High Efficiency, Low Noise, Constant Large Volume, Multi-Level AGC 8th-Generation Class K Audio Amplifier

FEATURES

- Multi-Level AGC audio algorithm, effectively eliminates noise and makes sound smooth
- Speaker and Receiver two-in-one application
 - Class D Receiver Mode: 1V/V, Vn=19µV, THD+N=0.025%
 - Class K Speaker Mode: 8V/V, Vn=43µV, THD+N=0.008%
- Power Amplifier's Overall Efficiency is up to 83%
- Selectable Speaker-Guard Power Level: 0.6W, 0.7W, 0.8W, 0.9W, 1.0W, 1.1W, 1.2W
- Within Lithium Battery Voltage Range, Outputs **Constant Large Volume**
- Support 6Ω Speaker
- Upgrade for AW8736, AW8737
- Super TDD-Noise Suppression
- Excellent Pop-Click Suppression
- One-Wire Pulse Control
- High PSRR: -68dB (217Hz)
- ESD Protection: ±6kV (HBM)
- Small Package
 - 1.60mm×1.68mm, 0.4mm Pitch CSP-14
 - 1.60mm×1.60mm, 0.4mm Pitch FCQFN-16

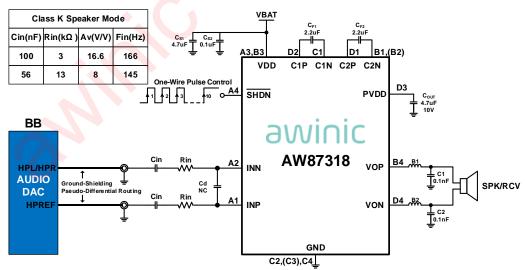
APPLICATIONS

Smart Phones

APPLICATION DIAGRAM

DESCRIPTION

AW87318 is specifically designed to enhance overall sound quality. It is an upgrading 8th-generation class K audio amplifier with high efficiency, low noise, ultra-low distortion and capability of outputting constant large volume.


With integrated AWINIC proprietary Multi-Level AGC audio algorithm, AW87318 can eliminate noise in playback and improve sound quality and effect. Using a novel K-Chargepump technology, its integrated charge pump efficiency can reach 93%, and power amplifier's overall efficiency can reach 83%. With high efficiency, AW87318 can greatly prolong smart phone usage time.

AW87318 noise floor is as low as to 43µV, with 98.8dB high signal-to-noise-ratio (SNR). The ultra-low distortion 0.008% brings high-quality musical enjoyment.

AW87318 has a setting of 7-step selectable speaker-guard output power level from 0.6W to 1.2W, suitable for different rated power speakers. Within lithium battery voltage range, it keeps output power constant, preventing voice from degrading.

AW87318 supports speaker and receiver two-in-one application. The Class D Receiver Mode has an ultra-low output noise of 19µV. Under this mode, the power of PA is supplied by VBAT.

AW87318 has built-in over-current protection, over-temperature protection and short-circuit protection. AW87318 is available in a 1.60mm×1.68mm, 0.4mm pitch CSP-14 package, or a 1.60mm×1.60mm, 0.4mm pitch FCQFN-16 package.

All trademarks are the property of their respective owner

PIN DIAGRAM AND DEVICE MARKING

awinic

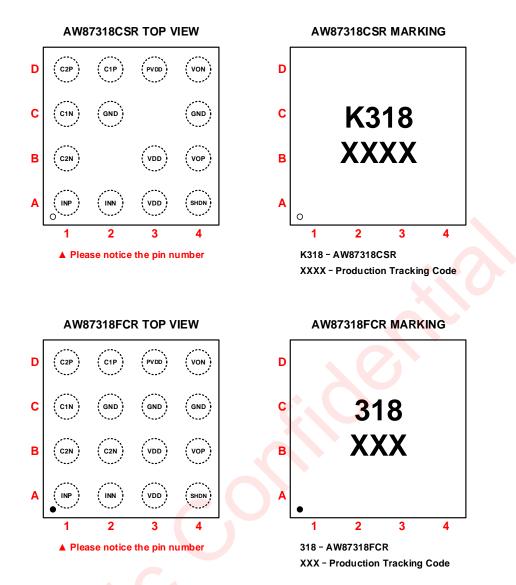


Figure 2 AW87318CSR and AW87318FCR Pin Diagram Top View and Device Marking

PIN DESCRIPTION

AW87318CSR					
Number	Symbol	Description			
A1	INP	Positive audio input			
A2	INN	Negative audio input			
A3, B3	VDD	Power supply			
A4	SHDN	Chip power down pin, active low: one wire pulse control			
B1	C2N	Negative terminal of the charge pump flying capacitor C _{F2}			
B4	VOP	Positive audio output			
C1	C1N	Negative terminal of the charge pump flying capacitor C_{F1}			
C2, C4	GND	Ground			
D1	C2P	Positive terminal of the charge pump flying capacitor CF2			
D2	C1P	Positive terminal of the charge pump flying capacitor C _{F1}			
D3	PVDD	Charge pump output			
D4	VON	Negative audio output			

	AW87318FCR					
Number	Symbol	Description				
A1	INP	Positive audio input				
A2	INN	Negative audio input				
A3, B3	VDD	Power supply				
A4	SHDN	Chip power down pin, active low: one wire pulse control				
B1, B2	C2N	Negative terminal of the charge pump flying capacitor CF2				
B4	VOP	Positive audio output				
C1	C1N	Negative terminal of the charge pump flying capacitor CF1				
C2, C3, C4	GND	Ground				
D1	C2P	Positive terminal of the charge pump flying capacitor CF2				
D2	C1P	Positive terminal of the charge pump flying capacitor C _{F1}				
D3	PVDD	Charge pump output				
D4	VON	Negative audio output				

AWINIC CLASS K FAMILY

ІТЕМ	TEST CONDITION	AW8736	AW8737	AW87317	AW8738	AW87318
PVDD (V)	VDD=4.2V	5.8	6.05	6.05	6.05	6.05
Ouput Noise (µV)	VDD=4.2V, f=20Hz to 20kHz Input ac grounded, 8V/V, A-weighting	125	52	53	40	43
Efficiency (%) VDD=3.6V, Po=1.0W, R∟=8Ω+33μH		75	80	80	83	83

FUNCTIONAL DIAGRAM

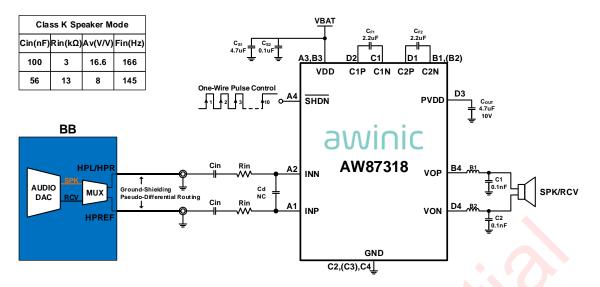



Figure 3 AW87318 Functional Diagram

APPLICATION DIAGRAM

awinic

Note1: When single-ended input, audio signal line from audio DAC (HPL or HPR) can arbitrarily connected to either of INN or INP input terminal. The other terminal must be connected to reference ground (HPREF) through input capacitor and resistor.

