Over-Voltage Protection Load Switch with Surge Protection

FEATURES

- Highly reliable $1.3 \mathrm{~mm} \times 1.8 \mathrm{~mm}$ FCQFN-12 package
- Surge protection
$>$ IEC 61000-4-5: > 120V
- Integrated low Rdson nFET switch: typical $27 \mathrm{~m} \Omega$
- 5A continuous current capability
- Default Over-Voltage Protection (OVP) threshold
> AW32901:5.95V
$>$ AW32902: 6.2V
> AW32905: 6.8V
$>$ AW32909: 9.98V
> AW32910: 10.5 V
> AW32912:14V
- OVP threshold adjustable range: 4 V to 20 V
- Input system ESD protection
$>$ IEC 61000-4-2 Contact discharge: $\pm 8 \mathrm{kV}$
$>$ IEC 61000-4-2 Air gap discharge: $\pm 15 \mathrm{kV}$
- Input maximum voltage rating: 29VDC
- Fast turn-off response: typical 50 ns
- Over-Temperature Protection (OTP)
- Under-Voltage Lockout (UVLO)

APPLICATIONS

- Smartphones
- Tablets
- Charging Ports

GENERAL DESCRIPTION

The AW329xx family OVP load switch features surge protection, an internal clamp circuit protects the device from surge voltages up to 120 V .

The AW329xx features an ultra-low $27 \mathrm{~m} \Omega$ (typ.) Rdson nFET load switch. When input voltage exceeds the OVP threshold, the switch is turned off very fast to prevent damage to the protected downstream devices. The IN pin is capable of withstanding fault voltages up to $29 \mathrm{~V}_{\mathrm{Dc}}$.

The default OVP threshold is 5.95 V (AW32901), 6.2V (AW32902), 6.8V (AW32905), 9.98V (AW32909), 10.5V (AW32910) and 14 V (AW32912), the OVP threshold can be adjusted from 4 V to 20 V through external OVLO pin.

The device features an open-drain output $\overline{\mathrm{ACOK}}$, when $\mathrm{V}_{\mathbb{I N} \text { _UVLo }}<\mathrm{V}_{\mathbb{I N}}<\mathrm{V}_{\mathbb{I N}}$ oveo and the switch is on, $\overline{\mathrm{ACOK}}$ will be driven low to indicate a good power input, otherwise it is high impedance.

This device features over-temperature protection that prevents itself from thermal damaging.

The AW329xx is available in a RoHS compliant $1.3 \mathrm{~mm} \times 1.8 \mathrm{~mm}$ FCQFN-12 package.

TYPICAL APPLICATION CIRCUIT

Figure 1 AW329XX typical application circuit
R_{1} and R_{2} are used for OVP threshold adjustment, to use default OVP threshold, connect OVLO to ground.
All the trademarks mentioned in the document are the property of their owners.

awinic

DEVICE COMPARISON TABLE

Device	Vin＿ovlo（V）				Vin＿ovlo hysteresis（mV）
	Condition	Min．	Typ．	Max．	
AW32901	VIN rising	5.83	5.95	6.07	130
AW32902	VIN rising	6.08	6.20	6.32	130
AW32905	Vin rising	6.66	6.80	6.94	140
AW32909	VIN rising	9.78	9.98	10.18	210
AW32910	VIN rising	10.29	10.50	10.71	210
AW32912	VIN rising	13.7	14.0	14.3	280

PIN CONFIGURATION AND TOP MARK

Figure 2 Pin Configuration and Top Mark

PIN DEFINITION

Pin	Name	Description
A1	$\overline{\mathrm{EN}}$	Enable pin，active low
B1	$\overline{\text { ACOK }}$	Power good flag，active－low，open－drain
C1	OVLO	OVP threshold adjustment pin
C2，C3，B3	IN	Switch input and device power supply
A2，A3，B2	OUT	Switch output
A4，B4，C4	GND	Device ground

