

11V Fast Startup With FO Detect And Tracking LRA Haptic Driver

Features

- 1MHz I2C Bus
- 8-KByte Memory
- 12k/24k/48k input wave sampling rate
- F0 detect and tracking
- Advance autobrake engine integrated
- Playback mode:
 - Real time playback(Up to 4KByte FIFO)
 - Memory playback
 - 3 Trigger playback
 - One wire playback
 - Cont playback
- Resistance-Based LRA Diagnostics
- Drive signal monitor for LRA protect
- Drive Compensation Over Battery Discharge
- Fast Start Up Time <1ms
- Dedicated interrupt output pin
- Boost output voltage up to 11V
- VOUT=9V@Vbat=4.2V for 8Ω LRA
- Support automatically switch to standby mode
- Standby current: 8uA@Vbat=3.6V
- Shutdown current: 0.1uA
- Supply voltage range 3 to 5.5V
- Short-Circuit Protection, Over-Temperature Protection, Under-Voltage Protection
- FCQFN 2mm × 3mm × 0.55mm -20L Package

Applications

- Mobile phones
- **Tablets**
- Wearable Devices

All trademarks are the property of their respective owners.

General Description

AW86927 is a high voltage H-bridge, single chip LRA haptic driver, with F0 detecting and tracking based on BEMF, with a boost converter up to 11V drive voltage inside, supporting real time playback, memory playback, cont playback, one wire and hardware pin trigged playback. A typical startup time of 1ms makes the AW86927 an ideal haptic driver for fast responses.

AW86927 integrates a 8KByte SRAM for userdefined waveforms to achieve a variety of vibration experiences, supporting 3 sampling rate(12k/24k/48k) of waveforms loaded in SRAM, supporting output waveform sampling rate upsampling to 48k.

AW86927 integrates an autobrake engine to suppress the aftershocks to zero for different drive waveforms(short or long) on different LRA motors.

AW86927 supports LRA fault diagnostic based on resistance measurement and protections of shortcircuit, over-temperature and under-voltage.

AW86927 integrates a high-efficiency boost converter as the H-Bridge driver supply rail. The output voltage, maximum current limit and maximum boost current are configurable.

AW86927 features configurable automatically switch to standby mode after haptic waveform playback finished. This can less quiescent power consumption. The RSTN pin provides further power saving by fully shut down the whole device. Dedicated interrupt output pin can detect real time FIFO status and the error status of the chip.

AW86927 features general settings communicated via an I2C-bus interface and its I2C address is configurable.

AW86927 is available in a FCQFN 2mm x 3mm x 0.55mm -20L package.

PIN CONFIGURATION AND TOP MARK

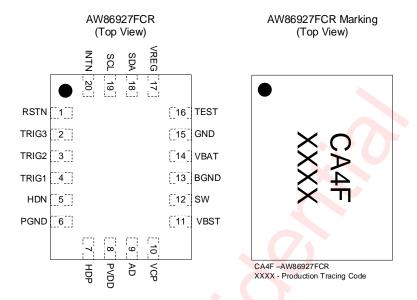


Figure 1 Pin Configuration and Top Mark

Pin Definition

No.	NAME	I/O	DESCRIPTION
1	RSTN	I	Active low hardware reset. High: standby/active mode, Low: power-down mode. Internal have $2M\Omega$ pull-down resistor.
2	TRIG3	Į	Hardware trigger 3. Internal have 2MΩ pull-down resistor.
3	TRIG2	I	Hardware trigger 2. Internal have $2M\Omega$ pull-down resistor.
4	TRIG1	Į	Hardware trigger 1. Internal have 2M Ω pull-down resistor.
5	HDN	0	Negative haptic driver differential output. Internal have $3K\Omega$ pull-down resistor when standby/shutdown, high resistance when active.
6	PGND	Ground	H-bridge driver GND.
7	HDP	0	Positive haptic driver differential output. Internal have $3K\Omega$ pull-down resistor when standby/shutdown, high resistance when active.
8	PVDD	Power	High voltage driver power rail output.
9	AD	7	I2C bus address selection. Internal have $2M\Omega$ pull-down resistor.
10	VCP	0	Internal charge pump voltage.
11	VBST	Power	Boost output voltage output.
12	SW	0	Internal boost switch pin.
13	BGND	Ground	Boost GND.
14	VBAT	Power	Chip power supply.
15	GND	Ground	Supply ground.
16	TEST	Ю	Test pin, default high resistance. Internal have $2M\Omega$ pull-down resistor.
17	VREG	Power	Digital power supply output.
18	SDA	Ю	I2C bus data input/output(open drain).
19	SCL	ı	I2C bus clock input.
20	INTN	0	Interrupt open drain output, low active.

Functional Block Diagram

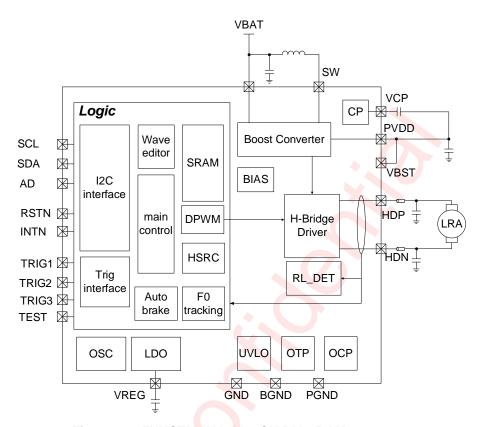


Figure 2 FUNCTIONAL BLOCK DIAGRAM

Typical Application Circuits

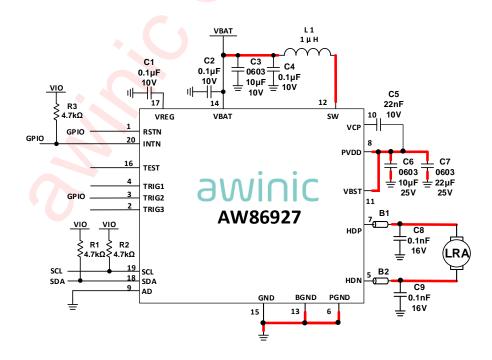


Figure 3 Typical Application Circuit of AW86927

All trademarks are the property of their respective owners.

Notice for Typical Application Circuits:

- 1: Please place C1, C2, C3, C4, C5, C6, C7 as close to the chip as possible, and C6 and C7 close to PIN 11 and the capacitors should be placed in the same layer with the AW86927 chip.
- 2: For the sake of driving capability, the power lines (especially the one to Pin 12), output lines, and the connection lines of L1, and SW should be short and wide as possible. The power path marked in red as shown in the figures above. The peak current of VBAT to SW through L1 is about 3.75~4.0A, and the other red path traces according to 1.5A power line alignment rules.

Ordering Information

Part Number	Temperature	Package	Marking	Moisture Sensitivity Level	ensitivity Information	
AW86927FCR	-40°C ~ 85°C	FCQFN 2mmX3mmX0.55mm- 20L	CA4F	MSL1	ROHS+HF	6000 units/ Tape and Reel

Absolute Maximum Ratings(NOTE 1)

Parameter	Range
Battery Supply Voltage VBAT	-0.3V to 6.0V
Digital power supply VREG	-0.3V to 2.0V
Internal charge pump voltage VCP	-0.3V to 17V
Boost output voltage VBST PVDD	-0.3V to 13V
Internal boost switch pin SW	-0.3V to 15V
HDP, HDN	-0.3V to PVDD+0.3V
TRIG1/TRIG2/TRIG3/SDA/SCL/AD/INTN	-0.3V to 6V
ВСК	-0.3V to VBAT+0.3V
Package Thermal Resistance θ _{JA}	60°C/W
Ambient Temperature Range	-40°C to 85°C
Maximum Junction Temperature T _{JMAX}	150°C
Storage Temperature Range T _{STG}	-65°C to 150°C
Lead Temperature(Soldering 10 Seconds)	260°C
ESD Rating (NOTE 2 3)	
HBM(Human Body Model)	±2KV
CDM(Charge Device Model)	±1.5KV
Latch-up	
Test Condition: JEDEC EIA/JESD78E	+IT: 200mA -IT: -200mA

NOTE 1: Conditions out of those ranges listed in "absolute maximum ratings" may cause permanent damages to the device. In spite of the limits above, functional operation conditions of the device should within the ranges listed in "recommended operating conditions". Exposure to absolute-maximum-rated conditions for prolonged periods may affect device reliability.

NOTE 2: The human body model is a 100pF capacitor discharged through a 1.5k Ω resistor into each pin. Test method: ANSI/ESDA/JEDEC JS-001-2017.

NOTE 3: Charge Device Model test method: ANSI/ESDA/JEDEC JS-002-2018.

Electrical Characteristics

Characteristics

Test condition: TA=25°C, VBAT=4.2V, PVDD=8V, RL=8 Ω +100 μ H(unless otherwise noted)

Symbol	Description	Test Conditions	Min	Тур.	Max	Units
V_{VBAT}	Battery supply voltage	On pin VBAT	3		5.5	V
V_{VREG}	Voltage at VREG pin			1.5		V
VIL	Logic input low level	RSTN/TRIG1/TRIG2/TRIG3/ AD/SCL/SDA	X		0.5	٧
V _{IH}	Logic input high level	RSTN/TRIG1/TRIG2/TRIG3/ AD/SCL/SDA	1.3			٧
V _{OL}	Logic output low level	INTN/SDA Iout=4mA			0.4	٧
Vos	Output offset voltage	I ² C signal input 0	-30	0	30	mV
I _{SD}	Shutdown current	VBAT=4.2V, RSTN =0V		0.1	1	μA
I _{STBY}	Standby current	VBAT=3.6V, AD= 0V TRIG1=TRIG2=TRIG3=0V RSTN=SCL=SDA=1.8V		8		μΑ
IQ	Quiescent current	VBAT=3.6V@Bypass		5		mA
UVP	Under-voltage protection voltage			2.7		V
UVP	Under-voltage protection hysteresis voltage			100		mV
T _{SD}	Over temperature protection threshold			160		°C
T_{SDR}	Over temperature protection recovery threshold			130		°C
T _{on1}	Time from shutdown to standby				8	ms
T _{on2}	Time from standby to active	From trigger to output signal			1	ms
Boost				•		
OVP	Over-voltage threshold			1.1*V _{PVDD}		
F _{BST}	Operating Frequency			2		MHz
I _{L_PEAK}	Inductor peak current limit			3.75		Α
T _{ST}	Soft-start time	No load, COUT=20µF		0.3		ms
HDRIVER						
R _{DSON}	Drain-Source on-state resistance	Include H and L NMOS		300		mΩ

Symbol	Description	Description Test Conditions			Max	Units
Rocp	Load impedance threshold for over current protection	VBAT=3.6V, PVDD=8V		2		Ω
F _{CALI_ACC_LRA}	LRA Consistency Calibration accuracy		F0-2	F0	F0+2	Hz
V	Output voltage	RL=16Ω+100μH VBAT=4.2V, PVDD set 11V		10.5		V
VPEAK	Output voltage	RL=8Ω+100μH VBAT=4.2V, PVDD set 11V		8.5		V

I2C Interface Timing

Parameter				ast mod	de	fast	UNIT		
No.	Symbol	Name	MIN	TYP	MAX	MIN	TYP	MAX	UNII
1	f _{SCL}	SCL Clock frequency			400			1000	kHz
2	t _{LOW}	SCL Low level Duration	1.3		4	0.5			μs
3	tнідн	SCL High level Duration	0.6		. (0.26	•		μs
4	t _{RISE}	SCL, SDA rise time			0.3			0.12	μs
5	t _{FALL}	SCL, SDA fall time			0.3	7		0.12	μs
6	tsu:sta	Setup time SCL to START state	0.6			0.26			μs
7	thd:STA	(Repeat-start) Start condition hold time	0.6			0.26			μs
8	t su:sto	Stop condition setup time	0.6			0.26			μs
9	t _{BUF}	the Bus idle time START state to STOP state	1.3			0.5			μs
10	tsu:dat	SDA setup time	0.1			0.1			μs
11	t _{HD:DAT}	SDA hold time	10			10			ns

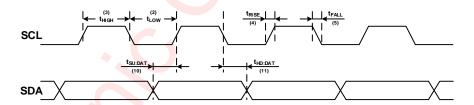


Figure 4 SCL and SDA timing relationships in the data transmission process

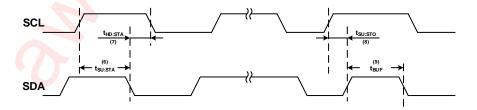


Figure 5 The timing relationship between START and STOP state

Measurement Setup

AW86927 features switching digital output, as shown in Figure 6. Need to connect a low pass filter to HDP/HDN output respectively to filter out switch modulation frequency, then measure the differential output of filter to obtain analog output signal.

