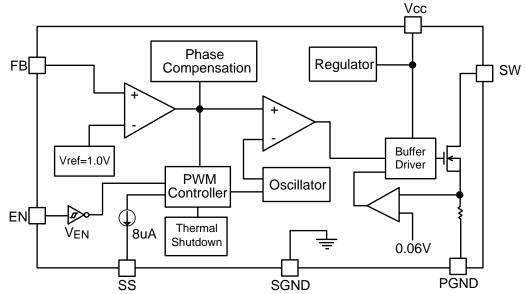
Step-up PWM DC/DC Converter

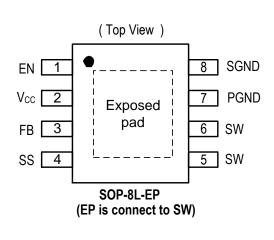
✤ GENERAL DESCRIPTION


The AX5201 is high efficient step-up DC/DC converter. Large output current is possible having a built in internal N channel MOSFET, and using an external coil and diode.

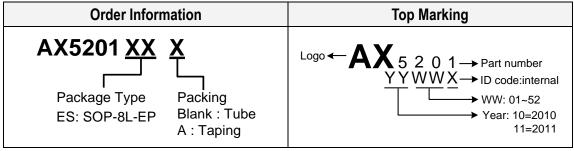
The AX5201 can be operated at switching frequencies of 500 kHz allowing for easy filtering and low noise, the size of the external components can be reduced.

Output voltage is programmable with 1.0V of standard voltage supply internal, and using externally connected components, output voltage (FB) can be set up at will. The soft-start time can be programmed by outside capacitor; the function prevents overshoot at startup. Build inside Current limit, Thermal Shutdown and enable functions.

✤ FEATURES


- Input voltage : 3V to 20V
- Output voltage : 3.3V to 32V
- Duty ratio : 0% to 85% PWM control
- Oscillation frequency : 500KHz.
- Enable and Thermal Shutdown function.
- Internal Current limit.
- Built-in N-channel MOSFET
- SOP-8L with Exposed pad Pb-Free package.

BLOCK DIAGRAM


PIN ASSIGNMET

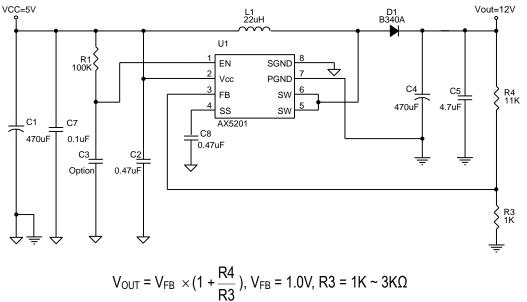
The package of AX5201 is SOP-8L-EP; the pin assignment is given by:

Name	Description				
SGND	Signal Ground pin.				
PGND	Power Ground pin				
EN	Power-off pin H : normal operation(Step-up) L : Step-up operation stopped				
Vcc	IC power supply pin				
FB	Feedback pin				
SW	Switch pin. Connect external inductor and diode here.				
SS	Soft-Start Pin.				

✤ ORDER/MARKING INFORMATION

✤ ABSOLUTE MAXIMUM RATINGS (at T_A=25°C)

Characteristics	Symbol	Rating	Unit
VCC Pin Voltage	Vcc	GND - 0.3 to GND + 22	V
Feedback Pin Voltage	V_{FB}	GND - 0.3 to 6	V
ON/OFF Pin Voltage	V _{EN}	GND - 0.3 to V_{CC}	V
Switch Pin Voltage	Vsw	GND - 0.3 to 34	V
SS Pin Voltage	V _{SS}	GND - 0.3 to 6	V
Power Dissipation	PD	Internally limited	mW
Storage Temperature Range	T _{ST}	-40 to +150	°C
Operating Junction Temperature	T _{OPJ}	-20 to +125	°C
Thermal Resistance from Junction to case	θ」	15	°C/W
Thermal Resistance from Junction to ambient	θ _{JA}	40	°C/W


Note : θ JA is measured with the PCB copper area (connect to exposed pad) of approximately 1 in²(Multi-layer).