FUNCTIONAL BLOCK DIAGRAM

Figure 3 Functional Block Diagram

TYPICAL APPLICATION CIRCUITS

Figure 4 AW329XX typical application circuit（using default OVP threshold）

Figure 5 AW329XX typical application circuit（using external resistors set OVP threshold）

Notice for Typical Application Circuits：

1．If VBUS is required to pass surge voltage greater than 120 V ，external TVS is needed，the maximum clamping voltage of the TVS should be below 34 V ．

2．When the default OVP threshold is used，connect OVLO pin to GND directly or through a 0Ω resistor． OVLO pin cannot be left floating．

3．If R_{1} and R_{2} are used to adjust the OVP threshold，it is better to use 1% precision resistors to improve the OVP threshold precision．
4．If $\overline{\mathrm{ACOK}}$ is not used，it can be left floating，or short to GND．
5．$\quad \mathrm{C}_{\mathbb{N}}=0.1 \mu \mathrm{~F}$ is recommended for typical application，larger $\mathrm{C}_{\mathbb{N}}$ is also acceptable．The rated voltage of $\mathrm{C}_{\mathbb{N}}$ should be larger than the TVS maximum clamping voltage，if no TVS is applied and only AW329XX is used，the rated voltage of $\mathrm{C}_{\text {IN }}$ should be 50 V ．

6．Cout $=1 \mu \mathrm{~F}$ is recommended for typical application，larger Cout is also acceptable．The rated voltage of Cout should be larger than the OVP threshold．For example，if the OVP threshold is 6.8 V ，the rated voltage of Cout should be 10 V or higher．

awinic

ORDERING INFORMATION

Part Number	Temperature	Package	Marking	Moisture Sensitivity Level	Environmental Information	Delivery Form
AW32901FCR	$-40^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}$	$\begin{gathered} \hline 1.3 \mathrm{~mm} \times \\ 1.8 \mathrm{~mm} \times \\ 0.55 \mathrm{~mm} \\ \text { FCQFN-12 } \end{gathered}$	NV9	MSL1	ROHS＋HF	Tape and Reel 3000pcs／Reel
AW32902FCR	$-40^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}$	$\begin{gathered} \hline 1.3 \mathrm{~mm} \times \\ 1.8 \mathrm{~mm} \times \\ 0.55 \mathrm{~mm} \\ \text { FCQFN-12 } \end{gathered}$	OWM	MSL1	ROHS＋HF	Tape and Reel 3000pcs／Reel
AW32905FCR	$-40^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}$	$\begin{gathered} 1.3 \mathrm{~mm} \times \\ 1.8 \mathrm{~mm} \times \\ 0.55 \mathrm{~mm} \\ \text { FCQFN-12 } \end{gathered}$	RZR	MSL1	ROHS＋HF	Tape and Reel 3000pcs／Reel
AW32909FCR	$-40^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}$	$\begin{gathered} 1.3 \mathrm{~mm} \times \\ 1.8 \mathrm{~mm} \times \\ 0.55 \mathrm{~mm} \\ \text { FCQFN-12 } \end{gathered}$	V5B	MSL1	ROHS＋HF	Tape and Reel 3000pcs／Reel
AW32910FCR	$-40^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}$	$\begin{gathered} 1.3 \mathrm{~mm} \times \\ 1.8 \mathrm{~mm} \times \\ 0.55 \mathrm{~mm} \\ \text { FCQFN-12 } \end{gathered}$	N9V	MSL1	ROHS＋HF	Tape and Reel 3000pcs／Reel
AW32912FCR	$-40^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}$	$\begin{gathered} \hline 1.3 \mathrm{~mm} \times \\ 1.8 \mathrm{~mm} \times \\ 0.55 \mathrm{~mm} \\ \text { FCQFN-12 } \end{gathered}$	PBN	MSL1	ROHS＋HF	Tape and Reel 3000pcs／Reel
AW329xx $\square \square \square$						
			Package Type FC：FCQFN			