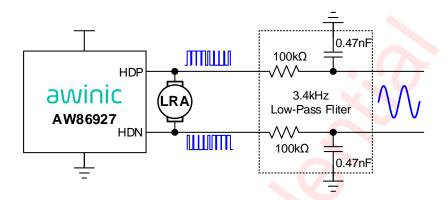


Figure 6 AW86927 test setup

Typical Characteristics

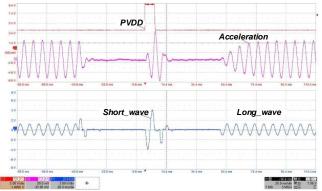


Figure 7 Long Vibration with Short Vibration insdie

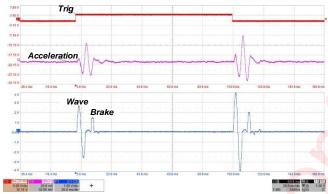


Figure 8 Trig Application

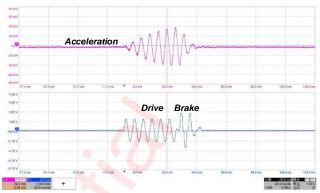


Figure 9 LRA with Automatic Braking

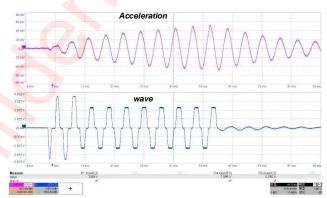


Figure 10 Automatic Resonance Tracking

Detailed Functional Description

Power On Reset

The device provides a power-on reset feature that is controlled by VREG OK. The reset signal will be generated to perform a power-on reset operation, which will reset all circuits and configuration registers. When the VBAT power on, the VREG voltage raises and produce the OK indication, the reset is over.

Operation Mode

The device supports 3 operation modes.

Table 1 Operating Mode

Mode	Condition	Description
Power-Down	VBAT = 0V or RSTN = 0V	Power supply is not ready or RSTN is tie to low.
		Whole chip shutdown including I ² C interface.
Standby	VBAT > 2.7V	Power supply is ready and RSTN is tie to high.
	and RSTN = HIGH	Most parts of the device are power down for low power
	and no wave is going	consumption except I ² C interface and LDO.
Active	Playing a waveform	Most parts of the device are working

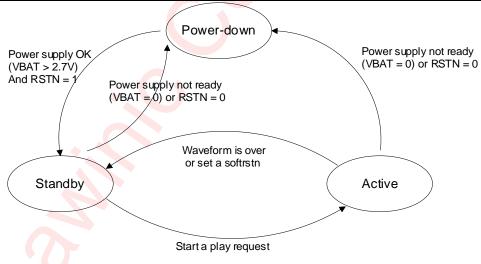


Figure 11 Device operating modes transition

POWER-DOWN MODE

The device switches to power-down mode when the supply voltage is not ready or RSTN pin is set to low. In this mode, all circuits inside this device will be shut down. I²C interface isn't accessible in this mode, and all of the internal configurable registers and Memory are cleared.

The device will jump out of the power-down mode automatically when the supply voltages are OK and RSTN pin is set to high.

Standby Mode

The device switches standby mode when the power supply voltages are OK and RSTN pin set to high. In this mode I²C interface is accessible, other modules except LDO module are still powered down. Also in this mode, customer can initialize waveform library in SRAM. Device will be switched to this mode after haptic waveform playback finished.

Active Mode

The device is fully operational in this mode. Boost and H-bridge driver circuits will start to work. Users can send a playback request to make device in this mode.

Power On And Power Down Sequence

This device power on and power down sequence is illustrated in the following figure:

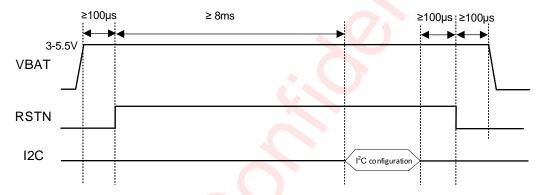


Figure 12 Power On and Power Down Sequence

Playback Sequence

Make sure the device is not in POWER-DOWN MODE before sending a playback request, then the playback sequence is illustrated in the following figure:

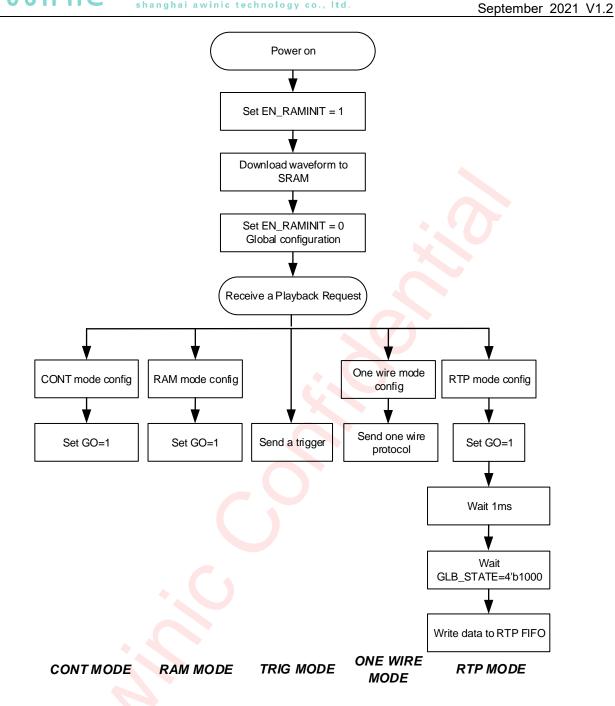


Figure 13 Power up and playback sequence

Software Reset

Writing 0xAA to register SOFTRST(0x00) via I²C interface will reset the device internal circuits except SRAM, including configuration registers.

Battery Voltage Detect

Software can send command to detect the battery voltage.

Detect steps:

- Set EN_RAMINIT to 1 in register 0x45;
- Set DET_SEQ0 to 0 in register 0x4e;

- Set DET_GO to 1 in register 0x4d;
- Wait 3ms;
- Set DET_GO to 0 in register 0x4d;
- Set EN_RAMINIT to 0 in register 0x45;
- Read AVG_DATA_H in register 0x4f and AVG_DATA_L in register 0x50. Code= AVG_DATA_H*256+ AVG_DATA_L.

The code is a 10bit unsigned number.

$$VBAT = \frac{6.08 \times code}{1024}(V)$$

Constant Vibration Strength

The device features power-supply feedback. If the supply voltage discharge over time, the vibration strength remains the same as long as enough supply voltage is available to sustain the required output voltage. It is especially useful for ring application. Power-supply feedback works in all playback mode.

Use steps:

- Set VBAT_REF in register 0x4d;
- Set VBAT_MODE to 1 in register 0x4c;
- Initiates a playback request.

LRA Consistency Calibration

Different motor batches, assembly conditions and other factors can result in f0 deviation of LRA. When the drive waveform does not match the LRA monomer, the vibration may be inconsistent and the braking effect becomes worse, especially for short vibration waveforms. So it's necessary to perform consistency calibration of LRA. Firstly the power-on f0 detection can be launched to get the f0 of LRA. Secondly the waveform frequency stored in SRAM and the f0 of LRA are used to calculate the code for calibration. The f0 accuracy after LRA consistency calibration is ±2Hz.

LRA Resistance Detect

Software can send command to detect the LRA's resistance.

Detect steps:

- Set EN_RAMINIT to 1 in register 0x45;
- Read D2S_GAIN register and save the result as d2s_gain_pre;
- Set DET SEQ0 to 3 and set D2S GAIN with an appropriate value in register 0x4e;
- Set DET_GO to 1 in register 0x4d;
- Wait 3ms;
- Set DET_GO to 0 in register 0x4d;
- Set EN_RAMINIT to 0 in register 0x45;
- Restore the value of D2S GAIN register to d2s gain pre;
- Read AVG_DATA_H in register 0x4f and AVG_DATA_L in register 0x50. Code= AVG_DATA_H*256+ AVG_DATA_L.

Based on this code host can diagnosis used LRA's status. The code is a 10bit unsigned number.

$$RL = \frac{608 \times code}{1024 \times D2S_GAIN}(\Omega)$$

The values of the D2S_GAIN that can be configured for different sizes of RL are listed below. The higher the RL, the smaller the configurable D2S_GAIN.

Table 2 D2S_GAIN Selection

RL(Ω)	D2S_GAIN
2~30	20
31~60	10

Flexible Haptic Data Playback

The device offers multiple ways to playback haptic effects data. The PLAY_MODE bits select RAM mode, RTP mode, CONT mode. Additional flexibility is provided by the three hardware TRIG pins, which can override PLAY_MODE bit to playback haptic effects data as configuration.

The device contains 8kB of integrated SRAM to store customer haptic waveforms' data. The whole SRAM is separated to RAM waveform library and RTP FIFO region by base address. And RAM waveform library is including waveform library version, waveform header and waveform data.

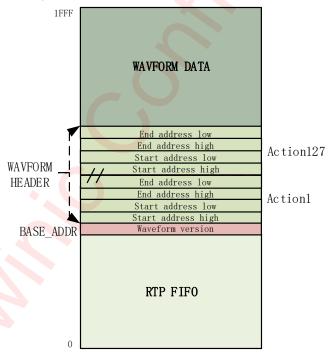


Figure 14 Data structure in SRAM

RAM mode and TRIG mode playback the waveforms in SRAM waveform library and RTP mode playback the waveform data written in RTP FIFO, CONT mode playback non-filtered or filtered square wave with rated drive voltage.

Sram Structure

A SRAM waveform library consists of a waveform version byte, a waveform header section, and the waveform data content. The waveform header defines the data boundaries for each waveform ID in the data field, and the waveform data contains a signed data format (2's complement) to specify the magnitude of the drive.

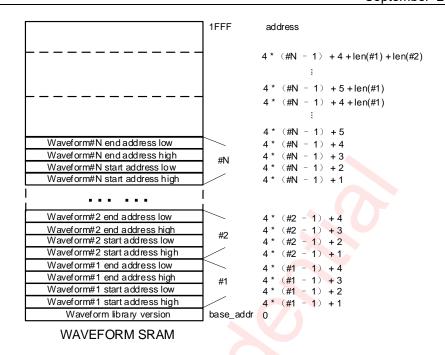


Figure 15 Waveform library data structure

Waveform version:

One byte located on SRAM base address, setting to different value to identify different version of RAM waveform library.

Waveform header:

The waveform header block consist of N-boundary definition blocks of 4 bytes each. N is the number of waveforms stored in the SRAM (N cannot exceed 127). Each of the boundary definition blocks contain the start address (2 bytes) and end address (2 bytes). So the total length of waveform header block are N*4 bytes.

The start address contains the location in the memory where the waveform data associated with this waveform begins.

The end address contains the location in the memory where the waveform data associated with this waveform ends.