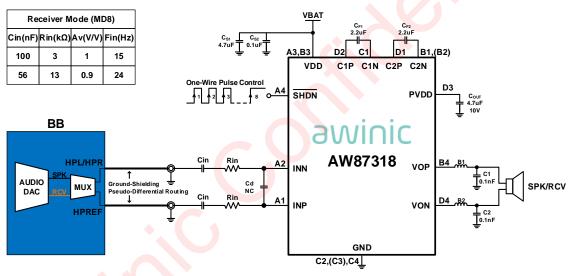
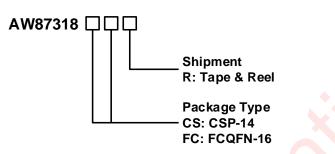



Figure 5 AW87318 Receiver Mode Application Diagram

ORDERING INFORMATION

Product Type	Operation Temperature Range	Package	Device Marking	Moisture Sensitivity Level (MSL)	Environmental Information	Delivery Form
AW87318CSR	-40°C to 85°C	CSP-14	K318	MSL1	ROHS+HF	Tape & Reel 3000 pcs
AW87318FCR	-40°C to 85°C	FCQFN-16	318	MSL1	ROHS+HF	Tape & Reel 3000 pcs

ABSOLUTE MAXIMUM RATINGS(NOTE2)

Parameter		Range		
Power Supply VDD Voltage		-0.3V to 6V		
Charge Pump Output PVDD Voltage	-0.3V to 7V			
VOP, VON, C1P, C2P		-0.3V to PVDD+0.3V		
C1N, C2N		-0.3V to VDD+0.3V		
Input Pin INP, INN Voltage		-0.3V to VDD+0.3V		
	AW87318CSR			
Junction-to-Ambient Thermal Resistance θ_{JA}	76.5°C/W			
Operating Free-Air Temperature T _A		-40°C to 85°C		
Maximum Junction Temperature T _{JMAX}		165°C		
Storage Temperature T _{STG}		-40°C to 150°C		
Lead Temperature (Soldering 10 Seconds)		260°C		
ESD Rating				
Human Body Model (HBM) (Note 3)		±6kV		
Charged Device Model (CDM) (Note 4)	XO	±2kV		
Latch-up		-		
Test Condition: JEDEC STANDARD NO.78D SEPTEN	+IT: 450mA -IT: -450mA			

Note 2: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Note 3: The human body model is a 100pF capacitor discharged through a $1.5k\Omega$ resistor into each pin. Test method: MIL-STD-883J Method 3015.9.

Note 4: Test Method: ESDA/JEDEC JS-002-2014.

MODE DESCRIPTIONS (T_A=25°C, VDD=4.2V)

Under Speaker Mode (Mode 1 to Mode 7, and Mode 10) or Receiver Mode (Class D Receiver Mode, Mode 8 and Mode 9), audio signal is inserted through INP & INN pins. The AW87318 external input capacitor is Cin and the external input resistor is Rin.

- 1) Under Speaker Mode, the internal input resister is $6.6k\Omega$. The gain of AW87318 (Av) can be calculated by 159.5k/(Rin+6.6k) (Rin unit: Ω). Recommended operating external setting is: Cin=100nF, Rin=3k Ω , Av=16.6V/V.
- 2) Under Class D Receiver Mode, the internal input resistor is 106.6kΩ under Mode 8 and 36.6kΩ under Mode 9. The gain of AW87318 (Av) can be calculated by 110k/(Rin+106.6k) (Rin unit: Ω) under Mode 8 and 110k/(Rin+36.6k) (Rin unit: Ω) under Mode 9, respectively. Recommended operating external setting is: Cin=100nF, Rin=3kΩ, Av=1V/V (Mode 8) and Av=3V/V (Mode 9).

	Enable Signal	Gain		AGC Power Level (W)			Multi-Level	Class D Receiver
MODE	(SHDN)	(V/V)	R∟=8Ω +33µH	R∟=6Ω +33µH	RL=4Ω RL=3Ω +15μH +15μH		AGC	Mode
1		16.6	1.2	1.6	—	-	V	
2		16.6	1.1	1.5	—	\sim	V	
3		16.6	1.0	1.3	2.0	Ĥ	√	
4		16.6	0.9	1.2	1.8		√	
5		16.6	0.8	1.0	1.6	2.0	√	
6		16.6	0.7	0.9	1.4	1.8	V	
7		16.6	0.6	0.8	1.2	1.6	V	
8		1						√
9		3	÷					√
10		16.6	1.75W@ THD=1%	2.05W@ THD=1%	2.4W@ THD=1%	2.35W@ THD=1%		

The operating modes of AW87318 are listed below:

ELECTRICAL CHARACTERISTICS

Test condition: $T_A=25^{\circ}C$, VDD=3.6V, $R_L=8\Omega+33\mu$ H, f=1kHz (unless otherwise noted)

Parameter		Test Conditions		Тур	Мах	Unit
V_{DD}	Power supply voltage		3.0		5.5	V
V _{IH}	SHDN high input voltage		1.3		V _{DD}	V
VIL	SHDN low input voltage		0		0.45	V
V _{os}	Output offset voltage	V _{IN} =0V, V _{DD} =3.0V to 5.5V	-30	0	30	mV
I _{SD}	Shutdown current	V _{DD} =3.6V, _{SHDN} =0V			2	μA
T_{TG}	Thermal AGC start temperature threshold			150		°C
T_{TGR}	Thermal AGC exit temperature threshold			130		°C
T_{SD}	Over temperature protection threshold			160		°C
T_{SDR}	Over temperature protection recovery threshold			120		°C
T_{ON}	Start-up time			40		ms
K-Charg	epump					
PVDD	Output voltage	V _{DD} =3.0V to 4V		1.5× VDD		V
		V _{DD} >4V		6.05		V
Vhys	OVP hysteresis voltage	V _{DD} >4V		50		mV
F_{CP}	Charge pump frequency	V _{DD} =3.0V to 5.5V	0.79	1.06	1.33	MHz
η_{CP}	Charge pump efficiency	V _{DD} =3.6V, I _{load} =200mA		93		%
T _{ST}	Soft-start time	No load, C _{out} =4.7µF	1.0	1.2	1.4	ms
١L	Current limit when PVDD short to ground		200	300	400	mA
Class K	power amplifier (Mode1 to Mode	e7, and Mode10)				
lq	Quiescent current	V _{DD} =4.2V, Vin=0, no load		10	15	mA
		V _{DD} =3.6V, Po=1.0W, R _L =8Ω+33μH		83		%
η	Efficiency	V _{DD} =3.6V, Po=1.0W, R _L =6Ω+33μH		83		%
Fosc	Modulation frequency	V _{DD} =3.0V to 5.5V	600	800	1000	kHz
Av	Gain	External input resistance=3kΩ		16.6		V/V
Vin	Recommended max input voltage	V _{DD} =3.0V to 5.5V			1	Vp
Rini	Internal input resistor	Mode1 to Mode7, and Mode10		6.6		kΩ
Fhin	Input high pass filter corner frequency	Cin=100nF, external input resistor=3kΩ		166		Hz
		$V_{DD}=4.2V, R_{L}=8\Omega+33\mu H$	1.08	1.2	1.32	W
		$V_{DD}=4.2V, R_{L}=6\Omega+33\mu H$	1.44	1.6	1.76	W
D.	Mode1 Multi-Level AGC power	$V_{DD}=4.2V, R_{L}=4\Omega+15\mu H$	2.16	2.4	2.64	W
Pagc		$V_{DD}=4.2V, R_{L}=3\Omega+15\mu H$	2.16	2.4	2.64	W
	Model Multi Lough ACC accura	$V_{DD}=4.2V, R_{L}=8\Omega+33\mu H$	0.99	1.1	1.21	W
	Mode2 Multi-Level AGC power	V _{DD} =4.2V, R _L =6Ω+33μH	1.35	1.5	1.65	W