ABSOLUTE MAXIMUM RATINGS ${ }^{\text {（NOTE 1）}}$

Symbol	Parameter	Condition	Min．	Max．	Unit
VIN	Input voltage		－0．3	29	V
Vout	Output voltage		－0．3	See ${ }^{(N O T E ~ 2)}$	V
Vovio	OVLO voltage		－0．3	6	V
$\mathrm{V}_{\overline{\text { ACOK }}}$	$\overline{\text { ACOK }}$ voltage		－0．3	6	V
$V_{\text {EN }}$	$\overline{\mathrm{EN}}$ voltage		－0．3	6	V
Isw	Continuous current of switch IN－OUT（NOTE 3）	Continuous current on IN and OUT pin		5	A
Ipeak	Peak current	Peak input and output current on IN and OUT pin（10ms）		8	A
Idiode	Continuous diode current	Continuous forward current through the nFET body diode		1.5	A
$\mathrm{T}_{\text {A }}$	Ambient temperature		－40	85	${ }^{\circ} \mathrm{C}$
TJ	Junction temperature		－40	150	${ }^{\circ} \mathrm{C}$
TSTG	Storage temperature		－65	150	${ }^{\circ} \mathrm{C}$
TLEAD	Soldering temperature	At leads， 10 seconds		260	${ }^{\circ} \mathrm{C}$
Surge	Input surge protection	IEC61000－4－5 test with 2Ω equivalent series resistance	120		V

NOTE1：Conditions out of those ranges listed in＂absolute maximum ratings＂may cause permanent damages to the device．In spite of the limits above，functional operation conditions of the device should within the ranges listed in＂recommended operating conditions＂．Exposure to absolute－maximum－rated conditions for prolonged periods may affect device reliability．

NOTE2： 29 V or $V_{\operatorname{IN}}+0.3 \mathrm{~V}$ ，whichever is smaller．
NOTE3：Limited by thermal design．

THERMAL INFORMATION

Symbol	Parameter	Condition	Value	Unit
$R_{\theta J A}$	Thermal resistance from junction to ambient $($ NOTE 1）	In free air	65	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTE1：Thermal resistance from junction to ambient is highly dependent on PCB layout．

ƏNVAIC 上海艾为电子技术股份有限公司

ESD AND LATCH－UP RATINGS

Symbol	Parameter	Condition	Value	Unit
Vesd	IEC61000－4－2 system ESD on IN pin	Contact discharge	± 8	kV
		Air gap discharge	± 15	kV
	Human Body Model	All pins，per MIL－STD－883J Method 3015.9	± 2	kV
	Charged Device Model	All pins，per ESDA／JEDEC JS－002－2014	± 1	kV
	Machine Model	All pins，per JESD22－A115C	± 200	V
ILatch－up	Latch－up	All pins，per JESD78D，I Trigger	± 800	mA

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min．	Typ．	Max．	Unit
V_{IN}	Input DC voltage	3		28	V
C_{IN}	Input capacitance		0.1		$\mu \mathrm{~F}$
Cout	Output load capacitance		1		$\mu \mathrm{~F}$