✤ ELECTRICAL CHARACTERISTICS

$(V_{CC} = 5V, V_{OUT} = 12V,$	T _A =25°C, unless	s otherwise sr	pecified)
$(\mathbf{v}_{00}, \mathbf{v}_{00}, \mathbf{v}_{00}, \mathbf{v}_{00})$			

Characteristics	Symbol	Conditions		Min	Тур	Max	Units
Operating Supply Voltage	Vcc			3	-	20	V
Output Voltage Range	V _{OUT}			3.3	-	32	V
Feedback Voltage	V_{FB}	Ι _{ΟUT} =0.1Α		0.98	1.00	1.02	V
Feedback Bias Current	I _{FB}	I _{оυт} =0.1А		-	0.1	0.5	uA
Quiescent Current	Iccq	V _{FB} =1.5V force	e driver off	-	4	6	mA
Shutdown Supply Current	I _{SD}	V _{EN} =0V		-	1	10	uA
Oscillation Frequency	Fosc	SW pin		400	500	600	KHz
Line Regulation		V _{CC} =3~0.8*V _C	UT	-	1	-	%
Load Regulation		I _{OUT} =50m∼1A		-	1	-	%
EN Pin Logic input threshold	V _{SH}	High (regulator	· ON)	2.0	-	-	V
voltage	V _{SL}	Low (regulator OFF)		-	-	0.8	v
EN Din Innut Current	I _{SH}	V _{EN} =2.5V (ON)		-	20	-	uA
EN Pin Input Current	I _{SL}	V _{EN} =0.3V (OFF)		-	-1	-	uA
SS pin Current	I _{SS}			-	8	-	uA
Switching Current Limit	I _{LIM-sw}			2.8	3.0	-	А
Internal MOSFET RDSON	R _{DSON}	V _{CC} =5V		-	40	80	
Internal MOSPET RDSON		V _{CC} =12V		-	30	60	mΩ
Efficiency	EFFI	V _{CC} =5V V _{OUT} =12V	I _{OUT} = 0.5A	-	92	-	%
Maximum Duty Cycle	DC _{MAX}	V _{FB} =0V		-	85	-	0/
Minimum Duty Cycle	DC _{MIN}	V _{FB} =1.5V		-	0	-	%
Thermal shutdown Temp	T _{SD}			-	145	-	°C

✤ APPLICATION CIRCUIT

FUNCTION DESCRIPTIONS PWM Control

The AX5201 consists of DC/DC converters that employ a pulse-width modulation (PWM) system. In converters of the AX5201, the pulse width varies in a range from 0 to 85%, according to the load current. The ripple voltage produced by the switching can easily be removed through a filter because the switching frequency remains constant. Therefore, these converters provide a low-ripple power over broad ranges of input voltage and load current.

Setting the Output Voltage

Application circuit item shows the basic application circuit with AX5201 adjustable output version. The external resistor sets the output voltage according to the following equation:

$$\boldsymbol{V}_{OUT} = 1.0 \boldsymbol{V} \times \left(1 + \frac{\boldsymbol{R}4}{\boldsymbol{R}3}\right)$$

4/10

Vout	R3	R4
12V	1K	11K
15V	1.3K	18K
18V	1.3K	22K
24V	1.3K	30K
32V	2.2K	68K

Table 1 Resistor select for output voltage setting

Inductor Selection

For most designs, Low inductance values are physically smaller but require faster switching, which results in some efficiency loss. The inductor value can be derived from the following equation:

$$L = \frac{V_{IN} \times (V_{OUT} - V_{IN})}{V_{OUT} \times \Delta I_{L} \times f_{LX}}$$

Where is inductor Ripple Current. Large value inductors lower ripple current and small value inductors result in high ripple currents. Choose inductor ripple current approximately 15% of the maximum input current 2.4A, $\Delta I_L=0.18A$.