		V_{DD} =4.2V, R _L =4 Ω +15 μ H		1.98	2.2	2.42	W
Parameter		Test Conditions		Min	Тур	Max	Unit
	Mode2 Multi-Level AGC power	V _{DD} =4.2V, R _L =3Ω+15μH		2.16	2.4	2.64	W
		V _{DD} =4.2V, R _L =8Ω+33μH		0.9	1	1.1	W
	Mode3 Multi-Level AGC power	V_{DD} =4.2V, R _L =6 Ω +33 μ H		1.17	1.3	1.43	W
	modes multi-Level AGC power	V_{DD} =4.2V, R _L =4 Ω +15 μ H		1.8	2	2.2	W
		V _{DD} =4.2V, R _L =3Ω+15μH		2.16	2.4	2.64	W
		V _{DD} =4.2V, R _L =8Ω+33μH		0.81	0.9	0.99	W
	Mode4 Multi-Level AGC power	V_{DD} =4.2V, R _L =6 Ω +33 μ H		1.08	1.2	1.32	W
		V_{DD} =4.2V, R _L =4 Ω +15 μ H		1.62	1.8	1.98	W
		V_{DD} =4.2V, R _L =3 Ω +15 μ H		2.16	2.4	2.64	W
		V _{DD} =4.2V, R _L =8Ω+33μH		0.72	0.8	0.88	W
Pagc		V _{DD} =4.2V, R _L =6Ω+33μH		0.9	1	1.1	W
i ugo	Mode5 Multi-Level AGC power	V_{DD} =4.2V, R _L =4 Ω +15 μ H		1.44	1.6	1.76	W
		V _{DD} =4.2V, R _L =3Ω+15μΗ		1.8	2.0	2.2	W
		V _{DD} =4.2V, R _L =8Ω+33μH		0.63	0.7	0.77	W
	Mode6 Multi-Level AGC power	$V_{DD}=4.2V, R_{L}=6\Omega+33\mu H$			0.9	0.99	W
		V _{DD} =4.2V, R _L =4Ω+15μH			1.4	1.54	W
		$V_{DD}=4.2V, R_L=3\Omega+15\mu H$			1.8	1.98	W
		V _{DD} =4.2V, R _L =8Ω+33μH		1.62 0.54	0.6	0.66	W
		V _{DD} =4.2V, R _L =6Ω+33μH		0.72	0.8	0.88	W
	Mode7 Multi-Level AGC power	V _{DD} =4.2V, R _L =4Ω+15μH			1.2	1.32	W
		V _{DD} =4.2V, R _L =3Ω+15μH		1.08 1.44	1.6	1.76	W
		V _{DD} -4.2 V, N _L -322 (30)			-68		dB
PSRR	Power supply rejection ratio	V _{DD} =4.2V, Vp-p_sin=200mV	1kHz		-68		dB
		V _{DD} =4.2V, Po=1.7W, THD+N=1%, R _L =8 Av=8V/V			98.8		dB
SNR	Signal-to-noise ratio	V _{DD} =4.2V, Po=2.0W, THD+N=1%, R _L =6 Av=8V/V	δΩ+33μΗ,		98.2		dB
		V _{DD} =4.2V, f=20Hz to 20kHz, input ac grounded, Av=8V/V			43		µVrms
Vn	Output noise voltage	V _{DD} =4.2V, f=20Hz to 20kHz, input ac grounded, Av=12V/V	A-weighting		48		µVrms
		$V_{\text{DD}}\text{=}4.2\text{V}, \text{ f=}20\text{Hz}$ to 20kHz, input ac grounded, Av=16V/V			57		µVrms
THD+N	Total harmonic	V_{DD} =3.6V, Po=1W, R _L =8 Ω +33 μ H, f=1kH	Hz, Mode1		0.008		%
I HD+N	distortion+noise	V_{DD} =3.6V, Po=1W, R _L =6 Ω +33µH, f=1kH	Hz, Mode10		0.009		%
		THD+N=10%, f=1kHz, R _L =8Ω+33μH, V	_{DD} =4.2V		2.15		W
		THD+N=1%, f=1kHz, R _L =8Ω+33μH, V _D	_=4.2V	İ	1.75		W
		THD+N=10%, f=1kHz, R∟=8Ω+33μH, V	_{DD} =3.6V	İ	1.6		W
Po	Mode10 output power	THD+N=1%, f=1kHz, R _L =8Ω+33μH, V _D	_D =3.6V		1.28		W
		THD+N=10%, f=1kHz, R _L =6Ω+33μH, V	_{DD} =4.2V		2.52		W
		THD+N=1%, f=1kHz, RL=6Ω+33μH, VD			2.05		W
		THD+N=10%, f=1kHz, R _L =6Ω+33μH, V	_{DD} =3.6V		1.82		W

shanghai awinic technology co., ltd.

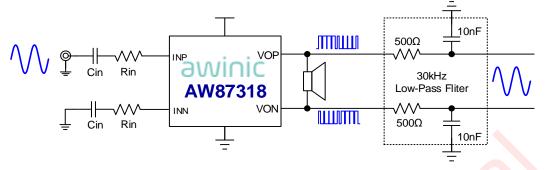
				1	1	1	
		THD+N=1%, f=1kHz, R _L =6 Ω +33µH, V _{DI}	_D =3.6V		1.5		W
	Parameter	ameter Test conditions		Min	Тур	Max	Units
		THD+N=10%, f=1kHz, R_L =4 Ω +15 μ H, V_{DD} =4.2V			2.8		W
		THD+N=1%, f=1kHz, R _L =4 Ω +15 μ H, V _{DI}	_D =4.2V		2.4		W
		THD+N=10%, f=1kHz, R _L =4Ω+15μH, V	_{DD} =3.6V		2.02		W
-		THD+N=1%, f=1kHz, R∟=4Ω+15µH, V _{DI}	_=3.6V		1.68		W
Po	Mode10 output power	THD+N=10%, f=1kHz, R∟=3Ω+15μH, V	_{DD} =4.2V		2.63		W
		THD+N=1%, f=1kHz, R _L =3Ω+15μH, V _{DI}	_=4.2V		2.35		W
		THD+N=10%, f=1kHz, R _L =3Ω+15μH, V	_{DD} =3.6V		1.85		W
		THD+N=1%, f=1kHz, R _L =3Ω+15μH, V _{DI}	_=3.6V		1.65		W
Class D	Receiver (Mode8 and Mode9)						
la	Quiescent current	V _{DD} =4.2V, V _{IN} =0, no load			5	7.5	mA
η	Efficiency	V _{DD} =3.6V, Po=0.8W, R _L =8Ω+33μH, Mo	de9		86		%
Fosc	Modulation frequency	V _{DD} =3.0V to 5.5V		600	800	1000	kHz
		External input resistor=3kΩ, Mode8			1		V/V
Av	Gain	External input resistor=3kΩ, Mode9			3		V/V
Diai		Mode8			106.6		kΩ
Rini	Internal input resistor	Mode9			36.6		kΩ
Po	Mode 8 output power	THD+N=1%, f=1kHz, R _L =8Ω+33μH, V _{DD} =3.6V			250		mW
P0	Mode 9 output power	THD+N=1%, f=1kHz, R⊾=8Ω+33μH, V _{DD} =3.6V			600		mW
Fhin	Input high pass filter corner	Cin=100nF, external input resistor=3kΩ	, Mode8		15		Hz
FIIII	frequency	Cin=100nF, external input resistor=3kΩ	, Mode9		40		Hz
Vn	Output noise voltage	VDD=4.2V, f=20Hz to 20kHz, input ac grounded,Av=1V/V	Awaighting		19		μVrms
VII	Output hoise voitage	VDD=4.2V, f=20Hz to 20kHz, input ac grounded, Av=3V/V	- A-weighting		22		μVrms
THD+N	Total harmonic	V _{DD} =4.2V, R _L =8Ω+33μH, f=1kHz	Po=0.1W, Mode8		0.025		%
mom	distortion+noise	VDD-4.2 V, NL-022 OODIN, I- NN2	Po=0.4W, Mode9		0.025		%
One Wire	e Pulse Control			1			
Τ _Η	SHDN high level duration time	V _{DD} =3.0V to 5.5V		0.75	2	10	μs
T_{L}	SHDN low level duration time	V _{DD} =3.0V to 5.5V		0.75	2	10	μs
TLATCH	SHDN turn on delay time	V _{DD} =3.0V to 5.5V		150		500	μs
T_{OFF}	SHDN turn off delay time	V _{DD} =3.0V to 5.5V		150		500	μs
Multi-Lev	vel AGC ^(Note 5)	·					
T _{ATF}	Fast attack time	-13.5dB gain attenuation completed			1.5		ms
T _{ATS}	Slow attack time	-13.5dB gain attenuation completed			6		ms
T _{ATT}	Total attack time	-13.5dB gain attenuation completed			7.5		ms
T _{RLT}	Release time	13.5dB gain release completed			280		ms
A _{MAX}	Maximum attenuation				-13.5		dB

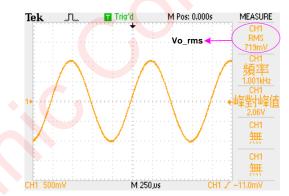
Note 5: Attack Time refers to the duration of gain attenuation by 13.5dB. Similarly, Release Time refers to the duration of gain recovery by 13.5dB.