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ unless otherwise noted. Typical values are guaranteed for $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=0.1 \mu \mathrm{~F}, \mathrm{l}_{\mathrm{I}} \leq 5 \mathrm{~A}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Description	Test Conditions		Min.	Typ.	Max.	Units
Vin_clamp	Input clamp voltage	$\mathrm{l}_{\mathrm{IN}}=10 \mathrm{~mA}$			30.8		V
Rdson	Switch on resistance	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$, lout $=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			27	37	$\mathrm{m} \Omega$
lo	Input quiescent current	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OvLo }}=0 \mathrm{~V}$, Iout $=0 \mathrm{~A}$			65	130	$\mu \mathrm{A}$
lin_ovlo	Input current at overvoltage condition	VIN $=5 \mathrm{~V}$, Vovlo $=3 \mathrm{~V}, \mathrm{Vout}=0 \mathrm{~V}$			60	120	$\mu \mathrm{A}$
Vovlo_th	OVLO set threshold			1.16	1.20	1.24	V
Vovlo_rng	OVP threshold adjustable range			4		20	V
Vovlo_sel	External OVLO select threshold	OVLO rising		0.19	0.26	0.33	V
		Hysteresis			0.06		v
lovıo	OVLO pin leakage current	VovLo=Vovlo_th		-0.2		0.2	$\mu \mathrm{A}$
Protection							
Vin_ovlo	OVP trip level	AW32901	Vin rising	5.83	5.95	6.07	V
			Hysteresis		0.13		
		AW32902	VIN rising	6.08	6.20	6.32	
			Hysteresis		0.13		
		AW32905	VIN rising	6.66	6.80	6.94	
			Hysteresis		0.14		
		AW32909	VIn rising	9.78	9.98	10.18	
			Hysteresis		0.21		
		AW32910	VIN rising	10.29	10.50	10.71	
			Hysteresis		0.21		
		AW32912	VIN rising	13.7	14.0	14.3	
			Hysteresis		0.28		

ELECTRICAL CHARACTERISTICS (CONTINUED)

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ unless otherwise noted. Typical values are guaranteed for $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{CiN}_{\mathrm{IN}}=0.1 \mu \mathrm{~F}, \mathrm{l}_{\mathrm{I}} \leq 5 \mathrm{~A}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Description	Test Conditions	Min.	Typ.	Max.	Units
Protection(continued)						
Vin_uvto	UVLO trip level	$V_{\text {IN }}$ rising		2.9	3.0	V
		Hysteresis		0.1		
TsDN	Shutdown temperature			150		${ }^{\circ} \mathrm{C}$
TSDN_HYs	Shutdown temperature hysteresis			20		${ }^{\circ} \mathrm{C}$
Rdchg	Output discharge resistance	Vout $=7 \mathrm{~V}, \mathrm{~V}$ OVLo $=3 \mathrm{~V}$		50		Ω
Digital Logical Interface						
Vol	$\overline{\text { ACOK }}$ output low voltage	$\mathrm{I}_{\text {SINK }}=1 \mathrm{~mA}$			0.4	V
$\mathrm{I}_{\text {LEAK_ }} \overline{\text { ACOK }}$	$\overline{\mathrm{ACOK}}$ leakage current	$\mathrm{V}_{10}=5 \mathrm{~V}, \overline{\mathrm{ACOK}}$ de-asserted	-0.5		0.5	$\mu \mathrm{A}$
V_{IH}	$\overline{\mathrm{EN}}$ input high voltage		1.2			V
VIL	$\overline{\mathrm{EN}}$ input low voltage				0.5	V
$I_{\text {LEAK_EN }}$	$\overline{\mathrm{EN}}$ leakage current	$\mathrm{V}_{\overline{\mathrm{EN}}}=5 \mathrm{~V}$	0		2	$\mu \mathrm{A}$

Timing Characteristics (Figure 6)

tdeb	Debounce time	From Vin $>$ Vin_uvlo to 10% Vout	15	ms
tstart	Start-up time	From Vin > Vin_uvlo to $\overline{\mathrm{ACOK}}$ low	30	ms
ton	Switch turn-on time	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=22 \mu \mathrm{~F}, \mathrm{~V}_{\text {out }}$ from 10% Vin to 90% Vin	2	ms
toff	Switch turn-off time	$C_{L}=0 \mu F, R_{L}=100 \Omega, V_{I N}>$ Vin_ovlo to Vout stop rising, VIN rise at $10 \mathrm{~V} / \mu \mathrm{s}$	50	ns