Table 2 Inductor select for output voltage setting (V_{CC}=5V)

Vout	9V	12V	15V	18V
L1 Value	18uH	22uH	25uH	33uH

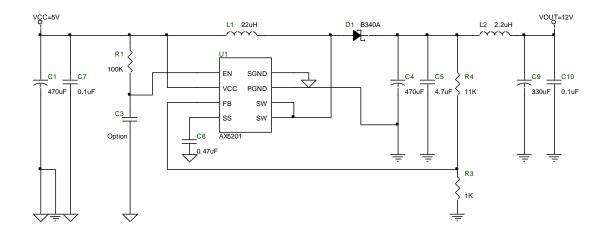
The DC current rating of the inductor should be at least equal to the maximum load current plus half the ripple current to prevent core saturation (2.4A+0.18A).

Input Capacitor Selection

The input capacitor reduces the surge current drawn from the input and switching noise from the device. The input capacitor impedance at the switching frequency shall be less than input source impedance to prevent high frequency switching current passing to the input. A low ESR input capacitor sized for maximum RMS current must be used.

The capacitor voltage rating should be at least 1.5 times greater than the input voltage, and often much higher voltage ratings are needed to satisfy.

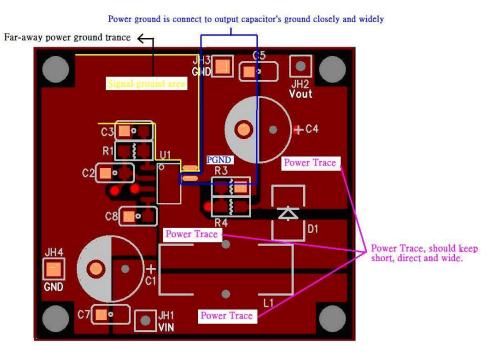
Output Capacitor Selection


The output capacitor is required to keep the output voltage ripple small and to ensure regulation loop stability. The output capacitor must have low impedance at the switching frequency. A low ESR capacitor sized for maximum RMS current must be used. The low ESR requirements needed for low output ripple voltage.

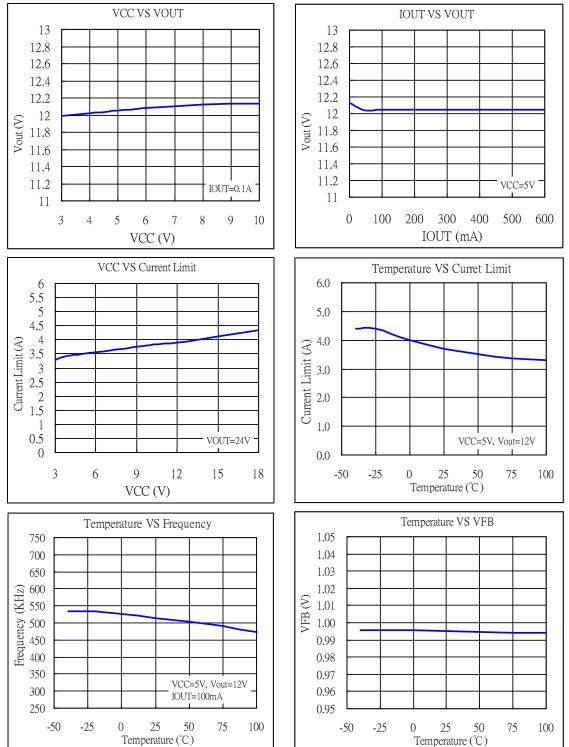
The capacitor voltage rating should be at least 1.5 times greater than the input voltage, and often much higher voltage ratings are needed to satisfy.

Output Voltage Ripple

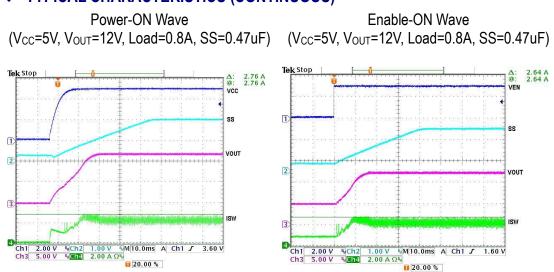
Application circuit item shows the basic application circuit with AX5201. The output voltage ripple (V_{RIPPLE}) very lager at high switch current(I_{SW}=3A, V_{RIPPLE} \Rightarrow 0.7V), external π filters can reduce output voltage ripple.