MEASUREMENT SETUP

awinia

AW87318 features switching digital output, as shown in Figure 6. It is crucial to connect a low pass filter after VOP/VON outputs, respectively, to filter out switch modulation frequency, then measure the differential output of filter to obtain audio analog output signal.




Figure 6 AW87318 Test Setup

The values of resistor and capacitor used by low pass filter are listed below:

R _{filter}	Cfilter	Low-pass cutoff frequency
500Ω	10nF	32kHz
1kΩ	4.7nF	34kHz

Output Power Calculation

According to the above test method, the differential audio analog output signal is obtained at the output of the low pass filter. The valid value Vo_rms of the differential signal is as shown below:

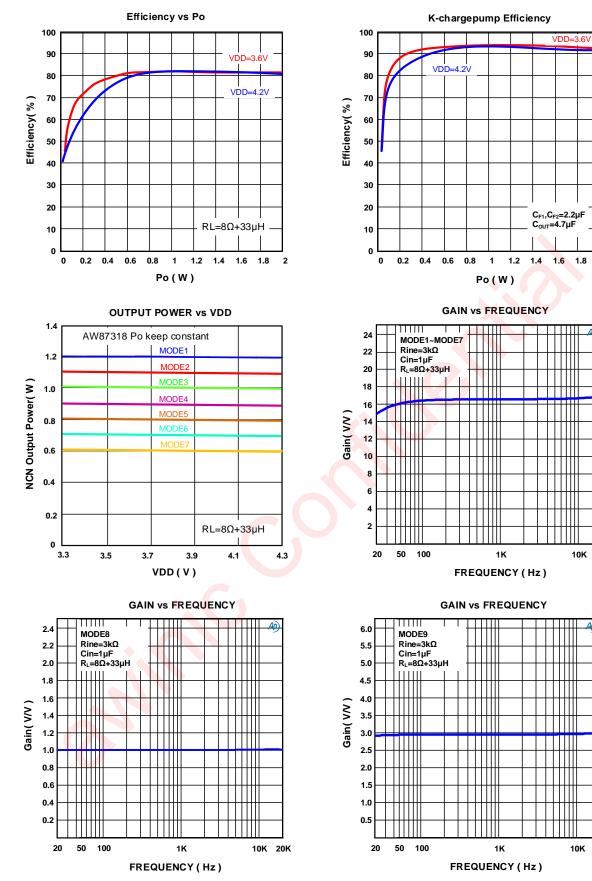
The power calculation of Speaker is as follows:

$$P_L = \frac{V_{O_RMS}^2}{R_L}$$

(R_L: Load Impedance of the speaker or receiver)

1.8 2

Ap

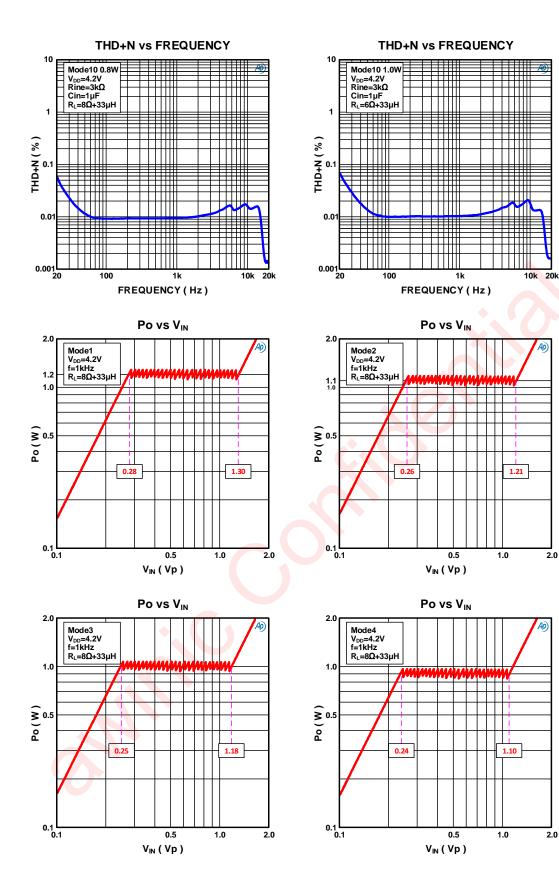

10K 20K

AP)

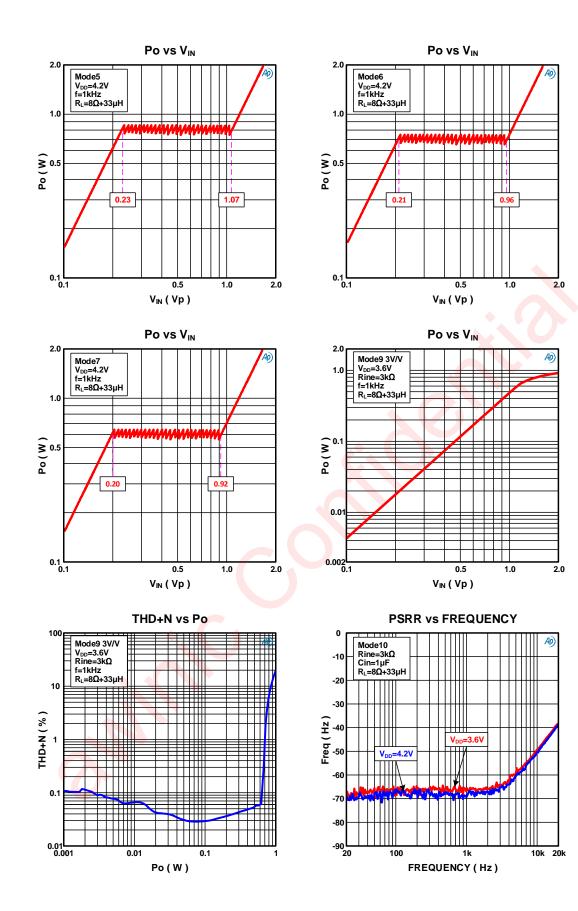
10K 20K

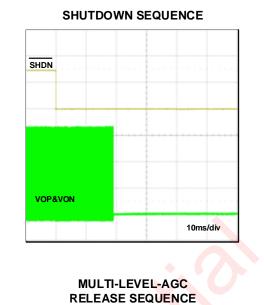
TYPICAL CHARACTERISTICS

awinic

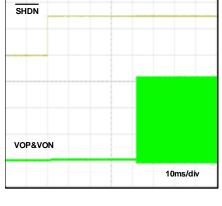


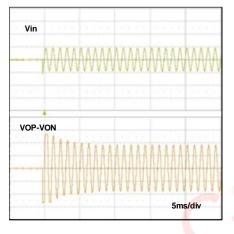
awinic


40


2.0

2.0


awinic


Vin

VOP-VON

STARTUP SEQUENCE

MULTI-LEVEL-AGC ATTACK SEQUENCE

100ms/div

DETAILED FUNCTIONAL DESCRIPTION

AW87318 is specifically designed to enhance overall sound quality. It is an upgrading 8th-generation class K audio amplifier with high efficiency, low noise, ultra-low distortion and capability of outputting constant large volume.