awinic

TIMING DIAGRAM

Figure 6 Timing diagram

awinic

TYPICAL CHARACTERISTICS

Table 1 Table of Figures

INDEX	Figure No
Rdson vs．Output Current	FIGURE 7
Rdson vs．Temp．（ $\left.{ }_{\text {lout }}=1 \mathrm{~A}\right)$	FIGURE 8
$\mathrm{R}_{\text {dson }}$ vs．Input Voltage（ ${ }_{\text {lout }}=1 \mathrm{~A}$ ）	FIGURE 9
Input Supply Current vs．Supply Voltage	FIGURE 10
Normalized Internal OVP Threshold vs．Temp．	FIGURE 11
OVLO set threshold vs．Temp．	FIGURE 12
Power－up（Cout $=1 \mu \mathrm{~F}, 100 \mathrm{~mA}$ load $)$	FIGURE 13
Power－up（Cout $=100 \mu \mathrm{~F}, 100 \mathrm{~mA}$ load $)$	FIGURE 14
OVP Response（AW32905）	FIGURE 15
130V Surge Response（AW32905）	FIGURE 16

$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~V}_{\overline{\mathrm{EN}}}=0 \mathrm{~V}, \mathrm{~V}_{\text {ovLo }}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=0.1 \mu \mathrm{~F}$ ，Cout $=1 \mu \mathrm{~F}$ ，and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified．

Figure 7 Rdson vs．Output Current

Figure 8 Rdson vs．Temp．（lout＝1A）

awinic

TYPICAL CHARACTERISTICS（CONTINUED）

$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~V}_{\overline{\mathrm{EN}}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OVLO }}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\text {out }}=1 \mu \mathrm{~F}$ ，and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified．

Figure 9 Rdson vs．Input Voltage（lout $=1 \mathrm{~A}$ ）

Figure 11 Normalized Internal OVP Threshold vs．Temp．

Figure 10 Input Supply Current vs．Supply Voltage

Figure 12 OVLO set threshold vs．Temp．

Figure 13 Power－up $($ Cout $=1 \mu \mathrm{~F}, 100 \mathrm{~mA}$ load $)$ ．

awinic

TYPICAL CHARACTERISTICS（CONTINUED）

$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~V}_{\overline{\mathrm{EN}}}=0 \mathrm{~V}, \mathrm{~V}_{\text {ovLo }}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=0.1 \mu \mathrm{~F}$ ，Cout $=1 \mu \mathrm{~F}$ ，and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified．

Figure 15 OVP Response（AW32905）

Figure 16 130V Surge Response（AW32905）

FUNCTIONAL DESCRIPTION

Device Operation

If the AW329xx is enabled and the input voltage is between UVLO and OVP threshold，the internal charge pump begins to work after debounce time，the gate of the nFET switch will be slowly charged high till the switch is fully on．$\overline{\text { ACOK }}$ will be driven low about 30 ms after V_{IN} valid，indicating the switch is on with a good power input．If the input voltage exceeds the OVP trip level，the switch will be turned off in about 50 ns．If $\overline{\mathrm{EN}}$ is pulled high，or input voltage falls below UVLO threshold，or over－temperature happens，the switch will also be turned off．

Surge Protection

The AW329xx integrates a clamp circuit to suppress input surge voltage．For surge voltages between Vin＿ovlo and $\mathrm{V}_{\mathrm{IN} \text {＿clamp，}}$ the switch will be turned off but the clamp circuit will not work．For surge voltages greater than Vin＿clamp，the internal clamp circuit will detect surge voltage level and discharge the surge energy to ground． The device can suppress surge voltages up to 120 V ．

Over－Voltage Protection

If the input voltage exceeds the OVP rising trip level，the switch will be turned off in about 50 ns ．The switch will remain off until $\mathrm{V}_{\mathbb{N}}$ falls below the OVP falling trip level．

