3-Channel Capacitive Touch and Proximity Controller

FEATURES

- 3-channel capacitive sensing
 - Self-capacitive sensing technology
 - Capacitance resolution down to 1aF
 - Maximum offset capacitance up to 220pF
 - Auto-Offset-Tuning (AOT)
 - > Each Channel configurable independently
- 400kHz I²C interface
 - Default address: 0x12
 - Address configurable via pin CS2
- External interrupt pin INTN, open-drain output
- Built-in brown-out reset (BOR)
- Low power consumption

Active mode: 32μA
Doze mode: 8.7μA
Sleep mode: 7.5μA

- 1.7V~3.6V power supply
- Operation temperature range: -40°C~85°C
- WLCSP 1.75mm×0.96mm-8B package

APPLICATIONS

Mobile phones Wearable devices, TWS Tablets, Notebooks

GENERAL DESCRIPTION

AW96103 is a 3-channel low power consumption capacitive touch and proximity controller. Each channel can be independently configured as sensor input, shield output.

Advanced self-capacitance technology is adopted, which supports parasitic capacitance compensation for each channel up to 220pF. The device has a high resolution ADC, the minimal capacitance that can be detected is as low as 1aF.

A high performance 32bit MCU is integrated By executing the firmware-program in the ROM, it implements all AFE sampling controlling and complicated data processing algorithms including signal filtering, RF noise suppression, baseline calculation, proximity status decision, etc.

With the auxiliary of DSP algorithm, the device is able to track slow environmental variations (such as temperature, humidity, etc.) and maintain high performance operation.

TYPICAL APPLICATION CIRCUIT

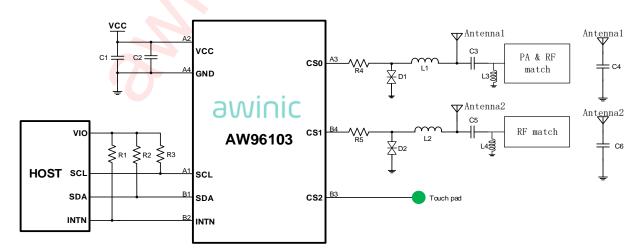
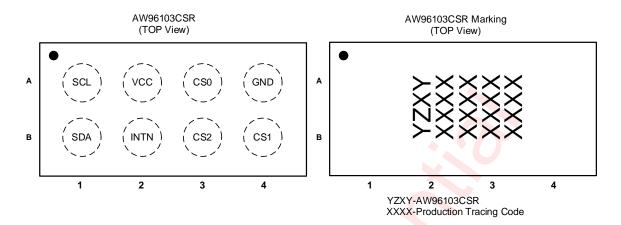
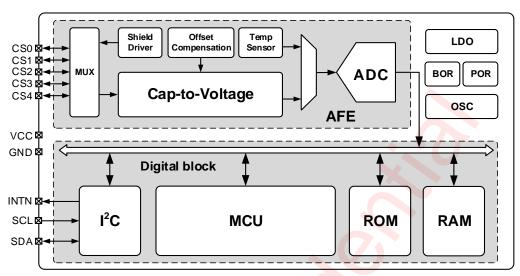



Figure 1 AW96103 Typical Application Circuit


PIN CONFIGURATION AND TOP MARK

PIN DEFINITION

No.	NAME	DESCRIPTION
A1	SCL	I2C clock, requires pull-up resistor
A2	VCC	Power supply(1.7V~3.6V), requires decoupling capacitor
A3	CS0	Capacitive sensor input/shield
A4	GND	Ground
B1	SDA	I2C data, requires pull-up resistor
B2	INTN	Interrupt output, open drain, requires pull-up resistor
В3	CS2	Capacitive Sensor input/shield or I2C address select Input (Floating:0x12, GND:0x13, VCC:0x14)
B4	CS1	Capacitive sensor input/shield

FUNCTIONAL BLOCK DIAGRAM

Notes: AFE means Analog Front-End.

Figure 2 Functional Block Diagram

ORDERING INFORMATION

Part Number	Temperature	Package	Marking	Moisture Sensitivity Level	Environmental Information	Delivery Form
AW96103CSR	-40°C~85°C	WLCSP 1.75mm×0.96mm- 8B	YZXY	MSL1	ROHS+HF	3000 units/ Tape and Reel

ABSOLUTE MAXIMUM RATINGS(NOTE1)

PARAM	ETERS	RANGE			
Supply voltag	ge range V _{CC}	-0.5V to 3.6V			
Input voltage range	CSx, SCL, SDA, INTN	-0.5V to 3.6V			
Output voltage range	CSx, SCL, SDA, INTN	-0.5V to 3.6V			
Junction-to-ambient to	nermal resistance θ _{JA}	128.6°C/W			
Operating free-air	emperature range	-40°C to 85°C			
Maximum operating jun	ction temperature T _{JMAX}	150°C			
Storage temp	Storage temperature T _{STG}				
Lead temperature (se	oldering 10 seconds)	260°C			
	ESD (Including HBM CDM)(N	OTE 2)			
ЦВМ	Pins CSx (x=0,1,2)	±8kV			
HBM	Other pins	±6kV			
CE	DM	±1.5kV			
	Latch-Up				
Test condition: acco	Test condition: according to JESD78E				
Test condition, acc	ording to JEOD FOE	-IT: -350mA			

RECOMMENDED OPERATING CONDITIONS

PARAMETERS	SYMBOL	MIN	MAX	UNIT
Supply voltage	V_{DD}	1.7	3.6	٧
Pull-up voltage	Vio	1.6	3.6	٧
Ambient temperature	TA	-40	85	°C

NOTE1: Conditions out of those ranges listed in "absolute maximum ratings" may cause permanent damages to the device. In spite of the limits above, functional operation conditions of the device should within the ranges listed in "recommended operating conditions". Exposure to absolute-maximum-rated conditions for prolonged periods may affect device reliability.

NOTE2: The HBM test method: MIL-STD-883J, the CDM test method: ANSI/ESDA/JEDEC JS-002-2018.

ELECTRICAL CHARACTERISTICS

Note: Typical values are given for T_A = +25°C, VCC= 2.8V unless otherwise specified.

PARAMETER		TEST CONDITION MIN		TYP	MAX	UNIT
CHIP CURREN	ITS					
ISLEEP	Sleep Mode Current	LDO on, OSC on I ² C listening		7.5	10	μA
Idoze	Doze Mode Current	SCANPERIOD = 400ms FREQ = 100kHz CDCRES = 6 CHEN = b0001 Digital filter features OFF I ² C listening. No load	, ×, C	8.7	16	μΑ
I _{ACTIVE}	Active Mode Current	SCANPERIOD = 30ms FREQ = 100kHz CDCRES = 6 CHEN = b0001 Digital filter features OFF I ² C listening. No load		32	45	μΑ
CAPACITANC	E SENSING					
C _{RANGE}	Measurement Range		±0.55	±2.2	±9.9	pF
N _{BIT}	Measurement			21		bits
C _{RES}	Resolution	CRANGE = 0001		1		aF
Fosc	Nominal OSC Frequency	79		4		MHz
F_Trim	OSC Trim Accuracy	Around Nominal Value $T_A = 25$ °C, VCC = 2.8V	-4		4	%
F _{Temp}	OSC Temp. Dependency	Around Nominal Value $T_A = 25$ °C, VCC = 2.8V		±1		%
Fvcc	OSC VCC Dependency	Around Nominal Value T _A = 25°C, VCC = 2.8V		±0.6		%
Fs	Nominal Sampling Frequencies	Programmable with FREQ			250	kHz
C _{DCEXT}	External DC Cap. to GND per Measurement Channel	One CSx as measured input			220	pF
R _{FILTIN}	Input driving Res		0		30	kΩ
R _{INT}	Compensation Res		125		8	kΩ
TEMPERATURE SENSING						
T _{INRANGE}	Input Range	Ambient Temperature (T _A)	-40		85	°C
Toutrange	Output Range		0		32767	LSB
I ² C INTERFAC	E					
I _{OL} (SDA, INTN)	Output low current	V _{OL} ≤ 0.4V	8			mA
V _{IH}	Input high level	SCL, SDA	1.35		3.6	V
VıL	Input low level	SCL, SDA	-0.5		0.45	V

I²C INTERFACE TIMING

	PARAMETER	MIN	TYP	MAX	UNIT
Fscl	Interface Clock frequency			400	kHz
T _{HD:STA}	(Repeat-start) Start condition hold time	0.6			μS
T _{LOW}	Low level width of SCL	1.3			μS
T _{HIGH}	High level width of SCL	0.6			μS
T _{SU:STA}	(Repeat-start) Start condition setup time	0.6			μS
T _{HD:DAT}	Data hold time	0			μS
T _{SU:DAT}	Data setup time	0.1			μS
T _R	Rising time of SDA and SCL			0.3	μS
T _F	Falling time of SDA and SCL			0.3	μS
T _{SU:STO}	Stop condition setup time	0.6			μS
T _{BUF}	Time between start and stop condition	1.3			μS
T _{SP}	Input glitch suppression			50	ns

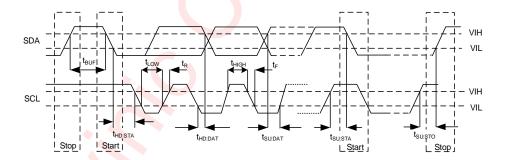


Figure 3 I²C Interface Timing

DETAILED FUNCTIONAL DESCRIPTION

OVERVIEW

AW96103 is a capacitive proximity sensing controller with a built-in llow-power MCU. It is comprised of high-performance self-capacitance detecting Analog-Front-End (AFE), imbedded 32bit MCU, ROM, RAM, OSC and I²C interface, etc. The AFE drive the sensor and shield electrode, and convert the capacitance of sensor to digital data. The MCU executes the algorithm program stored in the ROM, and perform complicated data process such as signal filtering, baseline calculation, automatic compensation for environmental drift, radio frequency(RF) noise suppression, proximity decision, etc.