With integrated AWINIC proprietary Multi-Level AGC audio algorithm, AW87318 can eliminate noise in playback and improve sound quality and effect. Using a novel K-Chargepump technology, its integrated charge pump efficiency can reach 93%, and power amplifier's overall efficiency can reach 83%. With high efficiency, AW87318 can greatly prolong smart phone usage time.

AW87318 noise floor is as low as to 43µV, with 98.8dB high signal-to-noise-ratio (SNR). The ultra-low distortion 0.008% brings high-quality musical enjoyment.

AW87318 has a setting of 7-step selectable speaker-guard output power level from 0.6W to 1.2W, suitable for different rated power speakers. Within lithium battery voltage range, it keeps output power constant, preventing voice from degrading.

AW87318 supports speaker and receiver two-in-one application. The Class D Receiver Mode has an ultra-low output noise of 19µV. Under this mode, the power of PA is supplied by VBAT.

AW87318 has built-in over-current protection, over-temperature protection and short-circuit protection. AW87318 is available in a 1.60mm×1.68mm, 0.4mm pitch CSP-14 package, or a 1.60mm×1.60mm, 0.4mm pitch FC-16 package.

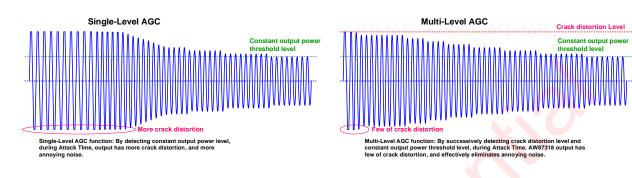
Constant Output Power

In the smart phone audio applications, the AGC function which can promote music volume and audio quality is very attractive, but as the lithium battery voltage drops, the driver capability of ordinary audio power amplifiers will reduce gradually, leading to degrading audio effect. Therefore, it is hard to provide high-quality music within the battery voltage range.

With integrated AWINIC proprietary Multi-Level AGC audio algorithm and within lithium battery voltage range (3.3V to 4.35V), AW87318 can keep output power constant and never decreasing during lithium battery voltage dropping down. As a result, even if the battery voltage drops, AW87318 can still provide high-quality large-volume music enjoyment.

AW87318 has 10 operating modes. The first 7 modes have Multi-Level AGC function and their output AGC power levels are 1.2W, 1.1W, 1W, 0.9W, 0.8W, 0.7W, 0.6W, respectively.

Multi-Level AGC Technology


In the current audio application, the maximum power of audio power amplifiers output tends to be larger than the rated power of speakers. For example, under the 5V power supply, for an 8-ohm speaker, the maximum undistorted power which a Class D audio power amplifier can deliver is about 1.56W, but many speakers' rated power is about 0.5W. If without output power control, the overload signal can cause damage to the speaker.

The audio power amplifier with NCN function (i.e. single-level AGC) can protect the speaker promptly, when the output power increases as the input signal increasing. When output power exceeds the setting threshold, the NCN function reduces the internal gain of amplifiers and restricts the output power below the set threshold.

However, to optimize NCN function, there is a tradeoff of attack time setting between music effect and crack noise: if the attack time is set longer, the audio volume will be larger, but crack noise will also be more evident; if the attack time is set shorter, the crack noise will be suppressed, but the audio volume will be loss.

Pop music generally has large crest factor (CF), which is in the range between 40dB to 60dB. In music playback, with larger peak exceeding the level of maximum output of the power amplifier, an audio signal will generate more crack noise. Therefore obvious noise will be heard in such music and it is necessary to use AGC with multi-level technology, so as to dynamically adjust the gain of audio power amplifiers. AGC with multi-level technology can increase the music volume and eliminate the emergence of obvious noise in large volume music at the same time, resulting in improved sound quality.

With integrated AWINIC proprietary Multi-Level AGC algorithm technology, AW87318 can eliminate noise in playback and improve sound quality and effect. The single-level AGC function and Multi-Level AGC function is shown in Figure 7, respectively.

Attack Time

Attack time is the time which Multi-Level AGC takes for the gain to be attenuated by 13.5dB when audio signal exceeds the constant output power threshold level. When crack noise occurs in output signal, the function called Fast AGC of Multi-Level AGC is firstly triggered, attenuating the gain by 10dB within 1.5ms and eliminating the crack noise. The other function called Slow AGC of Multi-Level AGC is then triggered, attenuating the gain slowly by 3.5dB within 6ms. According to features of music noise in smart phone application and demands for better music quality and volume, the AWINIC proprietary technology Multi-Level AGC integrated in AW87318, realizes smoother effect of music rhythm and protects the speaker from clipping distortion at the same time.

Release time

Release time is the time which Multi-Level AGC takes for the gain to return to its setting value when audio signal is smaller than clipping level or constant output power threshold level. According to features of music noise in smart phone application and demands for better music quality and volume, release time of AW87318 is designed to be 280ms, which can effectively eliminate the noise, and make sound smoother.

K-Chargepump

AW87318 adopts a new generation of charge pump technology: K-Chargepump structure. It has higher efficiency and larger driving capability. Its operating frequency is 1.06MHz. With built-in soft-start circuit, current-limit control loop and over-voltage-protection (OVP) loop, charge pump of this configuration can provide more stable and reliable power supply.

High Efficiency

The output voltage PVDD is 1.5 times of supply voltage VDD in K-Chargepump, of which the ideal efficiency can reach 100%. Actually, the K-Chargepump efficiency can be calculated as the ratio of output power to input power, that is

$$\eta = \frac{P_{OUT}}{P_{IN}} \times 100\%$$

For example, in an ideal M-times charge pump, the input current I_{IN} is M times of the output current I_{OUT} , the efficiency formula can be written as:

$$\eta = \frac{P_{OUT}}{P_{IN}} \times 100\% = \frac{V_{OUT} \cdot I_{OUT}}{V_{IN} \cdot M \cdot I_{OUT}} \times 100\% = \frac{V_{OUT}}{M \cdot V_{IN}} \times 100\%$$

Also, M is a parameter depending on the operating mode of a charge pump; VOUT is the output voltage of a charge pump; VIN is the input voltage (generally is also the power supply voltage) of a charge pump; I_{OUT} is also the load current. For K-Chargepump structure, the output voltage is 1.5 times of the input voltage. Due to the switch loss and quiescent current loss inside the charge pump, the actual efficiency can still be up to 93%. As a result, the power booster technology of K-Chargepump can greatly improve the power efficiency.

K-Chargepump Structure

As shown in Figure 8 is a K-Chargepump fundamental functional diagram: K-Chargepump integrated in AW87318 has seven switches, of which the output voltage PVDD is boosted to 1.5 times as input voltage VDD through seven switches operating timing.

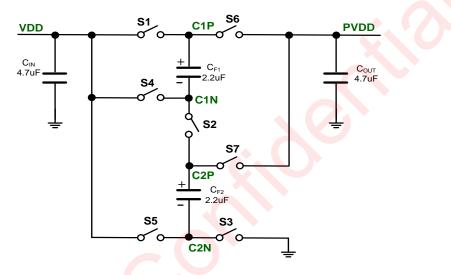


Figure 8 K-Chargepump Functional Diagram

The operation of the charge pump has two phases. In Φ_1 , as shown in Figure 9, when switches S1, S2 and S3 are closed, VDD charges to the flying capacitor C_{F1} and C_{F2}.

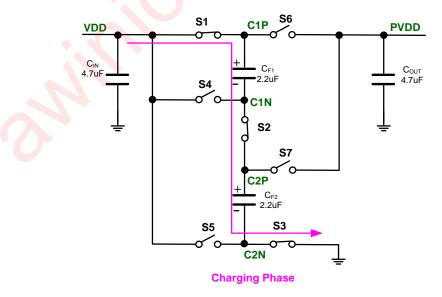


Figure 9 ϕ_1 : Charge Flying Capacitors C_{F1} and C_{F2}

In Φ_2 , as shown in Figure 10, switches S1, S2 and S3 are opened, and switches S4, S5, S6 and S7 are closed. Because the voltage across the capacitor can't change instantaneously, so either the voltage on flying capacitors C_{F1} or C_{F2}, is added to the VDD, realizing a PVDD boosted to a higher voltage.