The waveform ID is determined after base address is defined. Four bytes begins with the address next to base address are the first waveform ID's header, and next four bytes are the second waveform ID's header, and so on.

Waveform data:

The waveform data contains a signed data format (2's complement) to specify the magnitude of the drive. The begin address and end address is specified in waveform ID's header.

Waveform library initialization steps:

- Prepare waveform library data including: waveform library version, waveform header fields for waveform in library and waveform data of each waveform;
- Set register EN_RAMINIT=1 in register 0x45, open clock to enable SRAM initial;
- Set base address (register 0x2D, 0x2E);
- Write waveform library data into register 0x42 continually until all the waveform library data written;
- Set register EN RAMINIT=0, close clock to disable SRAM initial.

Ram Mode

To playback haptic data with RAM mode, the waveform ID must first be configured into the waveform playback queue and then the waveform can be played by writing GO bit register.

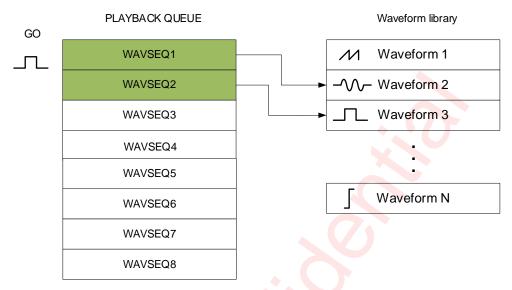


Figure 16 RAM mode playback

The waveform playback queue defines waveform IDs in waveform library for playback. Eight WAVSEQx registers queue up to eight library waveforms for sequential playback. A waveform ID is an integer value referring to the index of a waveform in the waveform library. Playback begins at WAVSEQ1 when the user triggers the waveform playback queue. When playback of that waveform ends, the waveform queue plays the next waveform ID held in WAVSEQ2 (if non-zero). The waveform queue continues in this way until the queue reaches an ID value of zero or until all eight IDs are played whichever comes first.

The waveform ID is a 7-bit number. The MSB of each ID register can be used to implement a delay between queue waveforms. When the SEQxWAIT is high, bits 6-0 indicate the length of the wait time. The wait time for that step then becomes WAVSEQ[6:0] × wait_time unit. Wait_time unit can be configuration of WAITSLOT register(in 0x16 register).

The device allows for looping of individual waveforms by using the SEQxLOOP registers. When used, the state machine will loop the particular waveform the number of times specified in the associated SEQxLOOP register before moving to the next waveform. The device allows for looping of the entire playback sequence by using the MAIN_LOOP register. The waveform-looping feature is useful for long, custom haptic playbacks, such as a haptic ringtone.

Playback steps:

- Waveform library must be initialized before playback;
- Set PLAY_MODE bits to 0 in register 0x08;
- Set playback queue registers (0x0A ~ 0x11) as desired;
- Set playback loop registers (0x12~ 0x16) as desired;
- Set GO bit to 1 in register 0x09 to trigger waveform playback;
- Device will be switched to STANDBY mode after haptic waveform playback finished.

Rtp Mode

The real-time playback mode is a simple, single 8-bit register interface that holds an amplitude value. When real-time playback is enabled, begin to enters a register value to RTP_DATA over the I²C will trigger the playback, the value is played until the data sending finished or removes the device from RTP mode. The maximum FIFO space is 4Kbyte.

After FF_AEM or FF_AFM register is set to 0, HOST can obtain the RTP FIFO almost empty or almost full status through interrupt signal(pin INTN) or read FF_AES or FF_AFS register. RTP FIFO almost empty and almost full threshold can be configured through FIFO_AE and FIFO_AF registers.

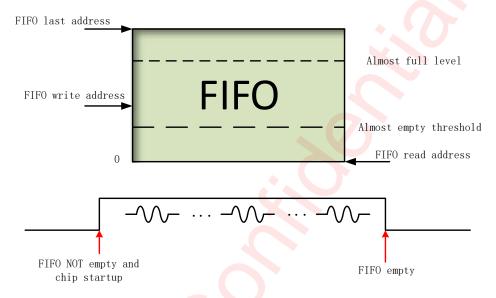


Figure 17 RTP mode playback

Playback steps:

- Prepare RTP data before playback;
- Set PLAY MODE bit to 1 in register 0x08;
- Set GO bit to 1 in register 0x09 to trigger waveform playback;
- Delay 1ms.
- Check GLB_STATE=4'b1000, if HOST don't send data to FIFO, chip will wait for RTP data coming in this state forever;
- Write RTP data continually to register 0x32 to playback RTP waveform;
- HOST need monitor the almost full and almost empty status for RTP FIFO;
- Device will be switched to STANDBY mode after wave data in RTP FIFO is played empty.

Trig Mode

The device have three dedicated hardware pins for quickly trigger haptic data playback. Each pin can be configured posedge/negedge/both-edge/level trigger.

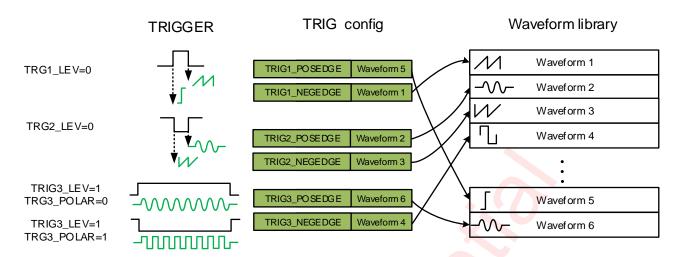


Figure 18 TRIG mode playback

Edge mode or level mode is accessible by configing register TRGx_LEV. When a edge mode is needed, user should set TRGx_LEV =0. In edge mode, register TRGxSEQ_P and TRGx_POS respestively represent the waveform and enable signal of positive edge, where register TRGxSEQ_N and TRGx_NEG respestively represent the waveform and enable signal of negative edge.

When a level mode is needed, user should set TRGx_LEV =1, and positive level and negative level can be supported by setting register TRGX_POLAR=0 and setting TRGX_POLAR=1.

	I2C ı	•	Trigger	Waveform	
TRGx_LVL	TRGx_POLAR	TRGx_POS	TRGx_NEG	1119901	rravole
	X	0	0	-	none
0	X	1	0	†	TRGxSEQ_P
	X	0	1	↓	TRGxSEQ_N
	Χ	1	1	↑ / ↓	TRGxSEQ_P/ TRGxSEQ_N
4	0	X	Х	High level	TRGxSEQ_P
'	1	X	X	Low level	TRGxSEQ_N

Table 3 TRIG MODE CONFIG

Playback steps:

- Waveform library must be initialized before playback;
- Set trigger playback registers (0x33 ~ 0x3A) as desired;
- Send trigger pulse (≥1µs) on TRIG pins to playback waveform;
- Device will be switched to STANDBY mode after haptic waveform playback finished.

One wire Mode

The function of one wire mode mainly transfer two information : sequence number and gain of waveform, TRIG1 is the interface pin.

Playback steps:

- Waveform library must be initialized before playback;
- Set TRG_ONEWIRE to 1 in register 0x3A to enable one wire mode;
- Determine sequence number and gain of waveform which you want to playback;

- Combine sequence number and gain data into a 15 bit transformation data (low 8 bit is gain, high 7 bit is sequence number), the data is sent from the lowest bit;
- Chip will automatically enter standby mode after playing. The interval time between two sending protocol data should be greater than "3ms+time length of waveform".

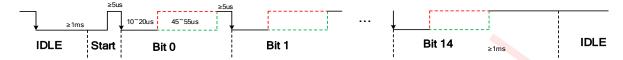


Figure 19 One wire mode playback

Cont Mode

The CONT mode mainly performs two functions: F0 detection and real-time resonance-frequency tracking. F0 detection can be launched by setting EN_F0_DET=1 and BRK_EN =1. When set TRACK_EN=1, real-time resonance-frequency tracking will be launched by tracking the BEMF of actuator constantly. It provides stronger and more consistent vibrations and lower power consumption. If the resonant frequency shifts for any reason, the function tracks the frequency from cycle to cycle. When TRACK_EN is set to 0, the width of waveform of cont mode is determined by DRV_WIDTH in register 0x1A.

When the EDGE_FRE register is set to 4'b1xxx, the CONT mode outputs a filtered square wave. The edge of filtered square wave is composed of SIN or COS wave whose frequency can be configured by EDGE_FRE register. When SIN_MODE register is set to 1, filtered square wave is composed of COS wave.

Playback steps:

- Set PLAY_MODE = 2 in register 0x08 to enable CONT mode;
- (optional)Set EN_F0_DET = 1 and BRK_EN = 1 to enable F0 detection;
- Set cont mode by configuring registers(0x18~0x20 and 0x22);
- Set GO bit to 1 in register 0x09 to trigger waveform playback;
- Device will be switched to STANDBY mode after haptic waveform playback finished;
- If enable F0 detection, get F0 information from registers(0x25~0x28) after GLB_STATE=0.

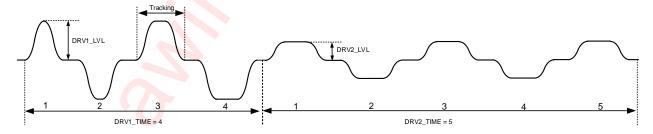


Figure 20 Cont mode playback

Auto Brake Engine

An auto-brake engine is integrated into this device. Users can adjust the brake strength by setting D2S_GAIN in register 0x4e. The greater D2S_GAIN, the greater brake strength and the worse loop stability. Auto-brake engine is disabled when setting BRK_EN=0 or BRK_TIME=0.

To enable Auto-brake engine, there are some points to note:

- TRGx_BRK in register 0x39, 0x3A should be set to 1 when in TRIG mode;
- Auto-brake engine will not work when BRK_EN=0 in register 0x08;
- Auto-brake engine will not work when EN_F0_DET in register 0x18 is set to 1;
- Auto-brake engine will not work when BRK_TIME in register 0x21 is set to 0;
- Device will be switched to STANDBY mode after haptic waveform playback finished.

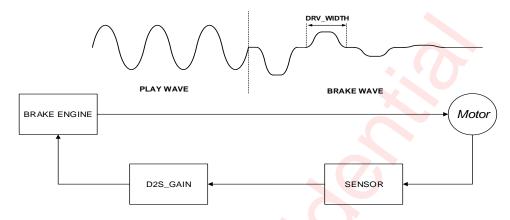


Figure 21 Brake loop

DC-DC Converter

The device integrated peak current mode synchronous PWM Boost as H-bridge power stage supply, significantly increase the output voltage dynamic range. Reduces the size of external components and saves PCB space by using about 2 MHz switching frequency. Boost output voltage can be set through the I²C register 0x06:

The device synchronous Boost with soft-start function to prevent overshoot current at powering-on; integrated the output protection circuit and self-recovery function; integrated Anti-Ring circuit to reduce EMI in DCM mode; built-in substrate switching shutdown circuit, effectively preventing the input and output leakage current anti-irrigation.

Protection Mechanisms

Over Voltage Protection (OVP)

The boost circuit has integrated the over voltage protection control loop. When the output voltage PVDD is above the threshold, the boost circuits will stop working, until the voltage of PVDD going down and under the normal fixed working voltage.

Over Temperature Protection (OTP)

The device has automatic temperature protection mechanism which prevents heat damage to the chip. It is triggered when the junction temperature is larger than the preset temperature high threshold (default = 160°C). When it happens, the output stages will be disabled. When the junction temperature drops below the preset temperature low threshold (less than 130°C), the output stages will start to operate normally again

Over Current (Short) Protection (OCP)

The short circuit protection function is triggered when HDP/HDN is short too PVDD/GND or HDP is short to HDN, the output stages will be shut down to prevent damage to itself. When the fault condition is disappeared, the output stages of device will restart.