CAPACITIVE SENSOR INTRODUCTION

Self-capacitance sensing technology detects the capacitance change of a touch or proximity sensor caused by a target object approaching the sensor. The target object could be a human finger, face, or any conductive object. The figure below shows the basic structure and equivalent model of a capacitance sensor. The top layer is the overlay, and the middle green area below is a copper sensor pad. The sensor is usually surrounded by ground, resulting in a parasitic capacitance (CPARA).

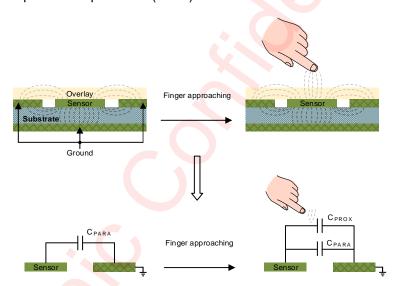


Figure 4 Capacitive sensor structure

When a voltage is forced on a sensor, an electric field is created around the sensor. As the target object approaches the electrode, some of the electric field lines couples to the target object and add a small amount of finger capacitance (CPROX) to the existing CPARA. This feature can be used to detect proximity or touch action.

CAPACITIVE SENSING TECHNIQUES

The proximity sensing system consists of three parts, capacitive sensor, AFE and DSP. The sensor capacitance will change when the target object is approaching or moving away. AFE drives the capacitive sensors and shield electrodes, and converts the sensor capacitance to digital data. DSP deals with the data from AFE, and transmits the sensor capacitance value (Diff) and proximity status (Status) to the host.

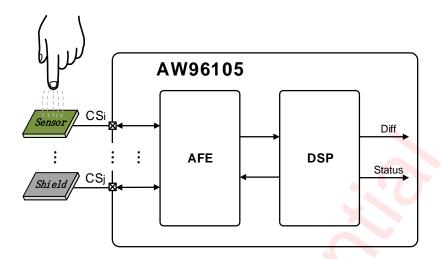


Figure 5 Proximity Sensor Operation Overview

AFE DESCRIPTION

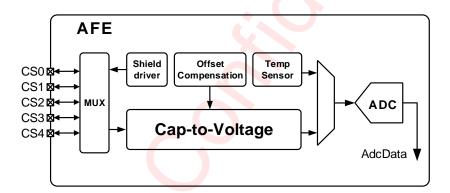


Figure 6 AFE Block Diagram

- MUX selects CSx as capacitance measurement input or shield output
- If CSx is used as shield electrode, it is excited by shield driver. The driven shield signal is a replica of the sensor signal. Shield electrode around can protect the sensor from noisy environment, and reduce the parasitical capacitance.
- Cap-to-Voltage module integrates a charge amplifier, with a charge-transfer method it converts the capacitance of senor into voltage signal, as the input of ADC.
- * Offset Compensation module is used to eliminate parasitic capacitance(CPARA) and ensure that the compensated capacitance is within the measurable range of C/V convertor.
- Temp Sensor measures the internal temperature of the chip, and its output is converted by ADC into a digital data. The data can be used to correct the result of capacitance measurement.
- ADC converts voltage signals obtained by Cap-to-Voltage or Temp Sensor into AdcData.

DSP DESCRIPTION

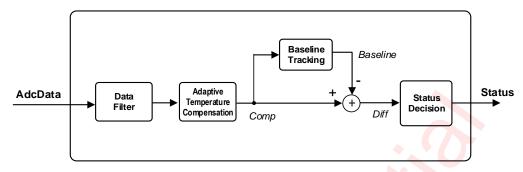


Figure 7 Digital signal processing diagram

- Most processes the AdcData from the AFE, and finally outputs a series of reliable proximity status.
- * Data Filter effectively filters the high-frequency noise and interference, which greatly improves the signal-to-noise ratio.
- * The adaptive temperature compensation module can automatically compensate for environmental drift in real time, especially temperature drift. Thereby it can be ensured that the final proximity status will not be misjudged due to temperature drift.
- * The role of the baseline is to further track the slow changes caused by the residual temperature compensation or other slow environmental drift.
- Finally, the Status Decision module output a certain and reliable proximity status based on the Diff data and the proximity threshold etc.

SCAN PERIOD

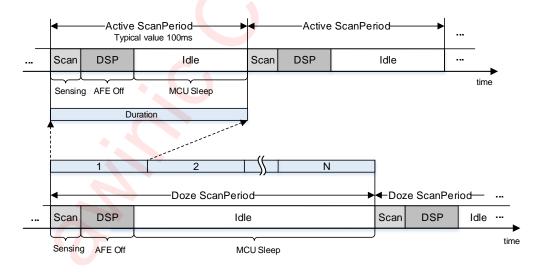


Figure 8 Active mode and Doze mode scan period

Each period is divided into 3 segments. Firstly the AFE scan the sensor channels to get the AdcData. And then AFE is off and DSP starts processing the AdcData. After all data processing are completed, the chip enters idle state both AFE and MCU don't work for low-power consumption.

The figure above also shows the scanning period of active mode and doze mode. The scan period of active mode can be configured by register SCANCTRL1 (Address: 0x0004) and AFECFG3_CHx (x=1,...,3). The doze period can be configured independently for each channel by register AFECFG4_CHx (x=1,...,3). Generally, doze mode consumes much lower power than active mode.

CLOCK

The chip uses a built-in 4MHz OSC clock.

RESET

POWER ON RESET (POR)

Reset operation is triggered during power up. When nRST released, the initialization process starts to perform and it will last for about 20ms. After initialization being completed, pin INTN will be pull down to low, then I²C interface can communicate normally.

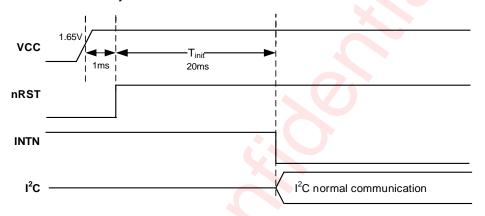


Figure 9 Power On Timing

BROWN OUT RESET (BOR)

Reset operation is triggered when VCC drop below the threshold of BOR. After the reset operation, all the registers will be reset to the default value. The chip returns to normal operation mode until the power supply rises to a normal value.

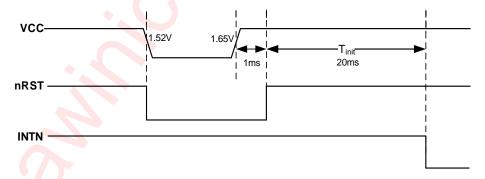


Figure 10 Brown Out Timing

SOFT RESET

Write "0" to register RESET (Address: 0xFF0C) to reset the whole chip. After the reset, all the registers will be reset to the default value.

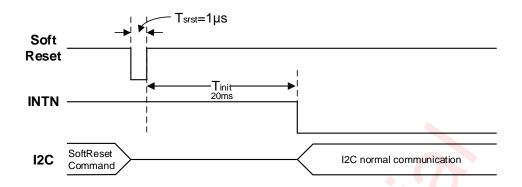


Figure 11 Soft Reset Timing

INITIALIZATION

After power on, OSC works normally, and MCU starts to execute the initialization program. It performs the following operations.

- Read information from NVM
- Set I²C device address according to the status of pin CS2
- > Issue an interrupt after initialization and then enters into sleep mode.

OPERATION MODE

There are three operation modes in the chip: Sleep, Active and Doze.