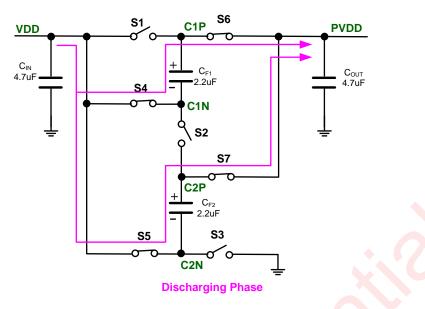


Figure 10 Φ_2 : Flying Capacitor Charges Transfer to the Output Capacitor Cout

Soft Start

ລາງແ

K-chargepump has integrated soft start function in order to limit inrush current from power supply during start-up. The current from power supply can be limited to 300mA, and the start-up time is about 1.2ms.

Peak Current Control

K-chargepump has integrated a peak current control circuit. In normal operation, when a heavy load or a situation that makes the charge pump extracts very large current from power supply, the peak current control circuit can limit the maximum output load current, which is typically 2A.

Over-Voltage Protection (OVP)

K-Chargepump keeps the output voltage PVDD a multiple of the input voltage VDD. It provides a high voltage power rail for internal power amplifier circuits, allowing the amplifiers provide greater output dynamic range in the lithium battery voltage range, realizing much larger volume, higher audio quality. K-Chargepump has integrated a over-voltage protection circuit. When the input voltage VDD is greater than 4V, the output voltage PVDD is no longer a multiple of VDD, but a controlled voltage by over-voltage protection (OVP) circuit and kept in 6.05V. The hysteresis voltage of OVP is about 50mV.

Speaker & Receiver Two-in-One Application

Both Mode8 and Mode9 of AW87318 are Class D Receiver Modes. Their gain are selectable, 1V/V and 3V/V, respectively, for the application flexibility. By multiplexing the speaker's signal path, AW87318 Receiver Modes have ultra-low distortion and strong driving capability. Therefore, it is suitable for high-resolution voice calls. Another advantage is that there is no need to use additional external components, reducing system cost and saving PCB layout space.

In typical application as Figure 4 shown, with input capacitor Cin=100nF and input resister Rine= $3k\Omega$, the gain at Speaker Mode is about 16.6V/V, and the corner frequency of the input high-pass RC filter is about 166Hz. At Receiver Mode (Mode8), the gain is changed to 1V/V, with ultra-low output noise of $19\mu V$, and the corner frequency of the input high-pass RC filter is about 15Hz. AW87318 can realize a speaker & receiver two-in-one application without changing any hardware.

One-Wire Pulse Control: Principle

One-wire pulse control technology only needs a single GPIO port to turn on the chip and select a variety of functions. It is very popular in an environment lack of GPIO ports, such as portable systems.

Considering the problems of signal integrity or RF interference, there is narrow glitch in signal line when the PCB routine is too long. AWINIC one-wire pulse control technology integrated a deglitch circuit along with the internal control pin. The deglitch-module can completely eliminate the harmful glitch interference, as shown in Figure 11.

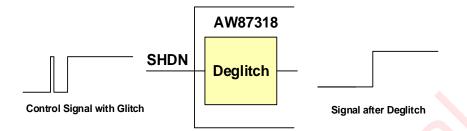
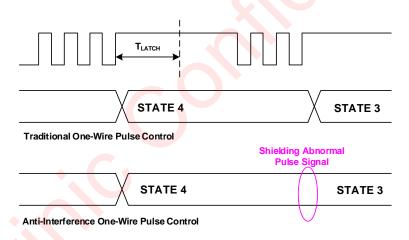



Figure 11 AWINIC Deglitch Working Principle

The traditional one-wire pulse control technology keeps working after the slave chip is powered up. Therefore, when the master chip (such as Baseband in a smart phone) sends other control signal through the same control port, the slave chip will probably enter into a wrong state. AW87318 uses one-wire pulse technology with a latch circuit, by which the right working state will be stored after the master chip sending order and AW87318 will no longer receive successive signals (except shutting down the chip firstly), as shown in Figure 12.

Figure 12 Anti-Interference One-Wire Pulse Control Functional Diagram

One-Wire Pulse Control: Working Mode

Each mode of AW87318 can be set by the on-wire pulse control circuit, which can detect the number of pulses sent by master chip through SHDN pin. When SHDN pulls to high level from shutdown state (low level), i.e. only a rising edge, AW87318 will enter into Mode1, and the constant output power level of Multi-Level AGC is 1.2W (with 8Ω speaker load). When SHDN shows a high-to-low-to-high logic signal, i.e. a rising edge after a pulse, or two rising edges, AW87318 will enter into Mode2, and the level is 1.1W. Similarly, N rising edges means Mode"N", as shown in Figure 13. After all, AW87318 has ten operating modes, more than ten rising edges is forbidden.

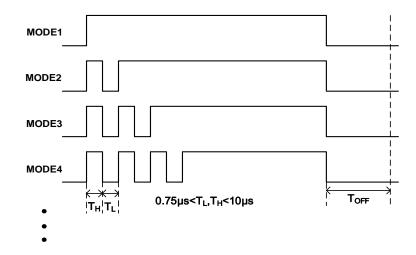


Figure 13 Working Mode Setting through One-Wire Pulse Control

To change the working mode of AW87318, one needs to keep SHDN low longer than T_{OFF} firstly (1ms is recommended), to shut down the chip. Then, send pulses to bring the chip into a right mode, as shown in Figure 14.

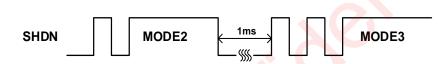


Figure 14 Mode Switch through One-Wire Pulse Control

RNS (RF Noise Suppression)

awir

GSM transmission adopts TDMA (Time Division Multiple Access) Technology which results in frame burst at frequency of 217Hz, also called TDD (Time Division Duplexing), leading to a strong RF interference (RF Noise) and the 217Hz energy along with its harmonics (TDD Noise) can be easily interacted with audio power amplifiers.

In applications, optimization of both layout and selection of peripheral components may decrease the AW87318's susceptibility to RF noise and prevent TDD Noise from being demodulated into audible noise. Minimization of length of routings prevents them from functioning as antennas and coupling RF noise into an AW87318. Further RF immunity can also be realized by using capacitors of which feature of frequency response is like a notch filter. Depending on manufacturers, self-resonance frequency of 10pF to 20pF capacitors typically located at RF band. Such capacitors placed in front of input pins of AW87318 can effectively suppress RF noise. Also, such capacitors must have a low-impedance, low-inductance path to the ground plane.

Even if part of RF energy is injected into AW87318 by traces connected to the chip, regardless of efforts of TDD Noise Reduction. AW87318 features a unique RNS technology, which effectively reduces RF energy and attenuates RF TDD-noise to an acceptable audible level for customers.

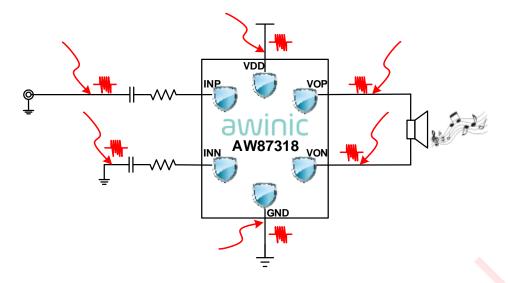


Figure 15 AW87318 Rejection of RF Noise

Filter-Free Pulse Width Modulation (Filter-Free PWM)

AW87318 features a filter-free PWM architecture which removes a LC filter behind the output stage of a traditional Class D power amplifier, resulting in improvement of overall efficiency, decrease of PCB area and reduction of system cost.

Enhanced Emission Elimination (EEE)

AW87318 features a unique Enhanced Emission Elimination (EEE) technology, which adjusts the speed of waveform transition of PWM output signal, and effectively reduces EMI over FM/AM bandwidth.

