \pm 0.0008) \\ \hline \end{gathered}$	$\begin{gathered} 0.30 \pm 0.09 \\ (0.011 \pm 0.004) \\ \hline \end{gathered}$					$\begin{gathered} 0.50 \pm 0.10 \\ (0.020 \pm 0.004) \\ \hline \end{gathered}$					$\begin{gathered} 0.81 \pm 0.15 \\ (0.032 \pm 0.006) \\ \hline \end{gathered}$								$\begin{gathered} 1.25 \pm 0.20 \\ (0.049 \pm 0.008) \\ \hline \end{gathered}$								$\begin{gathered} 1.60 \pm 0.20 \\ (0.063 \pm 0.008) \end{gathered}$								
(t) Terminal mm (in.)		$\begin{gathered} 0.10 \pm 0.04 \\ (0.004 \pm 0.0016) \end{gathered}$	$\begin{gathered} 0.15 \pm 0.05 \\ (0.006 \pm 0.002) \end{gathered}$					$\begin{gathered} 0.25 \pm 0.15 \\ (0.010 \pm 0.006) \end{gathered}$					$\begin{gathered} 0.35 \pm 0.15 \\ (0.014 \pm 0.006) \end{gathered}$								$\begin{gathered} 0.50 \pm 0.25 \\ (0.020 \pm 0.010) \end{gathered}$								$\begin{gathered} 0.50 \pm 0.25 \\ (0.020 \pm 0.010) \end{gathered}$								
WVDC		16	63	10	16	25	50	63	10	16	25	50	63	10	16	25	50	100	200	250	63	10	16	25	50	100	200	250	63	10	16	25	50	100	200	250	500
Cap 100	101	B	A	A	A	A	A			c	c	c					G	G	G																		
(PF) 150	151	B	A	A	A	A	A			c	c	c					G	G	G																		
220	221	B	A	A	A	A	A			c	c	c					G	G	6		E	E	E	E	E	E	E										
330	331	B	A	A	A	A	A			c	c	c					6	G	G			J	J	J	J	J	J										K
470	471	B	A	A	A	A	A			c	c	c					G	G	G			J	J	J	J	J	J										K
680	681	B	A	A	A	A				C	C	C					G	G	G			J	J	J	J	J	J										K
1000	102	B	A	A	A	A			c	c	c	c					G	G	6	G		J	J	J	J	J	J	J								J	K
1500	152	B	A	A	A	A			c	c	c	c					G	G	J	G		J	J	J	J	J	J	J		J	J	J	J	J	J	J	M
2200	222	B	A	A	A	A			c	c	c	c					G	G	J	G		J	J	1	J	J	J	J		J	J	J	J	J	J	J	M
3300	332		A	A	A	A			c	c	c	c					G	G	J	G		J	J	J	J	J	J	J		J	J	J	J	J	J	J	M
4700	472		A	A	A	A			C	c	c	c					G	G	J	G		J	J	J	J	J	J	J		J	J	J	J	J	J	J	M
6800	682		A	A	A	A			c	c	C	c					6	G	J	G		J	J	J	J	J	J	J		J	J	J	J	J	J	J	P
Cap 0.01	103		A	A	A	A			c	c	c	c				G	G	G	J	G		J	J	J	J	J	J	J		J	J	J	J	J	J	J	P
(4F) $\quad 0.015$	153								c	c	c	c				G	G	G	J			J	J	J	J	J	J	N		J	J	J	J	J	M	J	Q
0.022	223								c	c	0	C				G	G	G				J	J	J	J	J	N	N		J	J	J	J	J	M	J	Q
0.033	333								c	c	0	c				G	G	J				J	J	J	J	N	N	N		J	J	J	J	J	M	J	Q
0.047	473								c	c	c	c			G	G	G	J				J	J	J	J	N	N	N		J	J	J	J	J	M	M	
0.068	683								c	c	c	c			G	G	G	J				J	J	J	J	N	N			J	J	J	J	J	P	M	
0.1	104								c	c	c	c		G	G	G	G	J				J	J	J	J	N	N			J	J	J	J	P	P	P	
0.15	154												G	G	G	G	J					J	J	J	N	N				J	J	J	J	Q	Q	Q	
0.22	224								c	c	c		G	G	J	J	J					J	J	N	N	N				J	J	J	J	Q	Q	Q	
0.33	334												J	J	J	J	J					N	N	N	N	N				J	J	M	P	Q			
0.47	474							c	c				J	J	J	J	J					N	N	N	N	N				M	M	M	P	Q			
0.68	684												J	J	J							N	N	N						M	M						
1.0	105							c					J	J	J	J	J					N	N	N	N					M	M	M	Q	Q			
2.2	225												J	J	J							P	P	P	P**					Q	Q	Q	Q	$Q^{\text {+4* }}$			
4.7	475												J									P	P	P						Q	Q	Q	z				
10	106																				P	P	P							Q	Q	x					
22	226																												X	Q	Q						
47	476																																				
100	107																																				
WVDC		16	6.3	10	16	25	50	63	10	16	25	50	63	10	16	25	50	100	200	250	63	10	16	25	50	100	200	250	63	10	16	25	50	100	200	250	500
SIZE		0101*			0201					0402							603								05								12				