π filters

Layout Guidance (please refer layout picture)

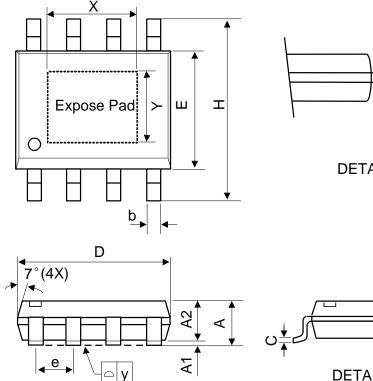

When laying out the PC board, the following suggestions should be taken to ensure proper operation of the AX5201. These items are also illustrated graphically in below.

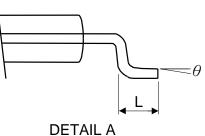
- 1. The power traces, including the Source trace, the Schottky and the C1 trace should be kept short, direct and wide to allow large current flow.
- 2. The power ground is keep C4's ground closed and far away signal ground.
- 3. The signal ground trance is distant from power ground trance.
- 4. The exposed pad is connecting to SW trace closely and widely. (Reduce IC temperature)
- 5. Do not trace signal line under inductor.

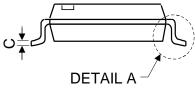


(AX5201 PCB Layout -Top View)

✤ TYPICAL CHARACTERISTICS


AX5201 空瑟萊特科技股份有限公司 AXElite Technology Co.,Ltd




✤ TYPICAL CHARACTERISTICS (CONTINUOUS)

9/10

✤ PACKAGE OUTLINES

Symbol	Dimer	Dimensions in Millimeters			Dimensions in Inches		
Symbol	Min.	Nom.	Max.	Min.	Nom.	Max.	
A	-	-	1.75	-	-	0.069	
A1	0	-	0.15	0	-	0.06	
A2	1.25	-	-	0.049	-	-	
С	0.1	0.2	0.25	0.0075	0.008	0.01	
D	4.7	4.9	5.1	0.185	0.193	0.2	
E	3.7	3.9	4.1	0.146	0.154	0.161	
Н	5.8	6	6.2	0.228	0.236	0.244	
L	0.4	-	1.27	0.015	-	0.05	
b	0.31	0.41	0.51	0.012	0.016	0.02	
е	1.27 BSC			0.050 BSC			
у	-	-	0.1	-	-	0.004	
Х	-	2.34	-	-	0.092	-	
Y	-	2.34	-	-	0.092	-	
θ	0 0	-	8 0	0 0	-	8 0	

Mold flash shall not exceed 0.25mm per side JEDEC outline: MS-012 BA

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Isolated DC/DC Converters category:

Click to view products by Axelite manufacturer:

Other Similar products are found below :

 FMD15.24G
 PSL486-7LR
 Q48T30020-NBB0
 18362
 JAHW100Y1
 SPB05C-12
 SQ24S15033-PS0S
 19-130041
 CE-1003
 CE-1004

 RDS180245
 MAU228
 J80-0041NL
 DFC15U48D15
 XGS-1205
 NCT1000N040R050B
 SPB05B-15
 SPB05C-15
 L-DA20
 DCG40-5G

 QME48T40033-PGB0
 AK1601-9RT
 DPA423R
 VI-R5022-EXWW
 PSC128-7iR
 RPS8-350ATX-XE
 DAS1004812
 PQA30-D24-S24-DH
 vi

 m13-cw-03
 VI-LN2-EW
 VI-PJW01-CZY
 CK2540-9ERT
 AK-1615-7R
 700DNC40-CON-KIT-8G
 350DNC40-CON-KIT-9G
 088-101348-G

 VI-L52-EW
 VI-L53-CV
 PQA30-D48-S12-TH
 VI-L50-IY
 VI-LC63-EV
 AM2D-051212DZ
 24IBX15-50-0ZG
 HZZ01204-G
 SPU02L-09

 SPU02M-09
 SPU02N-09
 UNO-PS/350-900DC/24DC/60W
 QUINT4-BUFFER/24DC/20
 QUINT4-CAP/24DC/5/4KJ