Pop-Click Suppression

awini

AW87318 integrates a unique timing-control circuit, which fundamentally suppresses pop-click noise, and eliminates audible crack at shut-down, wake-up, and power-up/down.

Protection

When a short-circuit occurs among output pins (VOP, VON) and power pins (VDD, GND, PVDD) of AW87318, an over-current protection (OCP) circuit will be trigged and shut down the chip immediately, preventing the device from being damaged. When abnormal condition is removed, AW87318 can restart automatically without wake-up.

When junction temperature in AW87318 is too high, an over-temperature protection (OTP) circuit will be triggered and shut down the chip immediately. The circuit will turn the device on once the temperature decrease into a safe scope.

APPLICATION INFORMATION

Gain Setting -- Selection of External Input Resistor (Rine)

AW87318 is a differential-input audio power amplifier. It integrates two internal input resistors (R_{ini}), which are both 6.6k Ω . Take external input resistors R_{ine} =3k Ω for instance, overall gain (A_V) can be set as below:

AW87318 Mode	Calculation of Overall Gain (V/V)
Class K Speaker Mode (Mode1~7, and Mode10)	$A_{V} = \frac{159.5k\Omega}{R_{ine} + R_{ini}} = \frac{159.5k\Omega}{3k\Omega + 6.6k\Omega} = 16.6V/V$
Class D Receiver Mode with 1V/V gain (Mode8)	$A_V = \frac{110k\Omega}{R_{ine} + R_{ini}} = \frac{110k\Omega}{3k\Omega + 106.6k\Omega} = 1V/V$
Class D Receiver Mode with 3V/V gain (Mode9)	$A_V = \frac{110k\Omega}{R_{ine} + R_{ini}} = \frac{110k\Omega}{3k\Omega + 36.6k\Omega} = 3V/V$

Input High-Pass Cutoff Frequency Setting -- Selection of Input Capacitor (Cin)

Input capacitors in front of external input resistors can block DC component of input audio signals. An input capacitor (C_{in}) along with input resistors ($R_{ine}+R_{ini}$) forms an input high-pass filter with a corner frequency (f_H) calculated as below:

$$f_{H}(-3dB) = \frac{1}{2\pi(R_{ine} + R_{ini})C_{in}}$$

A higher f_H results in a better suppression of 217Hz GSM input noise. A better matching of input capacitors improves capability of blocking of common-mode interference of input stage in AW87318 and also helps to reduce pop-click noise.

Take typical application in Figure 1 for instance:

$$f_H(-3dB) = \frac{1}{2\pi (R_{ine} + R_{ini})C_{in}} = \frac{1}{2\pi \cdot 9.6k\Omega \cdot 100nF} = 166Hz$$

Besides, take Class D Receiver Mode with 1V/V gain (Mode8) for instance:

$$f_{H}(-3dB) = \frac{1}{2\pi(R_{ine} + R_{ini})C_{in}} = \frac{1}{2\pi \cdot 110k\Omega \cdot 100nF} = 15Hz$$

Input Low-Pass Cutoff Frequency Setting – Selection of Differential Input Capacitor (Cd)

A differential input capacitor behind external input resistors can block high-frequency component of input audio signals, such as screechy part in a song. A differential input capacitor (C_d) along with input resistors ($R_{ine}+R_{ini}$) forms an input low-pass filter with a corner frequency (f_L) calculated as below:

$$f_L(-3dB) = \frac{1}{4\pi (R_{ine} // R_{ini})C_d}$$

Take typical application in Figure 1 with $C_d=220pF$ and $R_{ine}=3k\Omega$ for instance:

$$f_L(-3dB) = \frac{1}{4\pi \cdot (3k\Omega / 6.6k\Omega) \cdot 220 \, pF} = 176 kHz$$

Selection of Power Supply Decoupling Capacitor (Cs)

awinir

AW87318 is a high-performance audio power amplifier. It is essential to place a ceramic capacitor (Cs) with low equivalent-series-resistance (ESR) (typical 0.1uF) for power supply decoupling. Optimized selection and placement of decoupling capacitors protect AW87318 from interference injection from power supply, such as high-frequency transients, spikes, or digital noise. Specifically, a layout of decoupling capacitor closer to AW87318 is preferred, since fewer parasitic resistance or inductance between power pin and the capacitor, less decoupling efficiency loss. In addition to a 0.1μ F ceramic capacitor, another 10μ F capacitor as a charge reservoir is required, providing transient power energy for AW87318 and preventing remarkable drop of the power supply voltage.

Selection of Charge Pump Flying Capacitor (CF)

Value of charge pump flying capacitors (C_F) affects load regulation and output impedance of the charge pump. Small capacitance may degrade driving capability of AW87318. A 2.2μ F/6.3V ceramic capacitor is usually recommended.

Selection of Charge Pump Output Capacitor (Cout)

Capacitance and ESR of charge pump output capacitors (C_{OUT}) directly affect ripple magnitude of charge pump output voltage (PVDD). Increasing Court Capacitance reduces variations of PVDD and decreasing Court ESR also reduces both ripple and output resistance. A 4.7 μ F/10V ceramic capacitor is usually recommended.

Usage of Ferrite Bead and Filter Capacitor

Without ferrite beads and filter capacitors, AW87318 can still pass the specifications of FCC and CE. If there is any EMI sensitive device near AW87318 and/or there are long traces routing from the amplifier to a speaker, use ferrite beads and filter capacitors and place beads and capacitors as close as possible to output pins (VOP&VON), as Figure 16 below.

In Class K Speaker Mode, outputs of AW87318 are square-wave PWM signals, which charge and discharge filter capacitors in each period, and result in additional static power consumption. Bigger filter capacitance, larger current consumption. Therefore, 0.1nF ceramic capacitor is usually recommended for low power application.

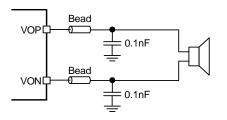
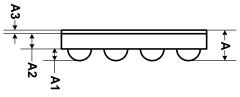



Figure 16 Ferrite Beads and Filter Capacitors

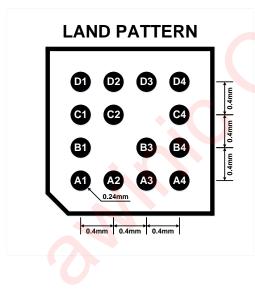
PCB AND DEVICE LAYOUT CONSIDERATION

In order to exploit best performance of AW87318, PCB layout must be carefully considered. Design consideration should be followed as below:

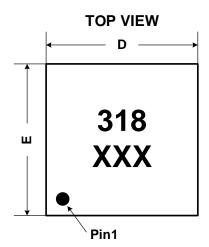
- Isolated, short and wide power lines for both VDD pin and GND pin are required for better driving-capability of AW87318. The copper width is recommended to be larger than 0.75mm (30mil). Power supply decoupling capacitors should be placed as close as possible to power supply pins.
- Flying capacitors C_{F1}, C_{F2} should be placed as close as possible to C1N, C1P pins and C2N, C2P pins. Likewise, capacitor C_{OUT} should be close to PVDD pin. The trace from C_{OUT} to both PVDD pin and GND pin should be short and wide.
- 3. Input capacitors and resistors should be close to INN and INP pins. Differential and ground-shielding input routing is required to suppress noise coupling.
- 4. Ferrite beads and filter capacitors should be close to VON and VOP pins. The trace from output pins to speaker should be short and wide. The copper width is recommended to be larger than 0.5mm (20mil).