Vbat Under Voltage Lock Out Protection (UVLO)

The device has a battery monitor that monitors the VBAT level to ensure that is above threshold 2.7V, In the event of a VBAT drop, the device immediately power down the Boost and H-bridge driver and latches the UVLO flag.

Drive Data Error Protection (DDEP)

When haptic data sent to drive LRA is error such as: a DC data or almost DC data, it will cause the LRA heat to brake. The device configurable immediately power down the Boost and H-bridge driver and latched the DDEP flag.

I2C Interface

This device supports the I²C serial bus and data transmission protocol in fast mode at 400kHz and fast mode plus at 1000kHz. This device operates as a slave on the I²C bus. Connections to the bus are made via the open-drain I/O pin SDA and I pin SCL. The pull-up resistor can be selected in the range of $1k\sim10k\Omega$ and the typical value is $4.7k\Omega$. This device can support different high level $(1.8V\sim3.3V)$ of this I²C interface.

Device Address

The I²C device address (7-bit) can be set using the AD pin according to the following table:

Table 4 Address Selection

AD	I ² C address (7-bit)
0	0x5A
1	0x5B

Data Validation

When SCL is high level, SDA level must be constant. SDA can be changed only when SCL is low level.

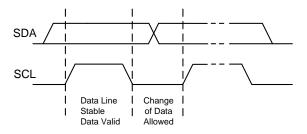


Figure 22 Data Validation Diagram

General PC Operation

The I²C bus employs two signals, SDA (data) and SCL (clock), to communicate between integrated circuits in a system. The device is addressed by a unique 7-bit address; the same device can send and receive data. In addition, Communications equipment has distinguish master from slave device: In the communication process, only the master device can initiate a transfer and terminate data and generate a corresponding clock signal. The devices using the address access during transmission can be seen as a slave device.

SDA and SCL connect to the power supply through the current source or pull-up resistor. SDA and SCL default is a high level. There is no limit on the number of bytes that can be transmitted between start and stop conditions. When the last word transfers, the master generates a stop condition to release the bus.

START state: The SCL maintain a high level, SDA from high to low level

STOP state: The SCL maintain a high level, SDA pulled low to high level

Start and Stop states can be only generated by the master device. In addition, if the device does not produce STOP state after the data transmission is completed, instead re-generate a START state (Repeated START, Sr), and it is believed that this bus is still in the process of data transmission. Functionally, Sr state and START state is the same. As shown in Figure 23.

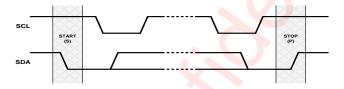


Figure 23 START and STOP state generation process

In the data transmission process, when the clock line SCL maintains a high level, the data line SDA must remain the same. Only when the SCL maintain a low level, the data line SDA can be changed, as shown in Figure 24. Each transmission of information on the SDA is 9 bits as a unit. The first eight bits are the data to be transmitted, and the first one is the most significant bit (Most Significant Bit, MSB), the ninth bit is an confirmation bit (Acknowledge, ACK or A), as shown in Figure 25. When the SDA transmits a low level in ninth clock pulse, it means the acknowledgment bit is 1, namely the current transmission of 8 bits data are confirmed, otherwise it means that the data transmission has not been confirmed. Any amount of data can be transferred between START and STOP state.

Figure 24 The data transfer rules on the I²C bus

The whole process of actual data transmission is shown in Figure 25. When generating a START condition, the master device sends an 8-bit data, including a 7-bit slave addresses (Slave Address), and followed by a "read / write" flag ($^{R/W}$). The flag is used to specify the direction of transmission of subsequent data. The master device will produce the STOP state to end the process after the data transmission is completed.

awinic

However, if the master device intends to continue data transmission, you can directly send a Repeated START state, without the need to use the STOP state to end transmission.

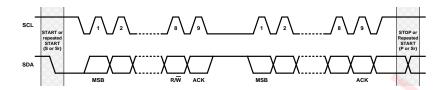


Figure 25 Data transmission on the I²C bus

Write Process

Writing process refers to the master device write data into the slave device. In this process, the transfer direction of the data is always unchanged from the master device to the slave device. All acknowledge bits are transferred by the slave device, in particular, the device as the slave device, the transmission process in accordance with the following steps, as shown in Figure 26:

Master device generates START state. The START state is produced by pulling the data line SDA to a low level when the clock SCL signal is a high level.

Master device transmits the 7-bits device address of the slave device, followed by the "read / write" flag (flag $R/\overline{W} = 0$):

The slave device asserts an acknowledgment bit (ACK) to confirm whether the device address is correct; The master device transmits the 8-bit register address to which the first data byte will written;

The slave device asserts an acknowledgment (ACK) bit to confirm the register address is correct;

Master sends 8 bits of data to register which needs to be written;

The slave device asserts an acknowledgment bit (ACK) to confirm whether the data is sent successfully; If the master device needs to continue transmitting data by sending another pair of data bytes, just need to repeat the sequence from step 6. In the latter case, the targeted register address will have been auto-incremented by the device.

The master device generates the STOP state to end the data transmission.

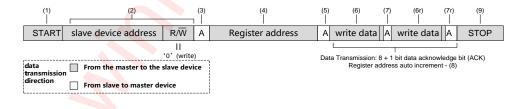


Figure 26 Writing process (data transmission direction remains the same)

Read Process

Reading process refers to the slave device reading data back to the master device. In this process, the direction of data transmission will change. Before and after the change, the master device sends START state and slave address twice, and sends the opposite "read/write" flag. In particular, AW86927 as the slave device, the transmission process carried out by following steps listed in Figure 27:

Master device asserts a start condition;

Master device transmits the 7 bits address of the device, and followed by a "read / write" flag ($^{R/W}$ = 0); The slave device asserts an acknowledgment bit (ACK) to confirm whether the device address is correct;

The master device transmits the register address to make sure where the first data byte will read;

The slave device asserts an acknowledgment (ACK) bit to confirm whether the register address is correct or not;

The master device restarts the data transfer process by continuously generating STOP state and START state or a separate Repeated START;

Master sends 7-bits address of the slave device and followed by a read / write flag (flag $R^{VW} = 1$) again; The slave device asserts an acknowledgment (ACK) bit to confirm whether the register address is correct or not:

Master transmits 8 bits of data to register which needs to be read;

The slave device sends an acknowledgment bit (ACK) to confirm whether the data is sent successfully; The device automatically increment register address once after sent each acknowledge bit (ACK),

The master device generates the STOP state to end the data transmission.

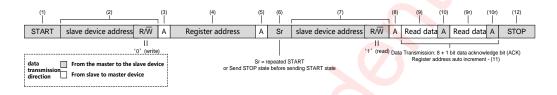


Figure 27 Reading process (data transmission direction remains the same)

るWinic 上海艾万电子技术股份有限公司 shanghai awinic technology co., ltd.

Register Configuration

Register List

ADDR	NAME	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default
0x00	RSTCFG	wo				S	OFTRST				0x00
0x01	SYSST	RO			UVLS	FF_AES	FF_AFS	OCDS	OTS	DONES	0x10
0x02	SYSINT	RC			UVLI	FF_AEI	FF_AFI	OCDI	OTI	DONEI	0x10
0x03	SYSINTM	RW			UVLM	FF_AEM	FF_AFM	OCDM	ОТМ	DONEM	0xFF
0x06	PLAYCFG1	RW	BST_MODE		•	•	BST_VOUT_VREFSE	Т		•	0x58
0x07	PLAYCFG2	RW					GAIN				0x80
0x08	PLAYCFG3	RW				AUTO_BST	STOP_MODE	BRK_EN	PLAY	MODE	0x14
0x09	PLAYCFG4	RW							STOP	GO	0x00
0x0A	WAVCFG1	RW	SEQ1WAIT		WAVSEQ1						0x01
0x0B	WAVCFG2	RW	SEQ2WAIT				WAVSEQ2				0x00
0x0C	WAVCFG3	RW	SEQ3WAIT				WAVSEQ3				0x00
0x0D	WAVCFG4	RW	SEQ4WAIT				WAVSEQ4				0x00
0x0E	WAVCFG5	RW	SEQ5WAIT				WAVSEQ5				0x00
0x0F	WAVCFG6	RW	SEQ6WAIT				WAVSEQ6				0x00
0x10	WAVCFG7	RW	SEQ7WAIT				WAVSEQ7				0x00
0x11	WAVCFG8	RW	SEQ8WAIT			_	WAVSEQ8				0x00
0x12	WAVCFG9	RW		SEQ1L	OOP			SEQ2L	.00P		0x00
0x13	WAVCFG10	RW		SEQ3L	OOP	X		SEQ4L	.00P		0x00
0x14	WAVCFG11	RW		SEQ5L	OOP			SEQ6L	.OOP		0x00
0x15	WAVCFG12	RW		SEQ7L	OOP			SEQ8L	.OOP		0x00
0x16	WAVCFG13	RW			WAITS	SLOT		MAINL	.00P		0x00
0x18	CONTCFG1	RW			EN_F0_DET	SIN_MODE		EDGE_	_FRE		0x1E
0x19	CONTCFG2	RW					PRE				0x8D
0x1A	CONTCFG3	RW				DR'	V_WIDTH				0x6A
0x1C	CONTCFG5	RW		BST_BRK	C_GAIN			BRK_0	GAIN		0x58
0x1D	CONTCFG6	RW	TRACK_EN				DRV1_LVL				0xFF
0x1E	CONTCFG7	RW					DRV2_LVL				0x50
0x1F	CONTCFG8	RW				DR	V1_TIME				0x04
0x20	CONTCFG9	RW				DR	V2_TIME				0x06
0x21	CONTCFG10	RW				BF	RK_TIME				0x08
0x22	CONTCFG11	RW				TRAC	K_MARGIN				0x0C
0x25	CONTRD14	RO				F_L	RA_F0_H				0x00
0x26	CONTRD15	RO				F_L	RA_F0_L				0x00
0x27	CONTRD16	RO				CO	NT_F0_H				0x00
0x28	CONTRD17	RO				co	NT_F0_L				0x00
0x2D	RTPCFG1	RW						BASE_ADDR_H			0x08
0x2E	RTPCFG2	RW				BAS	E_ADDR_L				0x00
0x2F	RTPCFG3	RW		FIFO_/	AEH			FIFO_	AFH		0x26
0x30	RTPCFG4	RW					FO_AEL				0x00
0x31	RTPCFG5	RW				FI	FO_AFL				0x00
0x32	RTPDATA	RW				RT	P_DATA				0x00
0x33	TRGCFG1	RW	TRG1_POS				TRG1SEQ_P				0x01
0x34	TRGCFG2	RW	TRG2_POS				TRG2SEQ_P				0x01
0x35	TRGCFG3	RW	TRG3_POS				TRG3SEQ_P				0x01
0x36	TRGCFG4	RW	TRG1_NEG				TRG1SEQ_N				0x01
0x37	TRGCFG5	RW	TRG2_NEG				TRG2SEQ_N				0x01
0x38	TRGCFG6	RW	TRG3_NEG		TRG3SEQ_N					T	0x01
0x39	TRGCFG7	RW	TRG1_POLAR	TRG1_LEV	TRG1_LEV TRG1_BRK TRG1_BST TRG2_POLAR TRG2_LEV TRG2_BRK TRG2_BST					0x33	
0x3A	TRGCFG8	RW	TRG3_POLAR	TRG3_LEV	TRG3_BRK	TRG3_BST	TRG_ONEWIRE	TRG1_STOP	TRG2_STOP	TRG3_STOP	0x30
0x3E	GLBCFG4	RW	GO_I	PRIO	TRG3_	PRIO	TRG2_			_PRIO	0x1B
0x3F	GLBRD5	RO						GLB_S	TATE		0x00
0x40	RAMADDRH	RW						RAMADDRH			0x00