OVP Threshold Adjustment

If the default OVP threshold is used，OVLO pin must be grounded．If OVLO pin is not grounded，and by connecting external resistor divider to OVLO pin as shown in the typical application circuit，between IN and GND， the OVP threshold can be adjusted as following：

$$
V_{\text {IN_OVLO }}=\frac{R_{1}+R_{2}}{R_{2}} V_{\text {OVLO_TH }}
$$

For example，if we select $R_{1}=1 \mathrm{M} \Omega$ and $R_{2}=100 \mathrm{k} \Omega$ ，then the new OVP threshold calculated from the above formula is 13.2 V ．The OVP threshold adjustment range is from 4 V to 20 V ．When the OVLO pin voltage Vovlo exceeds Vovlo＿sel（ 0.26 V typical），Vovlo is compared with the reference voltage Vovlo＿th（ 1.2 V typical）to judge whether input supply is over－voltage．

$\overline{\text { ACOK Output }}$

The device features an open－drain output $\overline{\mathrm{ACOK}}$ ，it should be connected to the system I／O rail through a pull－ up resistor．If the device is enabled and $\mathrm{VIN}_{\text {IN }}$ UVLO $<\mathrm{VIN}_{\text {IN }}<\mathrm{VIN}_{\text {IN ovlo，}} \overline{\mathrm{ACOK}}$ will be driven low indicating the switch is on with a good power input．If OVP，UVLO，or OT occurs，or $\overline{\mathrm{EN}}$ is pulled high，the switch will be turned off and $\overline{\mathrm{ACOK}}$ will be pulled high．

USB On－The－Go（OTG）Operation

If $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ and OUT is supplied by OTG voltage，the body diode of the load switch conducts current from OUT to IN and the voltage drop from OUT to IN is approximately 0.7 V ．When $\mathrm{V}_{\mathrm{IN}}>\mathrm{V}_{\text {IN＿UvLo，}}$ internal charge pump begins to open the load switch after debounce time（about 15ms）．After switch is fully on，current is supplied through switch channel and the voltage drop from OUT to IN is minimum．

PCB LAYOUT CONSIDERATION

To make fully use of the performance of AW329XX，the guidelines below should be followed．
1．All the peripherals should be placed as close to the device as possible．Place the input capacitor C in on the top layer（same layer as the AW329XX）and close to IN pin，and place the output capacitor Cout on the top layer （same layer as the AW329XX）and close to OUT pin．

2．If external TVS is used，IN pin routing passes through the external TVS firstly，and then connect AW329XX．
3．Red bold paths on figure 4 and 5 are power lines that will flow large current，please route them on PCB as straight，wide and short as possible．

4．If R_{1} and R_{2} are used，route OVLO line on PCB as short as possible to reduce parasitic capacitance．
5．The power trace from USB connector to AW329XX may suffer from ESD event，keep other traces away from it to minimize possible EMI and ESD coupling．

6．Use rounded corners on the power trace from USB connector to AW329XX to decrease EMI coupling．

awinic

TAPE AND REEL INFORMATION

CARRIER TAPE

User Direction of Feed

NOTE：
1．Unit：mm；
2．Material：3000（carbon filled polycarbonate）；
3．A permissible difference of the accumulation pitch of the sending hole is assumed to be ± 0.2 up to 10 pitches；
4．Surface resistance： 10^{5} to 10^{11} ohms／sq．

วNWi 1 ㄷ 上海艾为电子技术股份有限公司

REEL

NOTE：
1．Units：mm；
2．Material：polystyrene；
3．Planeness：max 3mm；
4．Surface resistance： 10^{5} to 10^{11} ohms／sq；
5．All outstanding tolerance：$\pm 0.25 \mathrm{~mm}$ ．

∂W Minic 上海艾为电子技术股份有限公司

PACKAGE DESCRIPTION

TOP VIEW

SIDE VIEW

BOTTOM VIEW

SYMBOL	MIN	NOM	MAX
A	0.50	0.55	0.60
A1	0.00	0.02	0.05
A3	$0.15 R E F$		
D	1.20	1.30	1.40
E	1.70	1.80	1.90
e1	0 REF．		
e2	0.200 REF．		
e3	0.400 REF．		
L	0.18	0.25	0.30
L1	$0.16 R E F$		
L2	$0.25 R E F$		
L3	0.175 REF．		