Letter	A	B	C	E	G	J	K	M	N	P	Q	X	Y	Z
Max. Thickness	$\begin{gathered} 0.33 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.22 \\ (0.009) \end{gathered}$	$\begin{gathered} 0.56 \\ (0.022) \\ \hline \end{gathered}$	$\begin{gathered} 0.71 \\ (0.028) \\ \hline \end{gathered}$	$\begin{gathered} 0.90 \\ (0.035) \end{gathered}$	$\begin{gathered} 0.94 \\ (0.037) \end{gathered}$	$\begin{gathered} 1.02 \\ (0.040) \end{gathered}$	$\begin{gathered} 1.27 \\ (0.050) \\ \hline \end{gathered}$	$\begin{gathered} 1.40 \\ (0.055) \end{gathered}$	$\begin{gathered} 1.52 \\ (0.060) \\ \hline \end{gathered}$	$\begin{gathered} 1.78 \\ (0.070) \\ \hline \end{gathered}$	$\begin{gathered} 2.29 \\ (0.090) \\ \hline \end{gathered}$	$\begin{gathered} 2.54 \\ (0.100) \end{gathered}$	$\begin{gathered} 2.79 \\ (0.110) \\ \hline \end{gathered}$
	PAPER						EMBOSSED							

NOTE: Contact factory for non-specified capacitance values
*EIA 01005
**Contact Factory for Specifications

PREFERRED SIZES ARE SHADED

SIZE		1210							1812						1825			2220					2225		
Soldering		Reflow Only							Reflow Only						Reflow Only			Reflow Only					Reflow Only		
Packaging		Paper/Embossed							All Embossed						All Embossed			All Embossed					All Embossed		
(L) Length	$\begin{gathered} \mathrm{mm} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} 3.30 \pm 0.4 \\ (0.130 \pm 0.016) \end{gathered}$							$\begin{gathered} 4.50 \pm 0.30 \\ (0.177 \pm 0.012) \end{gathered}$						$\begin{gathered} 4.50 \pm 0.30 \\ (0.177 \pm 0.012) \end{gathered}$			$\begin{gathered} 5.70 \pm 0.50 \\ (0.224 \pm 0.020) \\ \hline \end{gathered}$					$\begin{gathered} 5.72 \pm 0.25 \\ (0.225 \pm 0.010) \\ \hline \end{gathered}$		
W) Width	$\begin{gathered} \mathrm{mm} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} 2.50 \pm 0.30 \\ (0.098 \pm 0.012) \end{gathered}$							$\begin{gathered} 3.20 \pm 0.20 \\ (0.126 \pm 0.008) \end{gathered}$						$\begin{gathered} 6.40 \pm 0.40 \\ (0.252 \pm 0.016) \end{gathered}$			$\begin{gathered} 5.00 \pm 0.40 \\ (0.197 \pm 0.016) \end{gathered}$					$\begin{gathered} 6.35 \pm 0.25 \\ (0.250 \pm 0.010) \end{gathered}$		
(t) Terminal	mm (in.)	$\begin{gathered} 0.50 \pm 0.25 \\ (0.020 \pm 0.010) \\ \hline \end{gathered}$							$\begin{gathered} 0.61 \pm 0.36 \\ (0.024 \pm 0.014) \\ \hline \end{gathered}$						$\begin{gathered} 0.61 \pm 0.36 \\ (0.024 \pm 0.014) \\ \hline \end{gathered}$			$\begin{gathered} 0.64 \pm 0.39 \\ (0.025 \pm 0.015) \\ \hline \end{gathered}$					$\begin{gathered} 0.64 \pm 0.39 \\ (0.025 \pm 0.015) \\ \hline \end{gathered}$		
WVDC		10	16	25	50	100	200	500	16	25	50	100	200	500	50	100	200	25	50	100	200	500	50	100	200
Cap 100	101																								
(pF) 150	151																								
220	221)	
330	331																				\bigcirc				
470	471																								
680	681																								
1000	102																								
1500	152	J	J	J	J	J	J	M																	
2200	222	J	J	J	J	J	J	M																	
3300	332	J	J	J	J	J	J	M																	
4700	472	J	J	J	J	J	J	M																	
6800	682	J	J	J	J	J	J	M																	
Cap 0.01	103	J	J	J	J	J	J	M		K	K	K	K	K	M	M	M		X	X	X	X	M	P	P
($\mu \mathrm{F}$) 0.015	153	J	J	J	J	J	J	P		K	K	K	K	M	M	M	M		X	X	X	X	M	P	P
0.022	223	J	J	J	J	J	J	Q		K	K	K	K	P	M	M	M		x	X	x	X	M	P	P
0.033	333	J	J	J	J	J	J	Q		K	K	K	K	X	M	M	M		X	x	X	X	M	P	P
0.047	473	J	J	J	J	J	J	Q		K	K	K	K	X	M	M	M		X	X	X	X	M	P	P
0.058	683	J	J	J	J	J	M	Q		K	K	K	K	X	M	M	M		X	X	X	X	M	P	P
0.1	104	J	J	J	J	J	M	X		K	K	K	K	X	M	M	M		X	X	X	X	M	P	P
0.15	154	J	J	J	J	M	Z			K	K	K	P	z	M	M	M		X	X	X	X	M	P	X
0.22	224	J	J	J	J	P	Z			K	K	K	P	z	M	M	M		X	X	x	X	M	P	X
0.33	334	J	J	J	J	Q				K	K	M	X	Z	M	M			X	X	X	X	M	P	X
0.47	474	M	M	M	M	Q				K	K	P	X	Z	M	M			X	X	X	X	M	P	X
0.68	684	M	M	P	X	X				M	M	Q			M	P			X	X			M	P	X
1.0	105	N	N	P	X	z				M	M	X	Z		M	P			X	x			M	P	X
1.5	155	N	N	Z	Z	Z				Z	Z	z			Q				X	X			M	X	z
2.2	225	X	X	Z	Z	z				z	Z	z							X	X			M	X	Z
3.3	335	X	X	z	z	z				z	z	z							X	z					
4.7	475	Z	Z	z	z	z				z	z								z	Z					
10	106	Z	z	Z	Z				Z										Z	Z					
22	226	Z	Z	Z														Z							
47	476	Z																							
100	107																								
WVDC		10	16	25	50	100	200	500	16	25	50	100	200	500	50	100	200	25	50	100	200	500	50	00	200
SIZE		1210							1812						1825			2220					2225		