SLEEP

The device is in a low power state. OSC is on, AFE is off, and MCU is sleeping, waiting for interrupt to wake up.

ACTIVE

The device works at full speed. All modules including AFE, MCU, OSC, etc., are running normally. When no touch or proximity has been detected for some time, it will automatically switch to Doze mode. In this mode the external HOST can send SLEEP command to switch the device to sleep mode.

DOZE

The scan period is long, MCU and AFE work intermittently. During the large part of period, most modules are in idle state. So the average power consumption is lower.

Once a proximity is detected in doze mode, it will automatically return to active mode. The external HOST can also send SLEEP command to switch the device to sleep mode.

Power Off

Power On

Initialization

Sleep

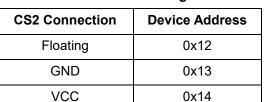
Cannanatalage
Contractive Advive

No Approach for long time

Figure 12 Operation Mode Switching

Approach event

INTERRUPT


Active

The chip reports the interrupt signal to the host through the pin INTN. Register IRQSRC (Address: 0xF080) stores interrupt information, including scan interruption, calibration completion interruption, human body approach interruption, etc. Register IRQSRC is cleared after reading. Each specified interrupt triggered or not can be configured by register IRQEN (Address: 0xF084).

I²C INTERFACE

AW96103 supports the I²C serial bus and data transmission protocol in fast mode at 400kHz. It operates as a slave on the I²C bus. Connections to the bus are made via the open-drain I/O pins SCL and SDA. The pull-up resistor can be selected in the range of $1k\sim10k\Omega$ and the typical value is $4.7k\Omega$. AW96103 can support different high level of the I²C interface. Additionally, the I²C device supports continuous read and write operations. I²C Register address is 16-bit and register data is 32-bit, transfer of data is big-endian mode.

DEVICE ADDRESS

I²C device address configuration

The I²C device address (7-bit, followed by the R/W bit (Read=1/Write=0)) of AW96103 depends on the pin CS2 status. The default value of I²C device address is 0x12, connecting pin CS2 to GND or VCC will change the device address as showed in table above. Note that when pin CS2 is connected to GND or VCC, it can't be used as sensor pad.

Doze

PC START/STOP

 $\ensuremath{\mbox{l}^2\mbox{C}}$ start: SDA changes from high level to low level when SCL is high level.

I²C stop: SDA changes from low level to high level when SCL is high level.

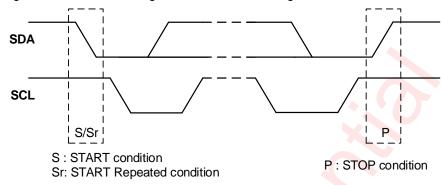


Figure 13 I²C Start/Stop Condition Timing

DATA VALIDATION

When SCL is high level, SDA level must be constant. SDA can be changed only when SCL is low level.

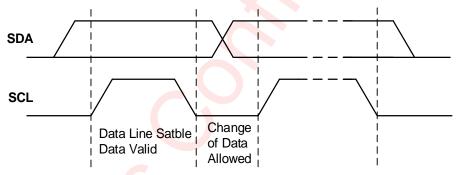


Figure 14 Data Validation Diagram

ACK (ACKNOWLEDGEMENT)

ACK means the successful transfer of I²C bus data. After master sends an 8-bit data, SDA must be released; SDA is pulled down to GND by slave device when slave acknowledges.

When master reads, slave device sends 8-bit data, releases the SDA and waits for ACK from master. If ACK is sent and I²C stop is not sent by master, slave device sends the next data. If ACK is not sent by master, slave device stops to send data and waits for I²C stop.

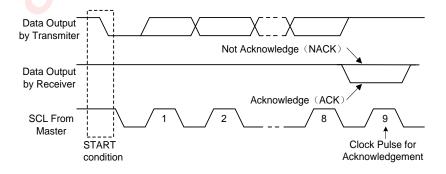


Figure 15 I²C ACK Timing

WRITE CYCLE

awinic

One data bit is transferred during each clock pulse. Data is sampled during the high state of the serial clock (SCL). Consequently, throughout the clock's high period, the data should remain stable. Any changes on the SDA line during the high state of the SCL and in the middle of a transaction, aborts the current transaction. New data should be sent during the low SCL state. This protocol allows a single data line to transfer both command/control information and data using the synchronous serial clock.

Each data transaction is composed of a start condition, a number of byte transfers (set by the software) and a stop condition to terminate the transaction. Every byte written to the SDA bus must be 8 bits long and is transferred with the most significant bit first. After each byte, an Acknowledge signal must follow.

I²C Register address is 16-bit and register data is 32-bit. Note that I²C also support 8-bit data transfer. Writing process of I²C is showed as below picture.

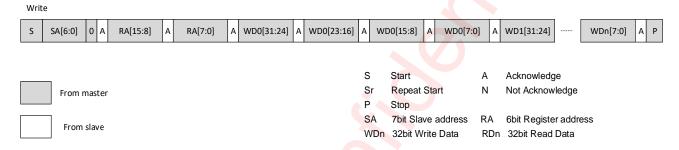


Figure 16 I²C Write Byte Cycle

READ CYCLE

I²C supports read operation data format with repeated start conditions, so there are two formats of I²C read operations. Read process of I²C is showed as below picture.

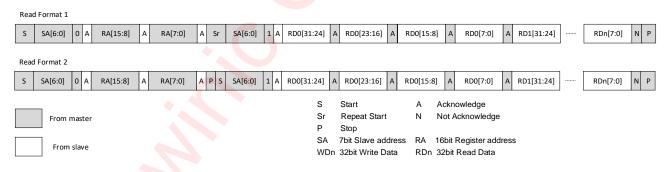


Figure 17 I²C Read Byte Cycle

REGISTER CONFIGURATION

Register List

ADDR	NAME	R/W	Description	Default
0x0000	SCANCTRL0	RW	Scan Control Register 0	0x00000000
0x0004	SCANCTRL1	RW	Scan Control Register 1	0x03F00032
0x0010	AFECFG0_CH0	RW	AFE Configure Register 0 for CH0	0x00050000
0x0014	AFECFG1_CH0	RW	AFE Configure Register 1 for CH0	0x00000009
0x001C	AFECFG3_CH0	RW	AFE Configure Register 3 for CH0	0xFF000000
0x0020	AFECFG4_CH0	RW	AFE Configure Register 4 for CH0	0x00000000
0x0024	AFECFG0_CH1	RW	AFE Configure Register 0 for CH1	0x00050000
0x0028	AFECFG1_CH1	RW	AFE Configure Register 1 for CH1	0x00000009
0x0030	AFECFG3_CH1	RW	AFE Configure Register 3 for CH1	0xFF000000
0x0034	AFECFG4_CH1	RW	AFE Configure Register 4 for CH1	0x00000000
0x0038	AFECFG0_CH2	RW	AFE Configure Register 0 for CH2	0x00050000
0x003C	AFECFG1_CH2	RW	AFE Configure Register 1 for CH2	0x00000009
0x0044	AFECFG3_CH2	RW	AFE Configure Register 3 for CH2	0xFF000000
0x0048	AFECFG4_CH2	RW	AFE Configure Register 4 for CH2	0x00000000
0x004C	AFECFG0_CH3	RW	AFE Configure Register 0 for CH3	0x00050000
0x0050	AFECFG1_CH3	RW	AFE Configure Register 1 for CH3	0x00000009
0x0058	AFECFG3_CH3	RW	AFE Configure Register 3 for CH3	0xFF000000
0x005C	AFECFG4_CH3	RW	AFE Configure Register 4 for CH3	0x00000000
0x0088	FWVER	RO	Firmware Version Register	0x42001000
0x008C	WST	RO	Work Status Register	0x00000003
0x0090	STAT0	RO	Status Register 0	0x00000000
0x0094	STAT1	RO	Status Register 1	0x00000000
0x0098	STAT2	RO	Status Register 2	0x00000000
0x009C	CHINTEN	RW	Interrupt Enable for Each channel	0x3F3F3F3F
0x00A0	DSPCFG0_CH0	RW	DSP Configure Register 0 for CH0	0xE0400000
0x00A4	DSPCFG1_CH0	RW	DSP Configure Register 1 for CH0	0x00000000
0x00A8	BLFILT_CH0	RW	Baseline Filter Configure Register for CH0	0x000008D2
0x00B0	PROXCTRL_CH0	RW	Proximity Register for CH0	0x00000000
0x00B8	PROXTH0_CH0	RW	Proximity Threshold 0 Register for CH0	0x00000000
0x00BC	PROXTH1_CH0	RW	Proximity Threshold 1 Register for CH0	0x00000000
0x00C0	PROXTH2_CH0	RW	Proximity Threshold 2 Register for CH0	0x00000000
0x00C4	PROXTH3_CH0	RW	Proximity Threshold 3 Register for CH0	0x00000000
0x00C8	STDDET_CH0	RW	Steady Detection Register for CH0	0x00000000
0x00CC	INITPROX0_CH0	RW	Start-up Proximity Detection Register 0 for CH0	0x00000000