Unit：mm

NOTE：
All dimensions do not include mold flash or protrusions．

コN1 คiC 上海艾为电子技术股份有限公司

SOLDER MASK DETAILS

Pad Type：Solder Mask Defined

PAD Type：Non－Solder Mask Defined
NOTE：
1．Not to scale
2．Unit： mm ．

REFLOW

Figure 17 Package Reflow Oven Thermal Profile

Table 2 Package Reflow Standard

Reflow Note	Spec
Average ramp-up rate $\left(217^{\circ} \mathrm{C}\right.$ to Peak)	Max. $3^{\circ} \mathrm{C} / \mathrm{sec}$
Time of Preheat temp.(from $150^{\circ} \mathrm{C}$ to $\left.200^{\circ} \mathrm{C}\right)$	$60-120 \mathrm{sec}$
Time to be maintained above $217^{\circ} \mathrm{C}$	$60-150 \mathrm{sec}$
Peak Temperature	$250-260^{\circ} \mathrm{C}$
Time within $5^{\circ} \mathrm{C}$ of actual peak temp	$20-40 \mathrm{sec}$
Ramp-down rate	Max. $6^{\circ} \mathrm{C} / \mathrm{sec}$
Time from $25^{\circ} \mathrm{C}$ to peak temp	Max. 8 min

NOTE:

1. All data are compared with the package-top temperature, measured on the package surface;
2. AW329XX adopted the Pb-Free assembly.

REVISION HISTORY

Vision	Date	Change Record
V0.9	February 2018	Datasheet V0.9 released
V1.0	April 2018	1. Added Typical Characteristics. 2. Added Tape and Reel Information. 3. Added Solder Mask Details. 4. Added Reflow Information.
V1.1	September, 2018	Storage Temperature Modified

DISCLAIMER

Information in this document is believed to be accurate and reliable. However, Shanghai AWINIC Technology Co., Ltd (AWINIC Technology) does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

AWINIC Technology reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Customers shall obtain the latest relevant information before placing orders and shall verify that such information is current and complete. This document supersedes and replaces all information supplied prior to the publication hereof.

AWINIC Technology products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an AWINIC Technology product can reasonably be expected to result in personal injury, death or severe property or environmental damage. AWINIC Technology accepts no liability for inclusion and/or use of AWINIC Technology products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications that are described herein for any of these products are for illustrative purposes only. AWINIC Technology makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
All products are sold subject to the general terms and conditions of commercial sale supplied at the time of order acknowledgement.

Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Reproduction of AWINIC information in AWINIC data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. AWINIC is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of AWINIC components or services with statements different from or beyond the parameters stated by AWINIC for that component or service voids all express and any implied warranties for the associated AWINIC component or service and is an unfair and deceptive business practice. AWINIC is not responsible or liable for any such statements.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Awinic manufacturer:

Other Similar products are found below :
AP22652AW6-7 MAPDCC0001 L9349TR-LF MAPDCC0005 NCP45520IMNTWG-L VND5050K-E MP6205DD-LF-P MC15XS3400DHFKR2 FPF1015 FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G L9781TR NCP45520IMNTWG-H MC17XS6500BEK SP2526A-1EN-L/TR SP2526A-2EN-L/TR MAX4999ETJ+T MC22XS4200BEK MAX14575BETA+T VN1160C-1-E VN750PEP-E TLE7244SL BTS50060-1EGA MAX1693HEUB+T MC07XSG517EK TLE7237SL MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 MP6513LGJ-P NCP3902FCCTBG AP22811BW5-7 SLG5NT1437VTR SZNCP3712ASNT1G NCV330MUTBG DML1008LDS-7 MAX4987AEETA+T KTS1670EDA-TR MAX1694EUB+T KTS1640QGDV-TR KTS1641QGDV-TR IPS160HTR BTS500251TADATMA2 NCV451AMNWTBG MC07XS6517BEKR2 SIP43101DQ-T1-E3 DML10M8LDS-13 MAX1922ESA+C71073

