IQS229 Datasheet

Single Channel Capacitive Proximity/Touch Controller for SAR Applications
The IQS229 ProxSense ${ }^{\circledR}$ IC is a self-capacitance controller designed for applications that are required to meet SAR regulations. The IQS229 can also be used to detect a long term presence as a movement detector. The IQS229 operates standalone and can be configured via digital inputs.

Features

- SAR compliance in mobile devices according to the IEC 62209-2 ed1.0 standard and the FCC standard (KDB 616217 - D04 SAR for laptop and tablets v01)
- Failsafe firmware/hardware design
- Automatic Tuning (ATI)
- On-chip movement detection algorithm
- Minimal external components
- Standalone operation
- 25 mm detection distance
- Up to 60pF sensor load
- Internal Capacitor Implementation (ICI) reference capacitor on-chip
- Configuration settings via external pins
- Activation threshold
- Movement filter threshold

Applications

- SAR detection for tablets and mobile phones
- SAR detection for wireless charging stations (operating frequency > 100 MHz)
- SAR detection for USB dongle-type devices
- Reed relay replacement
- White goods and appliances
- Human Interface Devices
- Proximity activated backlighting
- Applications with long-term activation
- Movement detection devices (anti-theft)

- Activation time-out
- Supply voltage: 1.8 V to 3.6 V
- Low power consumption: 30uA (sub 10 uA in sleep mode)
- Low profile DFN10 package (3x3)

Available Packages

T_{A}	DFN10 (3×3)
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	IQS229

Figure 1.1 Flow diagram of the IQS229 user interface

1 Overview

1.1 Device

The IQS229 is a device tailored for longterm proximity or touch activations. It offers two Boolean outputs, one with an activation threshold for large capacitive shifts and the other with a threshold for small movements even during a normal activation.

1.1.1 Normal operation

With a normal activation (hand brought close) the output will become active. The output will de-activate as soon as the action is reversed (hand taken away). In addition a separate movement output will become active when movement is detected according to a movement threshold. Movement may be detected before the normal threshold is crossed. Movement

Figure 1.2 Plot of IQS229 streaming data along with the digital response

ProxSense ${ }^{\circledR}$ Series
detection is done via a completely separate digital filter while improving the efficiency of the sensor output (timer reset on movement).

1.1.2 Long term activation

In a normal activation the output will stay active for as long as movements are detected. A time-out timer (configurable time) will be reset with each movement.

1.1.3 Long term recovery

When changing the sensor capacitive environment, the sensor will adapt to the new environment. If the new environment decreases capacitance (wooden table to air), the sensor will rapidly adapt in order to accept new human activations. If the new environment increases capacitance (like air to steel table), the sensor will remain in activation until a time-out occurs (as seen
time-out with no movement around the sensor.

1.1.4 Fail-safe features

For SAR application the device includes various features to ensure fail-safe operation:

- Active low with pull-down resistor ensures activation with failure (at the cost of leakage current with no activation)
- Hard reset by pulling the movement pin low. This allows for a restart and device status check.
- Characteristic toggle on output pin with power-up and soft reset to check if the IC is functioning.

1.1.5 Integrated features

The device includes an internal voltage

Figure 1.3 Example of a time-out event with re-calibration
in Figure 1.3) or until the device is returned to its previous environment.

When the timer runs out, the output will be de-activated. Re-calibration is possible after de-activation because the timer will only
regulator and reference capacitor $\left(\mathrm{C}_{\mathrm{s}}\right)$.
Various advanced signal processing techniques are combined for creating a robust solution.

ProxSense ${ }^{\circledR}$ Series

These techniques include:

- Movement detection filter (to release an activation in the case of inactivity)
- Advanced noise filtering on incoming sample stream
- Superior methods of parasitic capacitance compensation while preserving sensitivity

1.1.6 Data streaming

A 1-wire data streaming interface is offered for debugging purposes. Streaming mode and stand-alone mode are interchangeable via simple hardware configurations. This is offered because streaming may be useful at various stages of a design.
Streaming mode is offered through a simple pull-up resistor on the standard digital output pin. Standalone mode is enabled through a pull-down resistor on this pin.

1.1.7 Hardware configuration options

Various configuration options are made available through digital input pins. These include:

- the activation threshold,
- inactivity time-out settings
- and movement threshold selection

Special device configurations are only available on special request and can be done by setting one time programmable (OTP) options. These will only be available on special orders, aiming to meet most needs with configuration pins.