Letter	A	B	C	E	G	J	K	M	N	P	Q	X	Y	Z
Max. Thickness	$\begin{gathered} 0.33 \\ (0.013) \\ \hline \end{gathered}$	$\begin{gathered} 0.22 \\ (0.009) \\ \hline \end{gathered}$	$\begin{gathered} 0.56 \\ (0.022) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.71 \\ (0.028) \\ \hline \end{gathered}$	$\begin{gathered} 0.90 \\ (0.035) \\ \hline \end{gathered}$	$\begin{gathered} 0.94 \\ (0.037) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.02 \\ (0.040) \\ \hline \end{gathered}$	$\begin{gathered} 1.27 \\ (0.050) \\ \hline \end{gathered}$	$\begin{gathered} 1.40 \\ (0.055) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 1.52 \\ (0.060) \\ \hline \end{array}$	$\begin{gathered} \hline 1.78 \\ (0.070) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 2.29 \\ (0.090) \\ \hline \end{array}$	$\begin{gathered} 2.54 \\ (0.100) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 2.79 \\ (0.110) \\ \hline \end{array}$
	PAPER						EMBOSSED							

NOTE: Contact factory for non-specified capacitance values

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multilayer Ceramic Capacitors MLCC - SMD/SMT category:
Click to view products by AVX manufacturer:
Other Similar products are found below :
M39014/01-1467 M39014/02-1218V M39014/02-1225V M39014/02-1262V M39014/02-1301 M39014/22-0631 1210J5000102JCT
1210J2K00102KXT 1210J5000103KXT 1210J5000223KXT D55342E07B379BR-TR D55342E07B523DR-T/R 1812J1K00103KXT
1812J1K00473KXT 1812J2K00680JCT 1812J4K00102MXT 1812J5000102JCT 1812J5000103JCT 1812J5000682JCT NIN-FB391JTRF
NIN-FC2R7JTRF NPIS27H102MTRF C1206C101J1GAC C1608C0G1E472JT000N C2012C0G2A472J 2220J2K00101JCT
KHC201E225M76N0T00 LRC-LRF1206LF-01R025FTR1K 1812J1K00222JCT 1812J2K00102KXT 1812J2K00222KXT
1812J2K00472KXT 2-1622820-7-CUT-TAPE 2220J3K00102KXT 2225J2500824KXT CCR07CG103KM CGA2B2C0G1H010C
CGA2B2C0G1H040C CGA2B2C0G1H050C CGA2B2C0G1H060D CGA2B2C0G1H070D CGA2B2C0G1H151J CGA2B2C0G1H1R5C
CGA2B2C0G1H2R2C CGA2B2C0G1H3R3C CGA2B2C0G1H680J CGA2B2C0G1H6R8D CGA2B2X8R1H221K CGA2B2X8R1H472K CGA3E1X7R1C474K