PACKAGE INFORMATION FOR AW87318CSR

awinic

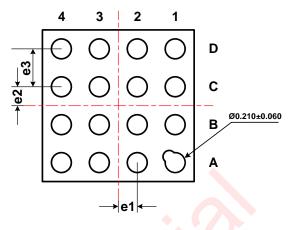

BOTTOM VIEW 4 3 2 1 0 0 0 0 C 0 0 0 C 0 0 0 0 0 C 0 0 0 0 C 0 0 0 0 C 0 0 0 0C 0 0 0

SIDE VIEW

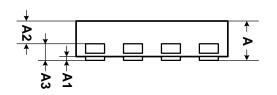


Symbol	NOM	Tolerance
Α	0.575	±0.055
A1	0.195	±0.020
A2	0.340	±0.025
A3	0.040	±0.010
D	1.600	±0.025
E	1.680	±0.025
e1	0 <mark>.2</mark> 00	NA
e2	0.240	NA
e3	0.400	NA

Unit: mm



PACKAGE INFORMATION FOR AW87318FCR

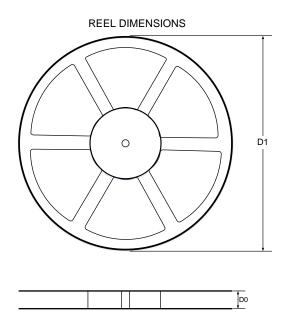


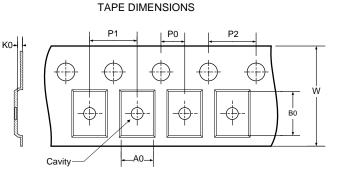
awinic

BOTTOM VIEW

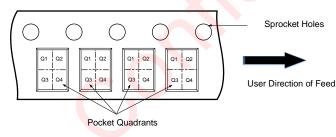


SIDE VIEW

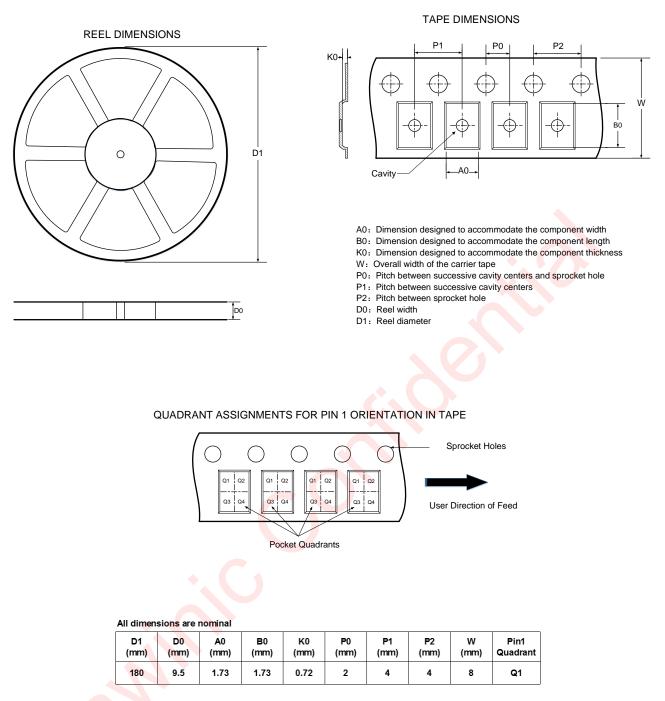



Symbol	NOM	Tolerance
Α	0.55	±0.05
A1	0.02	-0.02/+0.03
A2	0.4	NA
A3	0.152	NA
D	1.6	±0.1
E	1.6	±0.1
e1	0.200	NA
e2	0.200	NA
e3	0.400	NA

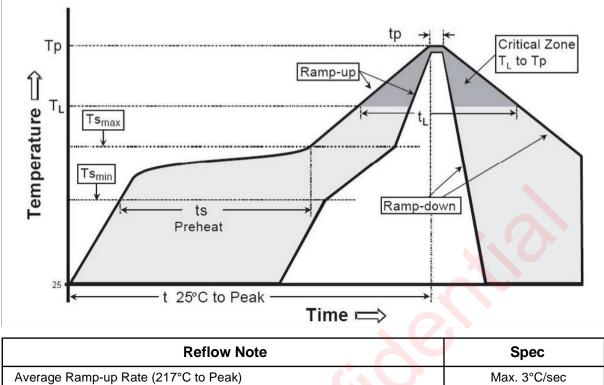
Unit: mm


TAPE AND REEL INFORMATION FOR AW87318CSR

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- K0: Dimension designed to accommodate the component thickness W: Overall width of the carrier tape
- P0: Pitch between successive cavity centers and sprocket hole
- P1: Pitch between successive cavity centers
- P2: Pitch between sprocket hole
- D0: Reel width D1: Reel diameter


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

All dimensions are nominal


D1	D0	A0	B0	K0	P0	P1	P2	W	Pin1
(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Quadrant
179	9	1.76	1.81	0.75	2	4	4	8	Q2

TAPE AND REEL INFORMATION FOR AW87318FCR

REFLOW SOLDERING CURVE

awinic

Average Ramp-up Rate (217°C to Peak)	Max. 3°C/sec
Time of Preheat temp. (from 150°C to 200°C)	60sec-120sec
Time to be Maintained above 217°C	60sec-150sec
Peak Temperature	250°C~260°C
Time within 5°C of Actual Peak Temp	20sec-40sec
Ramp-down Rate	Max. 6°C/sec
Time from 25°C to Peak Temp	Max. 8min

VERSION INFORMATION

Version	Date	Description
V1.0	2015-10-16	AW87318CSR datasheet V1.0 released
V1.1	2017-05-16	Add LAND PATTERN description, Carrie tap description, PIN1 location, tap description and reflow soldering curve, modify Flying capacitor rated voltage
V1.2	2018-02-05	Add New Package Info Add Output Power of Receiver Mode Add Curve of Po vs Vin and THD+N vs Po of Mode 9

DISCLAIMER

Information in this document is believed to be accurate and reliable. However, Shanghai AWINIC Technology Co., Ltd (AWINIC Technology) does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

AWINIC Technology reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Customers shall obtain the latest relevant information before placing orders and shall verify that such information is current and complete. This document supersedes and replaces all information supplied prior to the publication hereof.

AWINIC Technology products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an AWINIC Technology product can reasonably be expected to result in personal injury, death or severe property or environmental damage. AWINIC Technology accepts no liability for inclusion and/or use of AWINIC Technology products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications that are described herein for any of these products are for illustrative purposes only. AWINIC Technology makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

All products are sold subject to the general terms and conditions of commercial sale supplied at the time of order acknowledgement.

Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Reproduction of AWINIC information in AWINIC data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. AWINIC is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of AWINIC components or services with statements different from or beyond the parameters stated by AWINIC for that component or service voids all express and any implied warranties for the associated AWINIC component or service and is an unfair and deceptive business practice. AWINIC is not responsible or liable for any such statements.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Audio Amplifiers category:

Click to view products by Awinic manufacturer:

Other Similar products are found below :

LV3313PM-TLM-E LV47002P-E LV4924VH-MPB-H LV4924VH-TLM-H AZ386MTR-E1 NCP2811AFCT1G NCP2890AFCT2G NCP2993FCT2G LA4631VC-XE IS31AP4915A-QFLS2-TR TDA1591T AS3561-BWLT-500 TDA7563AH TDA7850H TS2012EIJT NCP2809BMUTXG NJW1157BFC2 TPA6201A1ZQVR IS31AP4996-GRLS2-TR NCP2823BFCT1G LA4450L-E IS31AP2036A-CLS2-TR TDA7563ASMTR STPA001AH MP1720DH-12-LF-P SABRE9601K THAT1646W16-U PAM8965ZLA40-13 TSDP10XX1NLGXZBX TSDP11XX1NBGIZBX TSDP10XX1NBGIZBX NJM4580CV-TE1 BD5638NUX-TR BD37543FS-E2 BD3814FV-E2 TPA3110LD2PWPR AS3435-EQFP VA2218TSG28 AW88194ACSR NS4150C NS4158 HT4580ARZ PAM8403 AD4150B SL8002A AD8302 BL6306SO VA2221LTSG28 AiP8002SA.TR 8002