AW86927

September 2021 V1.2

0x41	RAMADDRL	RW		RAMADDRL							0x00
0x42	RAMDATA	RW				RA	MDATA				0x00
0x45	SYSCTRL3	RW						EN_RAMINIT	EN_FIR		0x12
0x46	SYSCTRL4	RW		WAVDA ⁻	T_MODE					GAIN_BYPASS	0x08
0x48	PWMCFG1	RW	PRC_EN				PRCTIME			•	0x00
0x4A	PWMCFG3	RW	PR_EN				PRLVL				0xBF
0x4B	PWMCFG4	RW			PRTIME						
0x4C	VBAT_CTRL	RW		VBAT_MODE							0x00
0x4D	DETCFG1	RW			VBAT_REF		ADC_	FS	DET	Г_GO	0x24
0x4E	DETCFG2	RW			DET	_SEQ0			D2S_GAIN		0x04
0x4F	DET_RD1	RO					ADC_DA	TA_H	AVG_I	DATA_H	0x00
0x50	DET_RD2	RO				AVG	_DATA_L				0x00
0x51	DET_RD3	RO		ADC_DATA_L							0x00
0x57	IDH	RO		CHIPID_H							0x92
0x58	IDL	RO				CH	IIPID_L				0x70

Register Detailed Description

Note: Reserved register should not be written

RSTCFG: (Address 00h)						
Bit	Symbol	R/W	Description	Default		
7:0	SOFTRST	WO	All configuration registers will be reset to default value after 0xaa is written	0x00		

SYSST:	SYSST: (Address 01h)				
Bit	Symbol	R/W	Description	Default	
7:6	Reserved	RO	Not used	0	
5	UVLS	RO	1: VBAT voltage is under UV voltage (2.7V)	0	
4	FF_AES	RO	1: RTP FIF <mark>O</mark> is almos <mark>t e</mark> mpty	1	
3	FF_AFS	RO	1: RTP FIF <mark>O is almost f</mark> ull	0	
2	OCDS	RO	1: Over Current status	0	
1	OTS	RO	1: Over Temperature status	0	
0	DONES	RO	1: T <mark>he</mark> indication of playback finished	0	

SYSINT: (Address 02h)					
Bit	Symbol	R/W	Description	Default	
7:6	Reserved	RC	Not used	0	
5	UVLI	RC	When UVLI=1, it means UVLS has been 1 at least once since the last read	0	
4	FF_AEI	RC	When FF_AEI=1, it means FF_AES has been 1 at least once since the last read	1	
3	FF_AFI	RC	When FF_AFI=1, it means FF_AFS has been 1 at least once since the last read	0	
2	OCDI	RC	When OCDI=1, it means OCDS has been 1 at least once since the last read	0	
1	OTI	RC	When OTI=1, it means OTS has been 1 at least once since the last read	0	
0	DONEI	RC	When DONEI=1, it means DONES has been 1 at least once since the last read	0	

SYSINT	SYSINTM: (Address 03h)						
Bit	Symbol	R/W	Description	Default			
7:6	Reserved	RW	Not used	3			
5	UVLM	RW	Interrupt mask for UVLI: 0: INTN pin will be pulled down when UVLI=1 1: INTN pin will not be pulled down when UVLI=1	1			
4	FF_AEM	RW	Interrupt mask for FF_AEI: 0: INTN pin will be pulled down when FF_AEI=1 1: INTN pin will not be pulled down when FF_AEI=1	1			

3	FF_AFM	RW	Interrupt mask for FF_AFI: 0: INTN pin will be pulled down when FF_AFI=1 1: INTN pin will not be pulled down when FF_AFI=1	1
2	OCDM	RW	Interrupt mask for OCDI: 0: INTN pin will be pulled down when OCDI=1 1: INTN pin will not be pulled down when OCDI=1	1
1	ОТМ	RW	Interrupt mask for OTI: 0: INTN pin will be pulled down when OTI=1 1: INTN pin will not be pulled down when OTI=1	1
0	DONEM	RW	Interrupt mask for DONEI: 0: INTN pin will be pulled down when DONEI=1 1: INTN pin will not be pulled down when DONEI=1	1

PLAYC	PLAYCFG1: (Address 06h)					
Bit	Symbol	R/W	Description	Default		
7	BST_MODE	RW	BOOST mode 0: Bypass mode 1: Boost mode	0		
6:0	BST_VOUT_VREFSE T	RW	PVDD voltage setup: ΔV=62.5mV, default=9V VBAT should be smaller than 0.8*PVDD and PVDD > 6V b0000000~b0100111: code can not be configured b0101000: 6V (3.5V+ΔV*40) b0101001: 3.5V+ΔV*41 b0101010: 3.5V+ΔV*42 b1111111: 11.4375V (3.5V+ΔV*127)	0x58		

PLAYC	FG2: (Address 07h)						
Bit	Symbol	R/W	Description	Default			
7:0	GAIN	RW	Gain setting for waveform data, GAIN=code/128 GAIN_BYPASS=1, GAIN for RAM/RTP/TRIG MODE, and can be changed when playing GAIN_BYPASS=0, GIAN for RAM MODE waveform data, and can not be changed when playing	0x80			

PLAYCFG3: (Address 08h)				
Bit	Symbol	R/W	Description	Default
7:5	Reserved	RW	Not used	0
4	AUTO_BST	RW	1: disable Boost when data is 0 in RTP and RAM mode	1
3	STOP_MODE	RW	0: stop when current wave is over 1: stop right now	0
2	BRK_EN	RW	When set 1, enable auto brake after RTP/RAM/CONT playback mode is stopped	1
1:0	PLAY_MODE	RW	Waveform play mode for GO trig b00: RAM mode b01: RTP mode b10: CONT mode b11: no play	0

PLAYCFG4: (Address 09h)							
Bit	Symbol	R/W	Description	Default			
7:2	Reserved	RW	Not used	0			
1	STOP	RW	When set 1, stop the current playback mode	0			
0	GO	RW	RAM/RTP/CONT mode playback trig bit when set to 1, chip will playback one of the play mode.	0			

WAVC	WAVCFG1: (Address 0Ah)						
Bit	Symbol	R/W	Description	Default			
7	SEQ1WAIT	RW	When set to 1, WAVSEQ1 means wait time, else means wave sequence number	0			
6:0	WAVSEQ1	RW	Wait time (code*WAITSLOT) or wave sequence number	1			

WAVC	WAVCFG2: (Address 0Bh)							
Bit	Symbol	R/W	Description	Default				
7	SEQ2WAIT	RW	When set to 1, WAVSEQ2 means wait time, else means wave sequence number	0				
6:0	WAVSEQ2	RW	Wait time (code*WAITSLOT) or wave sequence number	0				

WAVCFG3: (Address 0Ch)					
Bit	Symbol	R/W	Description	Default	
7	SEQ3WAIT	RW	When set to 1 , WAVSEQ3 means wait time, else means wave sequence number	0	
6:0	WAVSEQ3	RW	Wait time (code*WAITSLOT) or wave sequence number	0	

WAVC	WAVCFG4: (Address 0Dh)					
Bit	Symbol	R/W	Description	Default		
7	SEQ4WAIT	RW	When set to 1 , WAVSEQ4 means wait time, else means wave sequence number	0		
6:0	WAVSEQ4	RW	Wait time (code*WAITSLOT) or wave sequence number	0		

WAVC	WAVCFG5: (Address 0Eh)					
Bit	Symbol	R/W	Description	Default		
7	SEQ5WAIT	RW	when set to 1, WAVSEQ5 means wait time, else means wave sequence number	0		
6:0	WAVSEQ5	RW	Wait time (code*WAITSLOT) or wave sequence number	0		

WAVC	WAVCFG6: (Address 0Fh)						
Bit	Symbol	R/W	Description	Default			
7	SEQ6WAIT	RW	When set to 1 , WAVSEQ6 means wait time, else means wave sequence number	0			
6:0	WAVSEQ6	RW	Wait time (code*WAITSLOT) or wave sequence number	0			

WAVC	WAVCFG7: (Address 10h)				
Bit	Symbol	R/W	Description	Default	
7	SEQ7WAIT	RW	when set to 1, WAVSEQ7 means wait time, else means wave sequence number	0	
6:0	WAVSEQ7	RW	Wait time (code*WAITSLOT) or wave sequence number	0	

WAVC	WAVCFG8: (Address 11h)					
Bit	Symbol	R/W	Description	Default		
7	SEQ8WAIT	RW	When set to 1 , WAVSEQ8 means wait time, else means wave sequence number	0		
6:0	WAVSEQ8	RW	Wait time (code*WAITSLOT) or wave sequence number	0		

WAVCFG9: (Address 12h)						
Bit	Symbol	R/W	Description	Default		
7:4	SEQ1LOOP	RW	Control the loop number of the first sequence b0000 $^{\circ}$ b1110: play (code+1) time b1111: playback infinitely until STOP set to 1 or SEQ1LOOP \neq 0xF	0		
3:0	SEQ2LOOP	RW	Control the loop number of the second sequence b0000 $^{\circ}$ b1110: play (code+1) time b1111: playback infinitely until STOP set to 1 or SEQ2LOOP \neq 0xF	0		

WAVC	WAVCFG10: (Address 13h)						
Bit	Symbol	R/W	Description	Default			
7:4	SEQ3LOOP	RW	Control the loop number of the third sequence b0000~b1110: play (code+1) time b1111: playback infinitely until STOP set to 1 or SEQ3LOOP ≠0xF	0			
3:0	SEQ4LOOP	RW	Control the loop number of the fourth sequence b0000 $^{\circ}$ b1110: play (code+1) time b1111: playback infinitely until STOP set to 1 or SEQ4LOOP \neq 0xF	0			

WAVCFG11: (Address 14h)						
Bit	Symbol	R/W	Description	Default		
7:4	SEQ5LOOP	RW	Control the loop number of the fifth sequence b0000~b1110: play (code+1) time b1111: playback infinitely until STOP set to 1 or SEQ5LOOP ≠0xF	0		
3:0	SEQ6LOOP	RW	Control the loop number of the sixth sequence b0000~b1110: play (code+1) time b1111: playback infinitely until STOP set to 1 or SEQ6LOOP ≠0xF	0		

WAVCFG12: (Address 15h)					
Bit	Symbol	R/W	Description	Default	
7:4	SEQ7LOOP	RW	Control the loop number of the seventh sequence b0000~b1110: play (code+1) time b1111: playback infinitely until STOP set to 1 or SEQ7LOOP ≠0xF	0	
3:0	SEQ8LOOP	RW	Control the loop number of the eighth sequence b0000 $^{\circ}$ b1110: play (code+1) time b1111: playback infinitely until STOP set to 1 or SEQ8LOOP \neq 0xF	0	

WAVC	WAVCFG13: (Address 16h)						
Bit	Symbol	R/W	Description	Default			
7:6	Reserved	RW	Not used	0			
5:4	WAITSLOT	RW	Unit of wait time b00: (1/WAVDAT_MODE) s b01: (8/WAVDAT_MODE) s b10: (64/WAVDAT_MODE) s b11: (512/WAVDAT_MODE) s	0			
3:0	MAINLOOP	RW	Control the main loop number b0000 $^{\circ}$ b1110: play (code+1) time b1111: playback infinitely until STOP set to 1 or MAINLOOP \neq 0xF	0			

CONTO	CONTCFG1: (Address 18h)						
Bit	Symbol	R/W	Description	Default			
7:6	Reserved	RW	Not used	0			
5	EN_FO_DET	RW	F0 detection mode enable 1: enable 0: disable	0			
4	SIN_MODE	RW	Edge mode for filtered square wave of CONT mode: 1: cos 0: sine	1			

3:0	EDGE_FRE	RW	Define the edge frequency b1000 : 200Hz b1001 : 210Hz b1010 : 260Hz b1011 : 280Hz b1101 : 300Hz b1101 : 600Hz b1111 : 800Hz b1111 : 800Hz b1111 : play non-filtered square wave in CONT mode	14
-----	----------	----	--	----