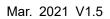
ADDR	NAME	R/W	Description	Default
0x00D0	INITPROX1_CH0	RW	Start-up Proximity Detection Register 1 for CH0	0x00000000
0x00D4	DATAOFFSET CH0	RW	Data Offset Control Register for CH0	0x00000000
0x00D8	AOTTAR_CH0	RW	Target Data Setting for Offset Compensation for CH0	0x00000000
0x00DC	DSPCFG0_CH1	RW	DSP Configure Register 0 for CH1	0xE0400000
0x00E0	DSPCFG1_CH1	RW	DSP Configure Register 1 for CH1	0x00000000
0x00E4	BLFILT_CH1	RW	Baseline Filter Configure Register for CH1	0x000008D2
0x00EC	PROXCTRL_CH1	RW	Proximity Register for CH1	0x00000000
0x00F4	PROXTH0_CH1	RW	Proximity Threshold 0 Register for CH1	0x00000000
0x00F8	PROXTH1_CH1	RW	Proximity Threshold 1 Register for CH1	0x00000000
0x00FC	PROXTH2_CH1	RW	Proximity Threshold 2 Register for CH1	0x00000000
0x0100	PROXTH3_CH1	RW	Proximity Threshold 3 Register for CH1	0x00000000
0x0104	STDDET_CH1	RW	Steady Detection Register for CH1	0x00000000
0x0108	INITPROX0_CH1	RW	Start-up Proximity Detection Register 0 for CH1	0x00000000
0x010C	INITPROX1_CH1	RW	Start-up Proximity Detection Register 1 for CH1	0x00000000
0x0110	DATAOFFSET_CH1	RW	Data Offset Control Register for CH1	0x00000000
0x0114	AOTTAR_CH1	RW	Target Data Setting for Offset Compensation for CH1	0x00000000
0x0118	DSPCFG0_CH2	RW	DSP Configure Register 0 for CH2	0xE0400000
0x011C	DSPCFG1_CH2	RW	DSP Configure Register 1 for CH2	0x00000000
0x0120	BLFILT_CH2	RW	Baseline Filter Configure Register for CH2	0x000008D2
0x0128	PROXCTRL_CH2	RW	Proximity Register for CH2	0x00000000
0x0130	PROXTH0_CH2	RW	Proximity Threshold 0 Register for CH2	0x00000000
0x0134	PROXTH1_CH2	RW	Proximity Threshold 1 Register for CH2	0x00000000
0x0138	PROXTH2_CH2	RW	Proximity Threshold 2 Register for CH2	0x00000000
0x013C	PROXTH3_CH2	RW	Proximity Threshold 3 Register for CH2	0x00000000
0x0140	STDDET_CH2	RW	Steady Detection Register for CH2	0x00000000
0x0144	INITPROX0_CH2	RW	Start-up Proximity Detection Register 0 for CH2	0x00000000
0x0148	INITPROX1_CH2	RW	Start-up Proximity Detection Register 1 for CH2	0x00000000
0x014C	DATAOFFSET_CH2	RW	Data Offset Control Register for CH2	0x00000000
0x0150	AOTTAR_CH2	RW	Target Data Setting for Offset Compensation for CH2	0x00000000
0x0154	DSPCFG0_CH3	RW	DSP Configure Register 0 for CH3	0xE0400000
0x0158	DSPCFG1_CH3	RW	DSP Configure Register 1 for CH3	0x00000000
0x015C	BLFILT_CH3	RW	Baseline Filter Configure Register for CH3	0x000008D2
0x0164	PROXCTRL_CH3	RW	Proximity Register for CH3	0x00000000
0x016C	PROXTH0_CH3	RW	Proximity Threshold 0 Register for CH3	0x00000000

AW96103

Mar. 2021 V1.5

ADDR	NAME	R/W	Description	Default
0x0170	PROXTH1_CH3	RW	Proximity Threshold 1 Register for CH3	0x00000000
0x0174	PROXTH2_CH3	RW	Proximity Threshold 2 Register for CH3	0x00000000
0x0178	PROXTH3_CH3	RW	Proximity Threshold 3 Register for CH3	0x00000000
0x017C	STDDET_CH3	RW	Steady Detection Register for CH3	0x00000000
0x0180	INITPROX0_CH3	RW	Start-up Proximity Detection Register 0 for CH3	0x00000000
0x0184	INITPROX1_CH3	RW	Start-up Proximity Detection Register 1 for CH3	0x00000000
0x0188	DATAOFFSET_CH3	RW	Data Offset Control Register for CH3	0x00000000
0x018C	AOTTAR_CH3	RW	Target Data Setting for Offset Compensation for CH3	0x00000000
0x0208	ATCCR0	RW	Adaptive Temperature Compensation Control Register 0	0x00000005
0x020C	ATCCR1	RW	Adaptive Temperature Compensation Control Register 1	0x00000005
0x0210	COMP_CH0	RO	Comp Data Register of CH0	0x00000000
0x0214	COMP_CH1	RO	Comp Data Register of CH1	0x00000000
0x0218	COMP_CH2	RO	Comp Data Register of CH2	0x00000000
0x021C	COMP_CH3	RO	Comp Data Register of CH3	0x00000000
0x0228	BASELINE_CH0	RO	Baseline Data Register of CH0	0x00000000
0x022C	BASELINE_CH1	RO	Baseline Data Register of CH1	0x00000000
0x0230	BASELINE_CH2	RO	Baseline Data Register of CH2	0x00000000
0x0234	BASELINE_CH3	RO	Baseline Data Register of CH3	0x00000000
0x0240	DIFF_CH0	RO	Difference Data Register of CH0	0x00000000
0x0244	DIFF_CH1	RO	Difference Data Register of CH1	0x00000000
0x0248	DIFF_CH2	RO	Difference Data Register of CH2	0x00000000
0x024C	DIFF_CH3	RO	Difference Data Register of CH3	0x00000000
0xF008	CMD	WO	Command Register	0x00000000
0xF080	IRQSRC	RC	Interrupt Source Register	0x00000000
0xF084	IRQEN	RW	Interrupt Enable Register	0x00000FFF
0xF0F0	I2CADDR	RO	I ² C Device Address Register	0x00000012
0xFF00	OSCEN	RW	Host Control Register	0x00000301
0xFF0C	RESET	WO	Software Reset Register	0x01000000
0xFF10	CHIPID	RO	CHIP ID Register	0xA9610B00

Register Detailed Description


SCANC [*]	SCANCTRL0: Scan Control Register 0 (Address 0000h)						
Bit	Symbol	R/W	Description	Default			
31:12	Reserved	RO	Reserved	h00000			
11:8	AOTEN	WC	Defines which channels need auto offset tuning (AOT). And after the offset tuning, the corresponding bit will be cleared to "0". b0: Disable b1: Enable Bit[11:8] = [CH3, CH2, CH1, CH0]	b0000			
7:4	Reserved	RO	Reserved	b00			
3:0	CHEN	RW	Enable the measurement channel. b0: Disable b1: Enable Bit[3:0] = [CH3, CH2, CH1, CH0]	b0000			

SCANCTRL1: Scan Control Register 1 (Address 0004h)						
Bit	Symbol	R/W	Description	Default		
31:24	Reserved	RO	Reserved	h00		
23:20	DOZEEN	RW	Doze mode enable. b0: Disable b1: Enable Bit[23:20] = [CH3, CH2, CH1, CH0]	b1111		
19:16	Reserved	RO	Reserved	b0000		
15:11	DOZEDEB	RW	Debounce times for entering into doze mode. b00000: Never enter into doze mode Others: In active mode, if none proximity has been detected continuously for 4xDOZEDEB times, the chip will enter into doze mode automatically.	b00000		
10:0	SCANPERIOD	RW	Basic scan period for active mode: h000: Reserved other: T _{scan} = SCANPERIOD * 2 ms	h032		

AFECFG0_CH0: AFE Configure Register 0 for CH0 (Address 0010h) AFECFG0_CH1: AFE Configure Register 0 for CH1 (Address 0024h) AFECFG0_CH2: AFE Configure Register 0 for CH2 (Address 0038h) AFECFG0_CH3: AFE Configure Register 0 for CH3 (Address 004Ch)