CONTO	CONTCFG2: (Address 19h)						
Bit	Symbol	R/W	Description	Default			
7:0	F_PRE	RW	Set the value of F0, F0=(24K/code)Hz	0x8D			

CONTCFG3: (Address 1Ah)				
Bit	Symbol	R/W	Description	Default
7:0	DRV_WIDTH	RW	Half cycle drive time of brake and it is also the half cycle drive time of drive when TRACK_EN=0, this value must be smaller than half cycle time of F0. Time = code/48000 (s)	0x6A

CONTO	CONTCFG5: (Address 1Ch)				
Bit	Symbol	R/W	Description	Default	
7:4	BST_BRK_GAIN	RW	Gain factor of brake when BST_MODE is 1	5	
3:0	BRK_GAIN	RW	Gain factor of brake when BST_MODE is 0	8	

CONTO	CONTCFG6: (Address 1Dh)						
Bit	Symbol	R/W	Description	Default			
7	TRACK_EN	RW	Track switch 1: enable 0: disable	1			
6:0	DRV1_LVL	RW	Level for the first cont drive. When VBAT_MODE=1: no load output voltage=VBAT_REF*DRV1_LVL/128; if (VBAT_REF*DRV1_LVL)/VBAT > 128, no load output voltage=PVDD; When VBAT_MODE=0/BST_MODE=1: no load output voltage=PVDD*DRV1_LVL/128	0x7F			

CONTO	CFG7: (Address 1Eh)			
Bit	Symbol	R/W	Description	Default
7	Reserved	RW	Not used	0
6:0	DRV2_LVL	RW	Level for the second cont drive When VBAT_MODE=1: no load output voltage=VBAT_REF*DRV2_LVL/128; if (VBAT_REF*DRV2_LVL)/VBAT > 128, no load output voltage=PVDD; When VBAT_MODE=0/BST_MODE=1: no load output voltage=PVDD*DRV2_LVL/128	0x50

CONTO	CONTCFG8: (Address 1Fh)					
Bit	Symbol	R/W	Description	Default		
7:0	DRV1_TIME	RW	Number of half cycle for the first cont drive	4		

CONTO	CONTCFG9: (Address 20h)				
Bit	Symbol	R/W	Description	Default	
7:0	DRV2_TIME	RW	Number of half cycle for the second cont drive	6	

CONTO	CONTCFG10: (Address 21h)					
Bit	Symbol	R/W	Description	Default		
7:0	BRK_TIME	RW	The num of half cycle of brake mode	8		

CONTO	CFG11: (Address 22h)			
Bit	Symbol	R/W	Description	Default
7:0	TRACK_MARGIN	RW	Margin value of tracking, the smaller margin, the higher tracking accuracy and the lower loop stability. Time = code/480000 (s)	12

CONTRD14: (Address 25h)					
Bit	Symbol	R/W	Description	Default	
7:0	F_LRA_FO_H	RO	High 8 bit of the measure value for the f0 of LRA in the f0 detection mode F0=(384000/(F_LRA_F0_H*256+F_LRA_F0_L))Hz	0	

CONTR	CONTRD15: (Address 26h)				
Bit	Symbol	R/W	Description	Default	
7:0	F_LRA_FO_L	RO	Low 8 bit of the measure value for the f0 of LRA in the f0 detection mode F0=(384000/(F_LRA_F0_H*256+F_LRA_F0_L))Hz	0	

CONTRD16: (Address 27h)				
Bit	Symbol	R/W	Description	Default
7:0	CONT_FO_H	RO	The measure value for the f0 of LRA in the continuous detection mode (high eight bits) F0=(384000/(CONT_F0_H*256+CONT_F0_L))Hz	0

CONTR	CONTRD17: (Address 28h)						
Bit	Symbol	R/W	Description	Default			
7:0	CONT_F0_L	RO	The measure value for the f0 of LRA in the continuous detection mode (low eight bits) F0=(384000/(CONT_F0_H*256+CONT_F0_L))Hz	0			

RTPCFG1: (Address 2Dh)					
Bit	Symbol	R/W	Description	Default	
7:5	Reserved	RW	Not used	0	
4:0	BASE_ADDR_H	RW	High five bits of start address of wave SRAM BASE_ADDR = BASE_ADDR_H * 256 + BASE_ADDR_L	0x08	

RTPCF	G2: (Address 2Eh)			
Bit	Symbol	R/W	Description	Default
7:0	BASE_ADDR_L	RW	Low eight bits of start address of wave SRAM BASE_ADDR = BASE_ADDR_H * 256 + BASE_ADDR_L	0

RTPCF	RTPCFG3: (Address 2Fh)							
Bit	Symbol	R/W	Description	Default				
7:4	FIFO_AEH	RW	High four bits of RTP FIFO almost empty threshold FIFO_AE = FIFO_AEH * 256 + FIFO_AEL	0x02				
3:0	FIFO_AFH	RW	High four bits of RTP FIFO almost full threshold FIFO_AF = FIFO_AFH * 256 + FIFO_AFL	0x06				

RTPCF	RTPCFG4: (Address 30h)					
Bit	Symbol	R/W	Description	Default		
7:0	FIFO_AEL	RW	Low eight bits of RTP FIFO almost empty threshold FIFO_AE = FIFO_AEH * 256 + FIFO_AEL	0x00		

AW86927 September 2021 V1.2

RTPCF	RTPCFG5: (Address 31h)						
Bit	Symbol	R/W	Description	Default			
7:0	FIFO_AFL	RW	Low eight bits of RTP FIFO almost full threshold FIFO_AF = FIFO_AFH * 256 + FIFO_AFL	0x00			

RTPE	RTPDATA: (Address 32h)						
Bit	Symbol	R/W	Description	Default			
7:0	RTP_DATA	RW	RTP mode , data write entry, when data written into this register, the data will be written into RTP FIFO	0			

TRGCFG1: (Address 33h)					
Bit	Symbol	R/W	Description	Default	
7	TRG1_POS	RW	TRG1 rising edge enable/disable control 1: enable 0: disable	0	
6:0	TRG1SEQ_P	RW	TRG1 posedge trigged wave sequence number	1	

TRGCF	TRGCFG2: (Address 34h)					
Bit	Symbol	R/W	Description	Default		
7	TRG2_POS	RW	TRG2 rising edge enable/disable control 1: enable 0: disable	0		
6:0	TRG2SEQ_P	RW	TRG2 posedge trigged wave s <mark>eque</mark> nce number	1		

TRGCF	G3: (Address 35h)			
Bit	Symbol	R/W	Description	Default
7	TRG3_POS	RW	TRG3 rising edge enable/disable control 1: enable 0: disable	0
6:0	TRG3SEQ_P	RW	TRG3 pos <mark>e</mark> dge trigge <mark>d</mark> wave sequence number	1

TRGCF	TRGCFG4: (Address 36h)						
Bit	Symbol	R/W	Description	Default			
7	TRG1_NEG	RW	TRG1 falling edge enable/disable control 1: enable 0: disable	0			
6:0	TRG1SEQ_N	RW	TRG1 negedge trigged wave sequence number	1			

TRGCF	TRGCFG5: (Address 37h)						
Bit	Symbol	R/W	Description	Default			
7	TRG2_NEG	RW	TRG2 falling edge enable/disable control 1: enable 0: disable	0			
6:0	TRG2SEQ_N	RW	TRG2 negedge trigged wave sequence number	1			

TRGCF	TRGCFG6: (Address 38h)					
Bit	Symbol	R/W	Description	Default		
7	TRG3_NEG	RW	TRG3 falling edge enable/disable control 1: enable 0: disable	0		
6:0	TRG3SEQ_N	RW	TRG3 negedge trigged wave sequence number	1		

TRGCF	G7: (Address 39h)			
Bit	Symbol	R/W	Description	Default
7	TRG1_POLAR	RW	TRIG1 pin active polarity, when host supply positive level, this bit set to 0, else set to 1	0
6	TRG1_LEV	RW	TRG1 mode control 1: level 0: edge	0
5	TRG1_BRK	RW	When set 1, enable auto brake after TRG1 playback mode is stopped	1
4	TRG1_BST	RW	When set 1, enable boost in TRG1 playback mode.	1
3	TRG2_POLAR	RW	TRIG2 pin active polarity, when host supply positive level, this bit set to 0, else set to 1.	0
2	TRG2_LEV	RW	TRG2 mode control 1: level 0: edge	0
1	TRG2_BRK	RW	When set 1, enable auto brake after TRG2 playback mode is stopped	1
0	TRG2_BST	RW	When set 1, enable boost in TRG2 playback mode.	1

TRGCF	G8: (Address 3Ah)			
Bit	Symbol	R/W	Description	Default
7	TRG3_POLAR	RW	TRIG3 pin active polarity, when host supply positive level, this bit set to 0, else set to 1	0
6	TRG3_LEV	RW	TRG3 mode control 1: level 0: edge	0
5	TRG3_BRK	RW	When set 1, enable auto brake after TRG3 playback mode is stopped	1
4	TRG3_BST	RW	When set 1, enable boost in TRG3 playback mode.	1
3	TRG_ONEWIRE	RW	When set 1,enable one wire mode	0
2	TRG1_STOP	RW	When set 1, TRG1 playback mode can be stopped immediately	0
1	TRG2_STOP	RW	When set 1, TRG2 playback mode can be stopped immediately	0
0	TRG3_STOP	RW	When set 1, TRG3 playback mode can be stopped immediately	0

GLBCF	G4: (Address 3Eh)			
Bit	Symbol	R/W	Description	Default
7:6	GO_PRIO	RW	Priority value of GO TRIG High priority can interrupt the playback of low priority, and low priority cannot interrupt the playback of high priority. When the priority settings are consistent, the default priority will be implemented	0
5:4	TRG3_PRIO	RW	Priority value of TRIG3 pin High priority can interrupt the playback of low priority, and low priority cannot interrupt the playback of high priority. When the priority settings are consistent, the default priority will be implemented	1
3:2	TRG2_PRIO	RW	Priority value of TRIG2 pin High priority can interrupt the playback of low priority, and low priority cannot interrupt the playback of high priority. When the priority settings are consistent, the default priority will be implemented	2
1:0	TRG1_PRIO	RW	Priority value of TRIG1 pin High priority can interrupt the playback of low priority, and low priority cannot interrupt the playback of high priority. When the priority settings are consistent, the default priority will be implemented	3

GLBRD	GLBRD5: (Address 3Fh)						
Bit	Symbol	R/W	Description	Default			
7:4	Reserved	RO	Not used	0			
3:0	GLB_STATE	RO	The state of glb state b0000: STANDBY b0110: CONT b0111: RAM b1000: RTP b1001: TRIG b1011: BRAKE	0			

RAMAI	RAMADDRH: (Address 40h)						
Bit	Symbol	R/W	Description	Default			
7:5	Reserved	RW	Not used	0			
4:0	RAMADDRH	RW	SRAM address high five bits	0			

RAMA	RAMADDRL: (Address 41h)						
Bit	Symbol	R/W	Description	Default			
7:0	RAMADDRL	RW	SRAM address low eight bits	0			

RAMD	RAMDATA: (Address 42h)						
Bit	Symbol	R/W	Description	Default			
7:0	RAMDATA	RW	SRAM data entry	0			

SYSCTE	RL3: (Address 45h)			
Bit	Symbol	R/W	Description	Default
7:3	Reserved	RW	Not used	2
2	EN_RAMINIT	RW	Enable clock: 1: open the digital module clock 0: close the digital module clock	0
1	EN_FIR	RW	Set enable of FIR filter	1
0	Reserved	RW	Not used	0

SYSCTE	RL4: (Address 46h)			
Bit	Symbol	R/W	Description	Default
7	Reserved	RW	Not used	0
6:5	WAVDAT_MODE	RW	Waveform data upsample rate selection: b00: 24kHz b01: 48kHz others: 12kHz rate	0
4:1	Reserved	RW	Not used	4
0	GAIN_BYPASS	RW	gain can be changed when playing gain can not be changed when playing	0