Bit	Symbol	R/W	Description	Default
31:30	MEASMOD_CHx	RW	Measurement mode selection of CHx (x = 0, 1,, 3). b00: Capacitance b10: Temperature other: Reserved	b00
29:26	RDRV_CHx	RW	Driving resistance of sensing electrode for CHx. Resistance = $2k\Omega * RDRV_CHx$	b0000
25:22	Reserved	RO	Reserved	b0000

awinic

21:20	ROFF_CHx	RW	Driving resistance of offset capacitance for CHx. b00: 125 Ω b01: 250 Ω b10: 500 Ω b11: 1 k Ω	b00
19:16	CDCRES_CHx	RW	Capacitance-Digital-Conversion resolution setting for CHx. Resolution = 15bit + CDCRES_CHx Higher resolution achieves higher SNR, but takes longer measurement time.	b0101
15:12	CRANGE_CHx	RW	Capacitance measurement range of CHx. b0000: 1.1 pF b0001: 2.2 pF b0010: 3.3 pF b0011: 4.4 pF b0100: 6.6 pF b0101: 7.7 pF b0110: 8.8 pF b0111: 9.9 pF b1000: 11 pF b1001: 12.1 pF b1010: 13.2 pF b1010: 13.2 pF b1101: 14.3 pF b1100: 16.5 pF b1110: 18.7 pF b1111: 19.8 pF	P0000
11:8	Reserved	RO	Reserved	b0000
7:6	CS3SEL_CHx	RW	Same as CS0SEL_CHx for pin CS3.	b00
5:4	CS2SEL_CHx	RW	Same as CS0SEL_CHx for pin CS2.	b00
3:2	CS1SEL_CHx	RW	Same as CS0SEL_CHx for pin CS1.	b00
1:0	CS0SEL_CHx	RW	CS0 connection for CHx. b00: HZ b01: Measured input b10: Shield b11: GND	b00

AFECFG1_CH0: AFE Configure Register 1 for CH0 (Address 0014h)
AFECFG1_CH1: AFE Configure Register 1 for CH1 (Address 0028h)
AFECFG1_CH2: AFE Configure Register 1 for CH2 (Address 003Ch)
AFECFG1_CH3: AFE Configure Register 1 for CH3 (Address 0050h)

Bit	Symbol	R/W	Description	Default		
31:16	COFF_CHx	RW	Offset capacitance for CHx (x = 0, 1,, 3).	h0000		
15:8	Reserved	RO	Reserved	h00		
7:0	FREQ_CHx	RW	Driving frequency for CHx. $F_{DRV} = F_{afe}/(4*(FREQ_CHx+1))$ Where $F_{afe} = 4MHz$.	h09		

AFECFG3_CH0: AFE Configure Register 3 for CH0 (Address 001Ch) AFECFG3_CH1: AFE Configure Register 3 for CH1 (Address 0030h)

AW96103

h000000

Mar. 2021 V1.5

AFECFG3_CH2: AFE Configure Register 3 for CH2 (Address 0044h) AFECFG3_CH3: AFE Configure Register 3 for CH3 (Address 0058h)

RO

	_	U	,	
Bit	Symbol	R/W	Description	Default
31:24	Reserved	RO	Reserved	h00
23:16	ACTPERIOD_CHx	RW	Scan period in active mode for CHx. b0: 1 x T _{scan} Other: ACTPERIOD_CHx x T _{scan}	h00
15:0	Reserved	RO	Reserved	h0000

AFECFG4_CH0: AFE Configure Register 4 for CH0 (Address 0020h)
AFECFG4_CH1: AFE Configure Register 4 for CH1 (Address 0034h)
AFECFG4_CH2: AFE Configure Register 4 for CH2 (Address 0048h)
AFECFG4_CH3: AFE Configure Register 4 for CH3 (Address 005Ch)

31:25

DOZEPERIOD_CH
X

RW

Scan period in dozen mode for CHx.
b0: 1 x T_{scan}
Other: DOZEPERIOD_CHx x T_{scan}

Reserved


FWVER	FWVER: Firmware Version Register (Address 0088h)						
Bit	Symbol	R/W	Description	Default			
31:0	FWVER	RO	Firmware Version Register.	H420010 00			

WST: Work Status Register (Address 008Ch)					
Bit	Symbol	R/W	Description	Default	
31:24	WST	RO	Current work status. h00: Active mode h01: Doze mode Other: Reserved	h00	
23:0	Reserved	RO	Reserved	h000003	

STAT0:	STAT0: Status Register 0 (Address 0090h)						
Bit	Symbol	R/W	Description	Default			
31:28	Reserved	RO	Reserved	b0000			
27:24	PROX0ST	RO	Proximity status 0 for corresponding channel. When DIFF > PROXTH0 and more than INDEB_CHx times, the corresponding bit will be set. Bit[27:24]=[CH3, CH2, CH1, CH0]	b0000			
23:20	Reserved	RO	Reserved	b0000			
19:16	PROX1ST	RO	Proximity status 1 for corresponding channel. When DIFF > PROXTH1 and more than INDEB_CHx times, the corresponding bit will be set. Bit[19:16]=[CH3, CH2, CH1, CH0]	b0000			
15:12	Reserved	RO	Reserved	b0000			
11:8	PROX2ST	RO	Proximity status 2 for corresponding channel. When DIFF > PROXTH2 and more than INDEB_CHx	b0000			

24:0

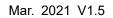
Reserved

			times, the corresponding bit will be set. Bit[11:8]=[CH3, CH2, CH1, CH0]	
7:4	Reserved	RO	Reserved	b00
3:0	PROX3ST	RO	Proximity status 3 for corresponding channel. When DIFF > PROXTH3 and more than INDEB_CHx times, the corresponding bit will be set. Bit[3:0]=[CH3, CH2, CH1, CH0]	p0000

STAT1:	STAT1: Status Register 1 (Address 0094h)						
Bit	Symbol	R/W	Description	Default			
31:28	Reserved	RO	Reserved	b0000			
27:24	STDST	RO	Steady status indication. Bit[27:24]=[CH3, CH2, CH1, CH0]	b0000			
23:12	Reserved	RO	Reserved	h000			
11:8	AOTST	RO	Indicates whether AOT is being performed. Bit[11:8]=[CH3, CH2, CH1, CH0]	b0000			
7:4	Reserved	RO	Reserved	b0000			
3:0	SATST	RO	data saturation status indication. Bit[3:0]=[CH3, CH2, CH1, CH0]	b0000			

STAT2: Status Register 2 (Address 0098h)					
Bit	Symbol	R/W	Description	Default	
31:20	Reserved	RO	Reserved	h000	
19:16	INITPROXST	RO	Indicates if proximity has being detected when performing start-up offset compensation. Bit[19:16] = [CH3, CH2, CH1, CH0]	p0000	
15:5	Reserved	RO	Reserved	h000	
4	CONVST	RO	Indicates if any channel is being measured or processed. b0: Idle b1: Data is being measured or processed	b0	
3	INITPROXSTANY	RO	Indicates if any INITPROXST is set to 1.	b0	
2	Reserved	RO	Reserved	b0	
1	STDSTALL	RO	Indicates if all STDST bits are set to 1.	b0	
0	PROXSTANY	RO	Indicates if any PROXST is set to 1.	b0	

CHINTEN : Interrupt Enable for Each channel (Address 009Ch)						
Bit	Symbol	R/W	Description	Default		
31:28	Reserved	RO	Reserved	b0000		
27:24	PROXSTINTEN	RW	Proximity status interrupt enable for each channel: b0: Disable b1: Enable Bit[27:24]=[CH3, CH2, CH1, CH0]	b1111		
23:20	Reserved	RO	Reserved	b0000		

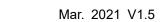

19:16	PROXANYINTEN	RW	Proximity interrupt enable for each channel: b0: Disable b1: Enable Bit[19:16]=[CH3, CH2, CH1, CH0]	b1111
15:12	Reserved	RO	Reserved	b0000
11:8	FARANYINTEN	RW	Far interrupt enable for each channel: b0: Disable b1: Enable Bit[11:8]=[CH3, CH2, CH1, CH0]	b1111
7:4	Reserved	RO	Reserved	b0000
3:0	CONVDONEINTE N	RW	Scan over interrupt for each channel: b0: Disable b1: Enable Bit[3:0]=[CH3, CH2, CH1, CH0]	b1111

DSPCFG0_CH0: DSP Configure Register 0 for CH0 (Address 00A0h) DSPCFG0_CH1: DSP Configure Register 0 for CH1 (Address 00DCh) DSPCFG0_CH2: DSP Configure Register 0 for CH2 (Address 0118h) DSPCFG0_CH3: DSP Configure Register 0 for CH3 (Address 0154h)

Bit	Symbol	R/W	Description	Default
31:27	Reserved	RO	Reserved	b11100
26:25	SMPLNUM_CHx	RW	The number of sample for CHx. Num = 2^ SMPLNUM_CHx	b00
24:22	LPFCOEF_CHx	RW	Coefficient of the low pass filter for CHx. Coef = 1/(2^LPFCOEF_CHx)	b001
21:20	Reserved	RO	Reserved	h0
19:0	ATCCFG0_CHx	RW	Auto temperature configure register0 for CHx.	h00000

DSPCFG1_CH0: DSP Configure Register 1 for CH0 (Address 00A4h) DSPCFG1_CH1: DSP Configure Register 1 for CH1 (Address 00E0h) DSPCFG1_CH2: DSP Configure Register 1 for CH2 (Address 011Ch) DSPCFG1_CH3: DSP Configure Register 1 for CH3 (Address 0158h)

Bit	Symbol	R/W	Description	Default
31:16	ATCCFG1_CHx	RW	Auto temperature configure register1 for CHx.	h0000
15:8	PROXRLSCNT_C Hx	RW	Counter for long time proximity release of CHx. h00: Disable Others: 4 * PROXRLSCNT_CHx times	h00
7:4	BASERSTCNT_CH	RW	Defines the times of DIFF < -PROXTH0 before reset baseline. b0000: Disable Others: BASERSTCNT times	b0000



3:2	NEGSATEN_CHx	RW	Negative saturation judgment and process method for CHx (x=0, 1,, 3). b00: Disable for CompData. b01: Only judge saturation status b10: Enable the saturation judgment, and when saturation detected, capacitance offset compensation will be performed automatically. b11: Reserved	p00
1:0	NEGSATTH_CHx	RW	Negative saturation threshold. b00: - 0x09A000 b01: - 0x0BA000 b10: - 0x0DA000 b11: - 0x0EF000	p00

BLFILT_CH0: Baseline Filter Configure Register for CH0 (Address 00A8h)
BLFILT_CH1: Baseline Filter Configure Register for CH1 (Address 00E4h)
BLFILT_CH2: Baseline Filter Configure Register for CH2 (Address 0120h)
BLFILT_CH3: Baseline Filter Configure Register for CH3 (Address 015Ch)

Bit	Symbol	R/W	Description	Default
31:30	POSSATEN_CHx	RW	Positive saturation judgment and process method for CHx (x=0, 1,, 3). b00: Disable saturation judgment for CompData b01: Only judge saturation status b10: Enable the saturation judgment, and when saturation detected, capacitance offset compensation will be performed automatically. b11: Reserved	b00
29:28	POSSATTH_CHx	RW	Positive saturation threshold of CHx. b00: 0x09A000 b01: 0x0BA000 b10: 0x0DA000 b11: 0x0EF000	b00
27:26	SATDEB_CHx	RW	The debouncer applied to set the saturation status for CHx. Deb = 2 ^ SATDEB_CHx	b00
25	BLERRTRIG_CHx	RW	The action when baseline error occurs of CHx. b0: Trig all channels to perform offset compensation b1: Only trig current channel to perform offset compensation	b0
24:19	BLMAX_CHx	RW	Defines the max threshold of baseline that will trig offset compensation for CHx. b0: Disable baseline up threshold judge Other: Max threshold = (BLMAX_CHx << 14)	b000000
18:13	BLMIN_CHx	RW	Defines the min threshold of baseline that will trig offset compensation for CHx. Min threshold = -(BLMIN_CHx << 14)	p000000
12:11	BLERRDEB_CHx	RW	The debouncer applied to baseline error judgment. Deb = (2 ^ BLERRDEB_CHx)	b01

awinic

10:9	BLTSDOZE_CHx	RW	Baseline tracing speed factor in doze mode for CHx. When the baseline upward tracing: Factor = (2^BLTSDOZE_CHx)*BLFUPCOEF_CHx Other: Factor= (2^BLTSDOZE_CHx)*BLFDOWNCOEF_CHx	b00
8:5	BLFUPCOEF_CHx	RW	Coefficient of baseline upward tracing for CHx. b0000: 1 (Baseline = CompData) b1111: 0 (Baseline frozen, keep last value) Other: Coef = 1/(2^ BLFUPCOEF_CHx)	b0110
4:2	BLFDOWNCOEF_ CHx	RW	Coefficient of baseline downward tracing for CHx. b000: 1 (Baseline = CompData) b111: 0 (Baseline frozen, keep last value) Other: Coef =1/ (2^ BLFDOWNCOEF_CHx)	b100
1:0	Reserved	RO	Reserved	b10

PROXCTRL_CH0: Proximity Register for CH0 (Address 00B0h)
PROXCTRL_CH1: Proximity Register for CH1 (Address 00ECh)
PROXCTRL_CH2: Proximity Register for CH2 (Address 0128h)
PROXCTRL_CH3: Proximity Register for CH3 (Address 0164h)

Bit	Symbol	R/W	Description	Default
31:14	Reserved	RO	Reserved	h00000
13:12	THHYST_CHx	RW	Defines the hysteresis of PROXTH0/PROXTH1/PROXTH2/PROXTH3 for CHx. b00: Hyst = 0 b01: Hyst = Th/16 b10: Hyst = Th/8 b11: Hyst = Th/4	p00
11:10	INDEB_CHx	RW	The debouncer applied to enter into proximity status for CHx. Deb = (2 ^ INDEB_CHx)	b00
9:8	OUTDEB_CHx	RW	The debouncer applied to exit proximity status for CHx. Deb = (2 ^ OUTDEB_CHx)	b00
7:0	Reserved	RO	Reserved	h00

PROXTH0_CH0: Proximity Threshold 0 Register for CH0 (Address 00B8h) PROXTH0_CH1: Proximity Threshold 0 Register for CH1 (Address 00F4h) PROXTH0_CH2: Proximity Threshold 0 Register for CH2 (Address 0130h) PROXTH0_CH3: Proximity Threshold 0 Register for CH3 (Address 016Ch)

Bit	Symbol	R/W	Description	Default
31:21	Reserved	RO	Reserved	h000
20:0	PROXTH0_CHx	RW	Defines the proximity threshold 0 of CHx: Th0 = PROXTH0	h000000

AW96103

Mar. 2021 V1.5

PROXTH1_CH0: Proximity Threshold 1 Register for CH0 (Address 00BCh) PROXTH1_CH1: Proximity Threshold 1 Register for CH1 (Address 00F8h) PROXTH1_CH2: Proximity Threshold 1 Register for CH2 (Address 0134h) PROXTH1_CH3: Proximity Threshold 1 Register for CH3 (Address 0170h)

Bit	Symbol	R/W	Description	Default
31:21	Reserved	RO	Reserved	h000
20:0	PROXTH1_CHx	RW	Defines the proximity threshold 1 of CHx: Th1 = PROXTH1	h000000

PROXTH2_CH0: Proximity Threshold 2 Register for CH0 (Address 00C0h) PROXTH2_CH1: Proximity Threshold 2 Register for CH1 (Address 00FCh) PROXTH2_CH2: Proximity Threshold 2 Register for CH2 (Address 0138h) PROXTH2 CH3: Proximity Threshold 2 Register for CH3 (Address 0174h)

Bit	Symbol	R/W	Description	Default
31:21	Reserved	RO	Reserved	h000
20:0	PROXTH2_CHx	RW	Defines the proximity threshold 2 of CHx: Th2 = PROXTH2	h000000

PROXTH3_CH0: Proximity Threshold 3 Register for CH0 (Address 00C4h) PROXTH3_CH1: Proximity Threshold 3 Register for CH1 (Address 0100h) PROXTH3_CH2: Proximity Threshold 3 Register for CH2 (Address 013Ch) PROXTH3_CH3: Proximity Threshold 3 Register for CH3 (Address 0178h)

Bit	Symbol	R/W	Description	Default
31:21	Reserved	RO	Reserved	h000
20:0	PROXTH3_CHx	RW	Defines the proximity threshold 3 of CHx: Th3 = PROXTH3	h000000

STDDET_CH0: Steady Detection Configure for CH0 (Address 00C8h) STDDET_CH1: Steady Detection Configure for CH1 (Address 0104h) STDDET_CH2: Steady Detection Configure for CH2 (Address 0140h) STDDET_CH3: Steady Detection Configure for CH3 (Address 017Ch)

Bit	Symbol	R/W	Description	Default
31:16	STDTH_CHx	RW	The steady threshold for CHx. Th = STDTH_CHx * (2^STDTHMUL_CHx)	h0000
15:14	STDTHMUL_CHx	RW	Steady threshold multiply factor:	b00
13:11	STDSMPLNUM_C Hx	RW	The number of data to be compared with steady threshold for CHx. Samples = (2^(STDSMPLNUM_CHx +1))	b000
10:9	STDJUDGEEN_CH	RW	Data selection and steady check for CHx. b00: Disable data steady judge b01: Reserved b10: Use CompData as judgment data b11: Use DIFF as judgment data Note: Judge data steady or not only when proximity is detected.	b00