PWMCFG1: (Address 48h)						
Bit	Symbol	R/W	Description	Default		
7	PRC_EN	RW	Set enable of output signal protection mode of pwm: 0: disable 1: When HDP/HDN output voltage ≥ 124/128*PVDD maintains (PRCTIME/3k)s, HDP/HDN is pulled down protectively	0		
6:0	PRCTIME	RW	Set protection time of output signal protection mode of pwm, unit time is (1/3k) s	0x00		

WMCF	WMCFG3: (Address 4Ah)						
Bit	Symbol	R/W	Description	Default			
7	PR_EN	RW	Set enable of input signal protection mode of pwm: 0: disable 1: When output voltage >= PRLVL/128*PVDD maintains (PRTIME/3k)s, HDP/HDN is pulled down protectively	1			
6:0	PRLVL	RW	Set protection voltage of input signal protection mode of pwm	0x3F			

PWMCFG4: (Address 4Bh)					
Bit	Symbol	R/W	Description	Default	
7:0	PRTIME	RW	Set protection time of input signal protection mode of pwm, unit time is (1/3k) s	0x32	
			• • • • • • • • • • • • • • • • • • •		

VBATCTRL: (Address 4Ch)						
Bit	Symbol	R/W	Description	Default		
7	reserved	RW	Not used	0		
6	VBAT_MODE	RW	VBAT adjust mode: 0: software adjust mode 1: hardware adjust mode	0		
5:0	reserved	RW	Not used	0		

DETCF	DETCFG1: (Address 4Dh)					
Bit	Symbol	R/W	Description	Default		
7	Reserved	RW	Not used	0		
6:4	VBAT_REF	RW	Reference voltage for VBAT hardware adjust mode: b000: 3.3V b001: 3.6V b010: 4.0V b011: 4.2V b100: 4.5V b101: 4.8V b110: 5.0V b111: 5.5V When VBAT_MODE=1: no load output voltage=VBAT_REF*WAVE_CODE/128; if (VBAT_REF* WAVE_CODE)/VBAT > 128, no load output voltage=PVDD; When VBAT_MODE=0/BST_MODE=1: no load output voltage=PVDD*WAVE_CODE /128. (WAVE_CODE is the data of wave)	2		
3:2	ADC_FS	RW	ADC clock sampling rate: b00: 192KHz(ADC_CLK=6.144MHz) b01: 96KHz(ADC_CLK=3.072MHz) b10: 48KHz(ADC_CLK=1.536MHz) b11: 24KHz(ADC_CLK=768KHz)	1		
1:0	DET_GO	RW	ADC sampling mode control: b01: det others: not det	0		

DETCF	DETCFG2: (Address 4Eh)						
Bit	Symbol	R/W	Description De				
7	Reserved	RW	Not used	0			
6:3	DET_SEQ0	RW	Sequence0 detect type control: b0000: VBAT b0001: PVDD b0011: RL b0100: OS Others: for test	0			
2:0	D2S_GAIN	RW	Set D2S gain: b000: 1 b001: 2 b010: 4 b011: 8 b100: 10 b101: 16 b110: 20 b111: 40	4			

DET_R	D1: (Address 4Fh)		. (V)	
Bit	Symbol	R/W	Description	Default
7:4	Reserved	RO	Not used	0
3:2	ADC_DATA_H	RO	The measured value of one time adc data(high two bits)	0
1:0	AVG_DATA_H	RO	The measured value of 16 times adc average data(high two bits)	0

DET_R	D2: (Address 50h)			
Bit	Symbol	R/W	Description	Default
7:0	AVG_DATA_L	RO	The measured value of 16 times adc average data(low eight bits)	0

	DET_R	D3: (Address 51h)				
	Bit	Symbol	R/W		Description	Default
Ī	7:0	ADC_DATA_L	RO	The measured	he measured value of one times adc data(low eight bits)	

IDH:	(Address 57h)			
Bit	Symbol	R/W	Description	Default
7:0	CHIPID_H	RO	High 8 bit of CHIP_ID	0x92

IDT_RI	D3: (Address 58h)			
Bit	Symbol	R/W	Description	Default
7:0	CHIPID_L	RO	Low 8 bit of CHIP_ID	0x70

Application Information

Inductor Selection Guideline

Selecting inductor needs to consider Inductance, size, magnetic shielding, saturation current and temperature current.

a) Inductance

Inductance value is limited by the boost converter's internal loop compensation. In order to ensure phase margin sufficient under all operating conditions, recommended 1µH inductor.

b) Size

For a certain value of inductor, the smaller the size, the greater the parasitic series resistance of the inductor DCR, the higher the loss, corresponds to the lower efficiency.

c) Magnetic shielding

Magnetic shielding can effectively prevent the inductance of the electromagnetic radiation interference. It is much better to choose inductance with magnetic shielding in the application of EMI sensitive environment.

d) Saturation current and temperature rise of current

Inductor saturation current and temperature rise current value are important basis for selecting the inductor. As the inductor current increases, on the one hand, since the magnetic core begins to saturate, inductance value will decline; on the other hand, the inductor's parasitic resistance inductance and magnetic core loss can lead to temperature rise. In general, the current value is defined as the saturation current ISAT when the inductance value drops to 70%; the current value is defined as temperature rise current IRMS when inductance temperature rise 40°C.

For particular applications, need to calculate the maximum IL PEAK and IL RMS, which is a basis of selecting the inductor. When VBAT=3.8V, PVDD=8.5V, R_L = 8Ω , Output drive R_{DSON} =300m Ω , when the maximum power without distortion, the output power is calculated as follows:

$$P_{OUT} = \frac{(V_{OUT} \times \frac{R_L}{R_L + R_{DSON}})^2}{2 \times R_L \times (1 - 2.3\%)} = \frac{(8.5 \times \frac{8}{8 + 0.3})^2}{2 \times 8 \times 0.977} w = 4.294w$$

Where the coefficients in the denominator of (0.977) is the power ratio of no truncation maximum output. In such a large output power, the overall efficiency of the output drive is typically 75%, in order to calculate the maximum average current $I_{\text{MAX_AVG_VBAT}}$ and maximum peak current $I_{\text{MAX_PEAK_VBAT}}$ drawn from VBAT: $I_{MAX_AVG_VBAT} = \frac{P_{OUT}}{VBAT \times \eta} = \frac{4.294}{3.8 \times 0.75} A = 1.507A$

$$I_{MAX_AVG_VBAT} = \frac{P_{OUT}}{VBAT \times \eta} = \frac{4.294}{3.8 \times 0.75} A = 1.507A$$

$$I_{MAX_PEAK_VBAT} = 2 \times I_{MAX_AVG_VBAT} = 2 \times 1.507A = 3.014A$$

If inductor DCR is 50mΩ, then when the output power of 4.294W, the inductor power loss is:

$$P_{DCR.LOSS} = 1.5 \times I_{MAX\ AVG\ VBAT}^2 \times DCR = 1.5 \times 1.507^2 \times 0.05\ W = 170.3\ mW$$

Wherein the coefficient 1.5 is the square of the ratio of the sine wave current RMS value and average value (there is no consideration of the impact of the inductor ripple, the actual DCR loss will be even greater). If the loss which is resulting from DCR is less than 1% at efficiency (POUT = 4.294W, η = 75%), then:

$$DCR = \frac{P_{DCR.LOSS}}{1.5 \times I_{MAX_AVG_VBAT}^2} \le 0.01 \times \frac{P_{OUT}}{1.5 \times I_{MAX_AVG_VBAT}^2 \times \eta} = \frac{0.01 \times 4.294}{1.5 \times 1.507^2 \times 0.75} \Omega = 16.8 \ m\Omega$$

According to the working principle of the Boost, we can calculate the size of the inductor current ripple ΔI_L:

$$\Delta I_L = \frac{VBAT \times (PVDD - VBAT)}{PVDD \times f \times L} = \frac{3.8 \times (8.5 - 3.8)}{8.5 \times 2 \times 1} A = 1.050A$$

Thus, the maximum peak inductor current IL_PEAK and maximum effective inductor current IL_RMS is:

$$I_{L_PEAK} = I_{MAX_PEAK_VBAT} + \frac{\triangle I_L}{2} = 3.014 + \frac{1.050}{2}A = 3.539A$$

$$I_{L_RMS} = \sqrt{I_{MAX_PEAK_VBAT}^2 + \frac{\Delta I_L^2}{12}} = \sqrt{3.014^2 + \frac{1.050^2}{12}}A = 3.029A$$

From the above calculation results:

- 1) For typical DCR about $50m\Omega$ inductance, the efficiency loss caused by around 3%;
- 2) Need to choose AW86927 inductance input current limit value I_{LIMIT} is greater than I_{L PEAK} = 3.6A (< I_{LIMIT} = 4.5A), to guarantee the output drive power can be achieved when THD = 1% (= 4.1W) but not limited by value ILIMIT; If you choose ISAT or IRMS of the inductance is too small, it is possible to cause the chip don't work properly, or the temperature of the inductance is too high.
- 3) In practice, the maximum output power of the drive is likely to reach 4.3W in an instant, so the selected inductor saturation current I_{SAT} requires more than the maximum inductor peak current I_{L PEAK}, and cannot be less than 3.6A;
- 4) In some cases, if the IL PEAK calculated according to the above method is greater than the set of input inductor current limit value ILIMIT, shows the output drive is restricted by inductance input current limit, the actual maximum output power is less than the calculated value, the measured value shall prevail, and I_{SAT} need greater than the set current limiting value ILIMIT, and cannot be less than 3.6A;
- 5) Take PVDD = 8.5V for example, under different conditions, the typical method of selecting I_{SAT} in the following table:

VBAT (V)	PVDD (V)	R _L (Ω)	Il_peak (A)	Inductor saturation current I _{SAT} minimum value (A)
3.4	8.5	8	3.9	4.5
3.4	8.5	16	2.3	2.5

Capacitors Selection

Boost Capacitor Selection

Boost output capacitor is usually within the range 0.1μF~47μF. It needs to use Class II type (EIA) multilayer ceramic capacitors (MLCC). Its internal dielectric is ferroelectric material (typically BaTiO₃), a high the dielectric constant in order to achieve smaller size, but at the same Class II type (EIA) multilayer ceramic capacitors has poor temperature stability and voltage stability as compared to the Class I type (EIA) capacitance. Capacitor is selected based on the requirements of temperature stability and voltage stability, considering the capacitance material, capacitor voltage, and capacitor size and capacitance values.

A) temperature stability

Class II capacitance have different temperature stability in different materials, usually choose X5R type in order to ensure enough temperature stability, and X7R type capacitance has better properties, the price is relatively more expensive; X5R capacitance change within ± 15% in temperature range of -55°C to 85°C, X7R capacitance change within ±15% in temperature range of -55°C~125°C. The Boost output capacitance of AW86927 recommends X5R ceramic capacitors.