8:2	STDINDEB_CHx	RW	The debouncer applied to enter steady status for CHx. Deb = STDINDEB_CHx	h00
1:0	STDOUTDEB_CHx	RW	The debouncer applied to exit steady status for CHx. Deb = (2^ STDOUTDEB_CHx)	b00

INITPROX0_CH0: Start-up Proximity Detection Register 0 for CH0 (Address 00CCh) INITPROX0_CH1: Start-up Proximity Detection Register 0 for CH1 (Address 0108h) INITPROX0_CH2: Start-up Proximity Detection Register 0 for CH2 (Address 0144h) INITPROX0_CH3: Start-up Proximity Detection Register 0 for CH3 (Address 0180h)

Bit	Symbol	R/W	Description	Default
31:16	INITCOMPTH_CHx	RW	The initial Comp Data threshold for start-up proximity detection for CHx. Th = (INITCOMPTH_CHx << 6) Signed value (2's complement, S.21 format)	h0000
15:0	INITCOFF_CHx	RW	The default value of offset compensation for CHx. if INITCOFF_CHx = 16'h0 ,disable start up proximity detect.	h0000

INITPROX1_CH0: Start-up Proximity Detection Register 1 for CH0 (Address 00D0h) INITPROX1_CH1: Start-up Proximity Detection Register 1 for CH1 (Address 010Ch) INITPROX1_CH2: Start-up Proximity Detection Register 1 for CH2 (Address 0148h) INITPROX1_CH3: Start-up Proximity Detection Register 1 for CH3 (Address 0184h)

Bit	Symbol	R/W	Description	Default
31	INITPROXEN_CHx	RW	Enable for start-up proximity detection during start up. b0: Disable b1: Enable	b0
30:0	Reserved	RO	Reserved	h000000 00

DATAOFFSET_CH0: Data Offset Control Register for CH0 (Address 00D4h) DATAOFFSET_CH1: Data Offset Control Register for CH1 (Address 0110h) DATAOFFSET_CH2: Data Offset Control Register for CH2 (Address 014Ch) DATAOFFSET_CH3: Data Offset Control Register for CH3 (Address 0188h)

Bit	Symbol	R/W	Description	Default
31:22	Reserved	RO	Reserved	h000
21:0	DATAOFFSET_CHx	RW	Offset value for Data. Signed value (2's complement, S.21 format)	h000000

AOTTAR_CH0: Target Data Setting for Offset Compensation for CH0 (Address 00D8h) AOTTAR_CH1: Target Data Setting for Offset Compensation for CH0 (Address 0114h) AOTTAR_CH2: Target Data Setting for Offset Compensation for CH0 (Address 0150h) AOTTAR_CH3: Target Data Setting for Offset Compensation for CH0 (Address 018Ch)

Bit	Symbol	R/W	Description	Default
31:22	Reserved	RO	Reserved	h000

	21:0	AOTTAR_CHx	RW	Defines target value when performing auto offset tuning. Signed value (2's complement, S.21 format)	h000000	
--	------	------------	----	---	---------	--

ATCCR	ATCCR0: Adaptive Temperature Compensation Control Register 0 (Address 0208h)					
Bit	Symbol	R/W	Description	Default		
31:27	Reserved	RO	Reserved	b00000		
26:0	ATCCR0	RW	Adaptive Temperature Compensation Control Register 0.	h000000 5		

ATCCR1: Adaptive Temperature Compensation Control Register 1 (Address 020Ch)				
Bit	Symbol	R/W	Description	Default
31:27	Reserved	RW	Reserved	b00000
26:0	ATCCR1	RW	Adaptive Temperature Compensation Control Register 1.	h000000 5

COMP_CH0: Comp Data Register of CH0 (Address 0210h) COMP_CH1: Comp Data Register of CH1 (Address 0214h) COMP_CH2: Comp Data Register of CH2 (Address 0218h) COMP_CH3: Comp Data Register of CH3 (Address 021Ch)

Bit	Symbol	R/W	Description	Default
31:0	COMP_CHx	RO	Current value (COMP) of CHx. Signed value (2's complement, S21.10 format)	h000000 00

BASELINE_CH0: Baseline Data Register of CH0 (Address 0228h) BASELINE_CH1: Baseline Data Register of CH1 (Address 022Ch) BASELINE_CH2: Baseline Data Register of CH2 (Address 0230h) BASELINE_CH3: Baseline Data Register of CH3 (Address 0234h)

Bit	Symbol	R/W	Description	Default
31:0	BASELINE_CHx	RO	Current baseline value (BASELINE) of CHx. Signed value (2's complement, S21.10 format)	h000000 00

DIFF CH0: Difference Data Register of CH0 (Address 0240h) DIFF_CH1: Difference Data Register of CH1 (Address 0244h) DIFF CH2: Difference Data Register of CH2 (Address 0248h) DIFF CH3: Difference Data Register of CH3 (Address 024Ch)

Bit	Symbol	R/W	Description	Default
31:0	DIFF_CHx	RO	Current different Data (DIFF) of CHx. Signed value (2's complement, S21.10 format)	h000000 00

CMD: Command Register (Address F008h)						
Bit	Symbol	R/W	Description	Default		
31:8	Reserved	RO	Reserved	h000000		

7:0	CMD	WO	Commands: h00: Reserved h01: IC will enter active mode and start detection Other: IC will enter sleep mode after current scan period finish.	h00	
-----	-----	----	--	-----	--

IRQSRC	IRQSRC: Interrupt Source Register (Address F080h)					
Bit	Symbol	R/W	Description	Default		
31:12	Reserved	RO	Reserved	h00000		
11	INITPROXIRQ	RC	Initial proximity interrupt source status b0: No channels detect initial proximity b1: Any INITPROXST falling edge	b0		
10:8	Reserved	RO	Reserved	b000		
7	ENTERSATANYIR Q	RC	Enter saturation interrupt source status b0: No channels enter saturation state b1: Any SATST rising edge	b0		
6	PROXSTATANYIR Q	RC	Proximity status interrupt source status b0: No channels in proximity state b1: Any PROXOST is set	b0		
5	Reserved	RO	Reserved	b0		
4	CONVDONEIRQ	RC	Indicates if the AFE sampling conversion is done. b0: Not done b1: Done	b0		
3	AOTDONEIRQ	RC	Auto offset tuning done interrupt source status b0: Invalid b1: AOT Done	b0		
2	FARANYIRQ	RC	Exit proximity state interrupt source status b0: No channels exit proximity state b1: Any PROX0ST falling edge	b0		
1	PROXANYIRQ	RC	Enter proximity state interrupt source status b0: No channels enter proximity state b1: Any PROXOST rising edge	b0		
0	INITOVERIRQ	RC	Chip initial over interrupt source status b0: Invalid b1: Initial over	b0		

IRQEN: Interrupt Enable Register (Address F084h)						
Bit	Symbol	R/W	Description	Default		
31:12	Reserved	RO	Reserved	h00000		
11	INITPROXIRQEN	RW	Start-up proximity interrupt Enable (any). b0: Disable b1: Enable	b1		
10:8	Reserved	RO	Reserved	b101		

7	ENTERSATANYIR QEN	RW	Enable enter saturated state interrupt (any). b0: Disable b1: Enable Note: If need to enable the interrupt, the bit ENTERSATANYEN (address 009Ch) should be set to 1.	b1
6	PROXSTANYIRQE N	RW	Enable proximity interrupt (any). b0: Disable b1: Enable Note: If need to enable the interrupt, the bits PROXINTEN (address 009Ch) should be configured first.	b1
5	Reserved RO Reserved		b1	
4	CONVDONEIRQE N	RW	Enable data conversion done interrupt. b0: Disable b1: Enable Note: If need to enable the interrupt, the bits CONVDONEINTEN (address 009Ch) should be configured first.	b1
3	AOTDONEIRQEN	RW	Enable auto offset tuning done interrupt. b0: Disable b1: Enable	b1
2	FARANYIRQEN	RW	Enable the interrupt when any channel from close to far. b0: Disable b1: Enable Note: If need to enable the interrupt, the bits FARANYINTEN (address 009Ch) should be configured first.	b1
1	PROXANYIRQEN RW Enable the interrupt when any channel from far to proximity (PROX0ST from 0 to 1). b0: Disable b1: Enable Note: If need to enable the interrupt, the bits PROXANYINTEN (address 009Ch) should be configured first.		b1	
0	INITOVERIRQEN RW Enable chip initial over interrupt. b0: Disable b1: Enable		b1	