B) Voltage Stability

Class II type capacitor has poor voltage stability Capacitance values falling fast along with the DC bias voltage applied across the capacitor increasing. The rate of decline is related to capacitance material, capacitors rated voltage, capacitance volume. Take for TDK C series X5R for example, its pressure voltage value is 16V or 25V; the package size is 0805, 1206 or 0603, the capacitance value is 10µF. The capacitor's voltage stability of different types of capacitor is as shown below:

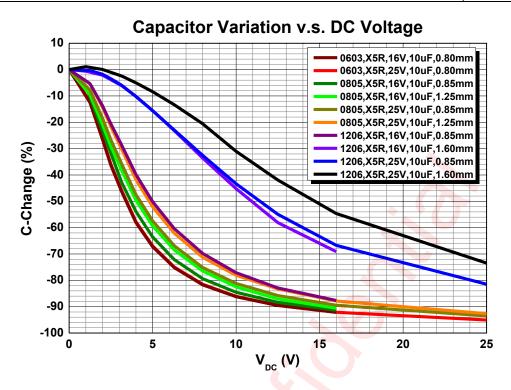


Figure 28 Different types of capacitive voltage stability

Among them, the space remaining value of different types of capacitors at V_{DC} = 8.5 V as shown in the Figure 29:

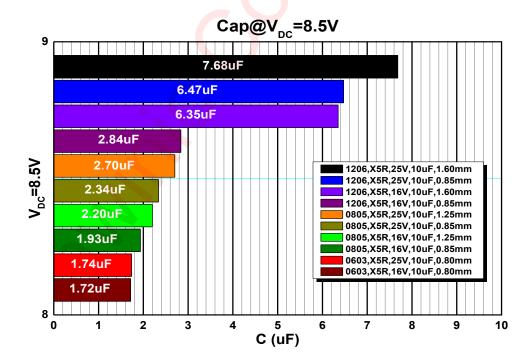


Figure 29 The space remaining value of different types of capacitors at VDC = 8.5 V

It can be found that the rate of capacitance capacity value descent becomes slow along with "large capacitor size, capacitance pressure voltage rise". The larger the package size, the better voltage stability. The higher the height, the better voltage stability with the same length and width of the capacitance. Voltage stability of smaller package size (0603) capacitor change affected by the pressure value is very small.

In AW86927 typical applications, it is necessary to ensure the output value of the Boost capacitor $\geq 5\mu F$ when PVDD=8.5V.

Supply Decoupling Capacitor (C_S)

The device is a high voltage driver that requires adequate power supply decoupling. Place a low equivalent-series-resistance (ESR) ceramic capacitor, typically 0.1µF. This choice of capacitor and placement helps with higher frequency transients, spikes, or digital hash on the line. Additionally, placing this decoupling capacitor close to the device is important, as any parasitic resistance or inductance between the device and the capacitor causes efficiency loss. In addition to the 0.1µF ceramic capacitor, place a 10µF capacitor on the VBAT supply trace. This larger capacitor acts as a charge reservoir, providing energy faster than the board supply, thus helping to prevent any droop in the supply voltage.

Output beads, capacitors

The device output is a square wave signal, which causing switch current at the output capacitor, increasing static power consumption, and therefore output capacitor should not be too large, 0.1nF ceramic capacitors is recommended.

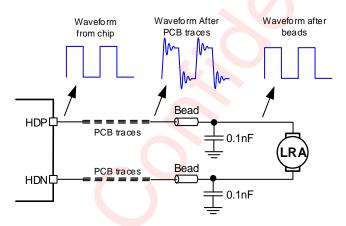


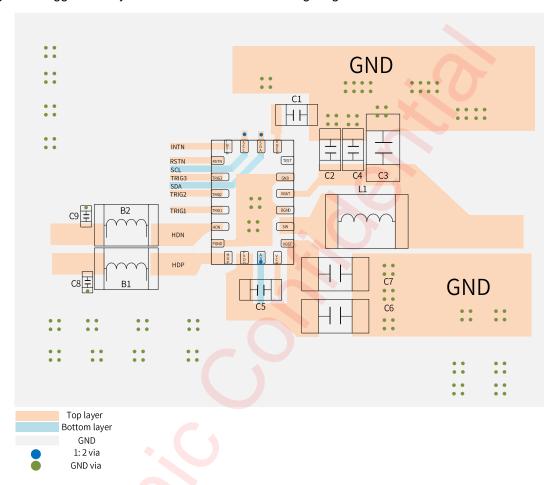
Figure 30 Ferrite Chip Bead and capacitor

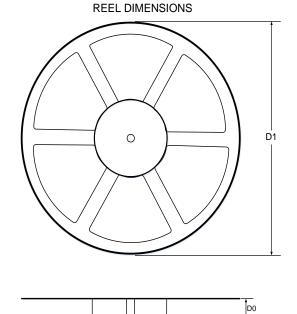
The device output is a square wave signal. The voltage across the capacitor will be much larger than the PVDD voltage after increasing the bead capacitor. It suggested the use of rated voltage above 16V capacitor. At the same time a square wave signal at the output capacitor switching current form, the static power consumption increases, so the output capacitance should not be too much which is recommended 0.1nF ceramic capacitor rated voltage of 16V.

PCB Layout Consideration

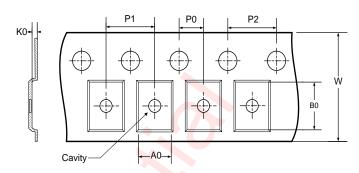
Layout Considerations

This device is a high voltage driver chip. To obtain the optimal performance, PCB layout should be considered carefully. The suggested Layout is illustrated in the following diagram:

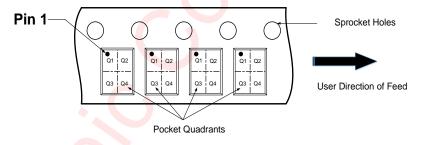



Figure 31 AW86927 Board Layout

Here are some guidelines:


- 1. All of the external components should be placed as close as possible to IC in top layer PCB.
- 2. SCL and SDA should be shield by ground.
- 3. The overcurrent capability of the VBAT to SW must be meet $I_{MAX_AVG_VBAT}$ (Take the measured data as an example: VBAT=3.4V, PVDD=9V, $R_L = 8\Omega$, the routing overcurrent capacity should be greater than 2.6A), and C2, C3, C4 should be placed close to IC and L1.
- 4. C6 and C7 are within 1.5mm to pin PVDD or pin VBST, and the overcurrent capability of the VBST and PVDD traces must be meet $\frac{PVDD}{R_L + R_{DSON}}$, and the GND side of the PVDD capacitor should be directly connected to surface layer ground or punched to the main ground of the PCB. In addition, create solid GND plane near and around the IC, connect BGND, PGND and GND together, and the overcurrent capability of the vias should be designed according to the PVDD overcurrent capability.
- 5. Routing overcurrent capability of HDP/HDN output to the load should meet $\frac{PVDD}{R_L + R_{DSON}}$. HDP and HDN should be shield by ground and far away from the interference source especially the FLY capacitor of the high-power charging IC, otherwise it will cause the abnormal F0 detection.

Tape And Reel Information

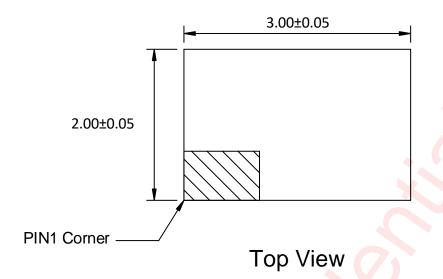


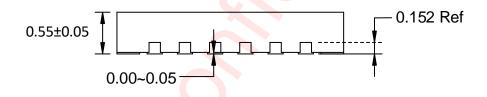
TAPE DIMENSIONS

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- K0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P0: Pitch between successive cavity centers and sprocket hole
- P1: Pitch between successive cavity centers
- P2: Pitch between sprocket hole
- D1: Reel Diameter
- D0: Reel Width

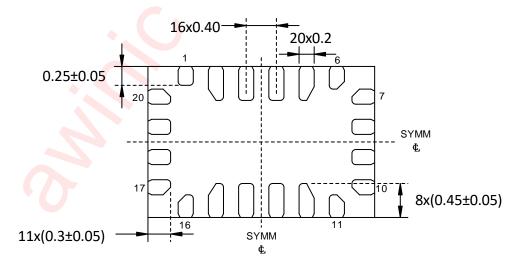
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

DIMENSIONS AND PIN1 ORIENTATION

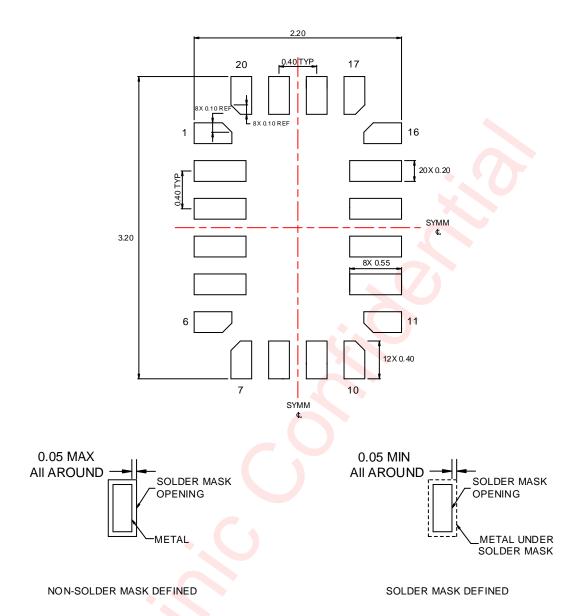

D1		A0			P0				Pin1 Quadrant
(mm)	Pini Quadrant								
	12.4					4	4	12	Q1


All dimensions are nominal

43



Package Description


Side View

Bottom View

Unit:mm

Land Pattern Data

Unit: mm

Revision History

Version	Date	Change Record
V1.0	August 2021	Official Version
V1.1	August 2021	Revise Pin Definition(RSTN/HDP/HDN/TEST description) Revise Register DRV1_LEV/ DRV2_LEV/VBAT_REF/EN_RAMINIT description Revise PCB Layout Figure font
V1.2	September 2021	Revise Playback Sequence Figure Revise Inductor Selection from 3A to 2.5A When R _L =16 Ω Revise Register BST_VOUT_VREFSET description

Disclaimer

Information in this document is believed to be accurate and reliable. However, Shanghai AWINIC Technology Co., Ltd (AWINIC Technology) does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

AWINIC Technology reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Customers shall obtain the latest relevant information before placing orders and shall verify that such information is current and complete. This document supersedes and replaces all information supplied prior to the publication hereof.

AWINIC Technology products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an AWINIC Technology product can reasonably be expected to result in personal injury, death or severe property or environmental damage. AWINIC Technology accepts no liability for inclusion and/or use of AWINIC Technology products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications that are described herein for any of these products are for illustrative purposes only. AWINIC Technology makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

All products are sold subject to the general terms and conditions of commercial sale supplied at the time of order acknowledgement.

Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Reproduction of AWINIC information in AWINIC data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. AWINIC is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of AWINIC components or services with statements different from or beyond the parameters stated by AWINIC for that component or service voids all express and any implied warranties for the associated AWINIC component or service and is an unfair and deceptive business practice. AWINIC is not responsible or liable for any such statements.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Motor/Motion/Ignition Controllers & Drivers category:

Click to view products by Awinic manufacturer:

Other Similar products are found below:

LV8133JA-ZH LV8169MUTBG LV8774Q-AH MC33931EKR2 FSB50550TB2 FSBF15CH60BTH MSVCPM2-63-12 MSVGW45-14-2 MSVGW54-14-3 NTE7043 CAT3211MUTAG LA6245P-CL-TLM-E LA6245P-TLM-E LA6565VR-TLM-E LB11650-E LB1694N-E LB1837M-TLM-E LC898111AXB-MH LC898300XA-MH LV8281VR-TLM-H IRAM236-1067A LA6584JA-AH LB11847L-E NCV70501DW002R2G AH293-PL-B TND315S-TL-2H FNA23060 FSB50250AB FNA41060 MSVBTC50E MSVCPM3-54-12 MSVCPM3-63-12 MSVCPM4-63-12 FSB50550AB NCV70501DW002G LC898301XA-MH LV8413GP-TE-L-E MSVGW45-14-3 MSVGW45-14-4 MSVGW54-14-4 TB6552FNG,C,8,EL LB11651-E IRSM515-025DA4 LV8127T-TLM-H MC33812EKR2 IKCM10H60GA MC33PT2000AF TDA21801 LB11851FA-BH LB1938FAGEVB