I2CADDR: I ² C Address Register (Address F0F0h)						
Bit	Symbol	R/W	Description	Default		
31:7	Reserved	RO	Reserved	h000000 0		
6:0	I2CADDR	RO	I ² C device address.	h12		

OSCEN: Clock Control Register (Address FF00h)

AW96103

Mar. 2021 V1.5

Bit	Symbol	R/W	Description	Default
31:10	Reserved	RO	Reserved	h000000
9	CPUST	RO	Internal CPU core status indication. b0:CPU is in a working state b1:CPU is in sleep state	b1
8	OSCST	RO	OSC status indication. b0: The OSC is turned off b1: The OSC is turned on	b1
7:0	Reserved	RO	Reserved	h001

RESET: Software Reset Register (Address FF0Ch)					
Bit	Symbol	R/W	Description	Default	
31:24	RESET	WO	Write "0" to reset the whole chip.	h00	
23:0	Reserved	RO	Reserved	h000000	

CHIPID: CHIP ID Register (Address FF10h)						
Bit	Symbol	R/W	Description	Default		
31:0	CHIPID	RO	CHIP ID Register.	hA9610B 00		

APPLICATION INFORMATION

awinic

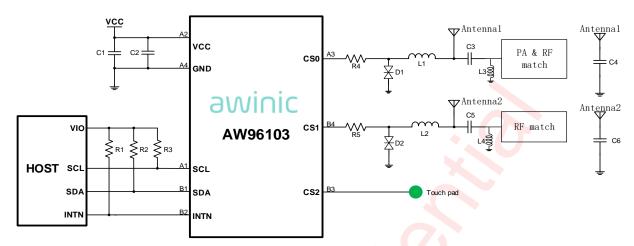


Figure 18 AW96103 Typical Application Circuit

Inductor Selection

The recommended values of the Inductance L1~L2, which were applied in pins CS0,CS1, respectively, are all 100nH.

The recommended values of the Inductance L3~L4, are from 8nH to 100nH, typically 68nH.

Capacitors Selection

The recommended value of the capacitance C1 is 1μ F and C2 is 0.1μ F.

The recommended value of the capacitance C3-C6 are 22pF. It is suggested to use temperature insensitive capacitors to adjust the sensitivity, such as NP0 capacitors.

Resistor Selection

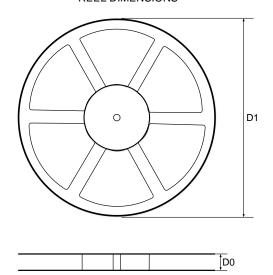
The recommended values of the resistor R1~R3 , which were applied in pins SCL,SDA and INTN, are $4.7k\Omega$. The recommended values of the resistor R4~R5 , which were applied in pins CS0,CS1, are 0Ω .

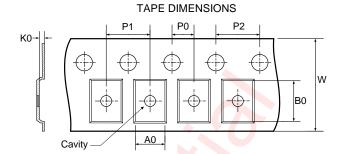
RECOMMENDED COMPONENTS LIST

Component	Name	DESCRIPTION	TYP	UNIT
	L1,L2	-	100	nΗ
L	L3,L4	-	68	nΗ
	C1	-	1	□F
С	C2	-	0.1	□F
	C3,C4,C5,C6	5% resolution Low temperature coefficient	22	pF
R	R1,R2,R3	5% resolution	4.7	kΩ
ĸ	R4,R5	5% resolution	0	Ω

PCB LAYOUT CONSIDERATION

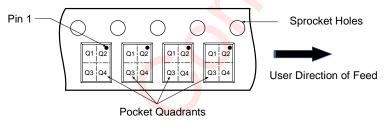
AW96103


Mar. 2021 V1.5


AW96103 is a 3-channel capacitive touch and proximity controller, to obtain the optimal performance, PCB layout should be considered carefully. Here are some guidelines:

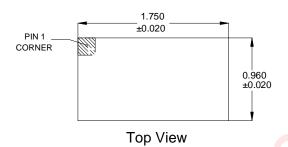
- All peripheral components should be placed as close to the chip as possible. C1 and C2 should be close to VCC. Avoid connecting peripheral devices and chip pins with two different layers of copper, use the same layer of copper instead.
- 2. Place the chip close to capacitive sensor and make trace as short as possible.
- 3. Make sure the sensor and traces be away from mic and earphone line, because capacitive sensor will disturb audio line.
- 4. Place reference channel along with sensor channel to get better performance.
- 5. Use low noise power supply for SAR sensor.

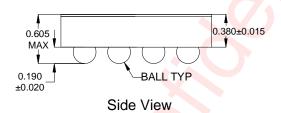
TAPE AND REEL INFORMATION

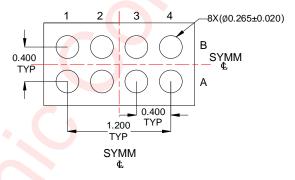

REEL DIMENSIONS

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- K0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P0: Pitch between successive cavity centers and sprocket hole
- P1: Pitch between successive cavity centers
- P2: Pitch between sprocket hole
- D1: Reel Diameter
- D0: Reel Width

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

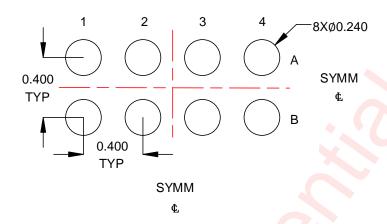



DIMENSIONS AND PIN1 ORIENTATION


	D0								Pin1 Quadrant	
(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)		
179.00	9.00	1.06	1.90	0.69	2.00	4.00	4.00	8.00	Q2	

All dimensions are nominal

PACKAGE DESCRIPTION



Bottom View

Unit:mm

LAND PATTERN DATA

NON-SOLDER MASK DEFINED

SOLDER MASK DEFINED

Unit: mm

Revision History

Version	Date	Change Record
V1.0	June.2020	Officially released.
V1.1	Aug.2020	Update register information, power consumption, I2C deglitch time, typical application circuit and operation mode switching figure.
V1.2	Oct.2020	Update sleep mode current consumption and some register description. Change operation mode switching figure, digital signal processing diagram.
V1.3	Nov.2020	Update Absolute Maximum Ratings, update the minimum compensation resistor in Electrical Characteristics, Correct the default value of Work Status Register in Register Detailed Description.
V1.4	Mar.2021	Add recommended operating conditions.
V1.5	Mar.2021	Update the Register List.

AW96103

Mar. 2021 V1.5

DISCLAIMER

All trademarks are the property of their respective owners. Information in this document is believed to be accurate and reliable. However, Shanghai AWINIC Technology Co., Ltd (AWINIC Technology) does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

AWINIC Technology reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Customers shall obtain the latest relevant information before placing orders and shall verify that such information is current and complete. This document supersedes and replaces all information supplied prior to the publication hereof.

AWINIC Technology products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an AWINIC Technology product can reasonably be expected to result in personal injury, death or severe property or environmental damage. AWINIC Technology accepts no liability for inclusion and/or use of AWINIC Technology products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications that are described herein for any of these products are for illustrative purposes only. AWINIC Technology makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

All products are sold subject to the general terms and conditions of commercial sale supplied at the time of order acknowledgement.

Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Reproduction of AWINIC information in AWINIC data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. AWINIC is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of AWINIC components or services with statements different from or beyond the parameters stated by AWINIC for that component or service voids all express and any implied warranties for the associated AWINIC component or service and is an unfair and deceptive business practice. AWINIC is not responsible or liable for any such statements.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Capacitive Touch Sensors category:

Click to view products by Awinic manufacturer:

Other Similar products are found below:

AT42QT1012-MAH FK 8-1 SMBTASK3KIT6 TTP233H-HA6 8022W TC233A AW96103CSR AI32C XW01-SOP8 AF2041 XW01
TS01S CR12CN04DPO-E2 CR30SCF10ATO CR30SCF10DPO BCS M30BBI2-PSC15D-S04K LDS6124NQGI FDC1004DGSR
FDC1004DGST CR18SCF05DPO CR30CN15DPO-E2 CDWM3020ZPM D11SN6FP OTBA5L OTBVR81LQD PBCL22T QS18VN6DB
MTCH6301-I/ML CAP1133-1-AIA-TR STMPE16M31QTR STMPE16M31PXQTR LC717A00AR-NH AT42QT1070-MMH AT42QT1070SSU AT42QT1011-TSHR AT42QT1011-MAHR AT42QT1110-AUR BU21077MUV-E2 TL50HRQP AT42QT1012-MAHR BRT-TVHG8X10P BCS M12B4I1-PSC40D-EP02 CFAK 12P1103 CFAK 12P1140/L CFAK 18P1100 CFAK 18P1200 CFAK 30P1100 CFAM 12P1600
CFAM 18P1600 CFAM 18P1600/S14