1.1.8 Automatic Calibration

Proven Automatic Tuning Implementation (ATI) algorithms are used to calibrate the device to the sense electrode. This algorithm is optimised for applications where a fixed detection distance (in mid-air) is required for failure safe detection.

1.1.9 Capacitive sensing method

The charge transfer method of capacitive sensing is employed on the IQS229. (The charge transfer principle is thoroughly
described in the application note: "AZD004 - Azoteq Capacitive Sensing".)

1.2 Operation

1.2.1 Device Setup

Typical device use allows for very little to no setup before integration. A few characteristics may be fixed via four of the IQS229 pins - each having three possible pin states. This should suffice for most simple and intended applications.
Note: It is important that any pins connected to an MCU are kept high impedance ($\mathrm{Hi}-\mathrm{Z}$) from the MCU side during power-up. This is to ensure correct start-up especially with a high impedance strap resistor on the OUT pin for standalone power-up.

1.2.2 Configuration pin setup

Configuration options are selected by:

- Floating a pin
- pull-up resistor
- pull-down resistor

See section 0 for choosing a specific configuration. For configurations not covered by the configuration pins, custom ICs will be available in bulk orders. Information on custom configurations are available on special request.
At start-up device parameters are read and set according to the configuration pin states. Configuration pins are then changed to digital outputs and are written to the state that was read (for minimising current consumption ${ }^{1}$). Floating pins are written low. After configuration, calibration routines are run which can be run periodically in order to run with optimal sensitivity.

1.2.3 Movement filters

The movement filter runs continually and the dedicated digital output will activate for

[^0]a time depending on the intensity of the movement.

1.2.4 External control

The movement output (optional line to connect to master device) can be used to signal a "reseed" ($\mathrm{t}_{\text {reseed }}$) or "sleep mode" ($t_{\text {sleep }}$). A short pulse will force the reference counts (long-term average) to match the actual counts (capacitance of sensor). By writing the pin low for a longer time, will force the IC into sleep mode for low current consumption ($2 \mathrm{uA}+$ required pull-up on movement pin). When sleep mode is entered, the IQS229 will reset upon wakeup.
In sleep mode the output pin is written low in order to minimise current consumption.

1.2.5 Low power options

As mentioned in the section above, a charge halt will initiate the sleep mode. The device will reset and return to normal power as soon as the line is released.

1.3 Applicability

All specifications, except where specifically mentioned otherwise, provided by this datasheet are applicable to the following ranges:
Temperature:-40C to +85 C
Supply voltage ($\mathrm{V}_{\text {DDHII }}$): 1.8 V to 3.6 V

1.4 Passing the SAR qualification testing with the IQS229

For design information on passing the SAR qualification testing with Azoteq movement based sensors, please see the application note: "AZD073 SAR qualification with Azoteq movement-based sensors"

2 Packaging and Pin-Out

The IQS229 is available in a DFN10 (3×3) package.

Figure 2.1 IQS229 pin-out (DFN10 package)
Table 2.1 Pin-out description

IQS229 in DFN10			
Pin	Name	Type	Function
1	TIMER	Digital Input	"No movement" timeout period selection
2	VSS	Signal GND	
3	CRX0	Sense electrode	Connect to conductive area intended for sensor
4	VDDHI	Supply Input	Supply:1.8V - 3.6V
5	VREG	Regulator output	Requires external capacitor
6	THR1	Digital Input	Threshold1 selection (fine)
7	MOV_THR / OTP_FUSEBURN / TX	Digital Input	Movement Threshold selection / Connect to configuration device for changing OTP options Projected capacitance option TX electrode
8	THR0	Digital Input	Threshold0 selection (coarse)
9	OUT / SDA	Digital Output/Input	Activation output (active low) / 1-wire Data / Input at power-up to determine standalone or streaming $I^{2} \mathrm{C}$ data pin for configuration and I²C debug mode
10	MOV_OUT / SCL	Digital Output/Input	Movement output (active low) / Input for reseed and charge halt I2C clock pin for configuration and I²C debug mode

3 Reference Design

Figure 3.1 Reference schematic

4 Configuration Options

4.1 Activation Threshold

The threshold adjustment is offered through two configuration pins.
THRO is a first level of threshold adjustment. THR1 is a second level for refining the threshold. See Table 4.1 for details on choosing the threshold

Table 4.1 Threshold adjustment guide

L = LOGIC LOW, H= LOGIC HIGH, F = FLOAT								
THRO (pin 8)								
L	L	L	F	F	F	H	H	H
THR1 (pin 6)								
L	F	H	L	F	H	L	F	H
Corresponding Threshold Level								
0	1	2	3	4	5	6	7	8
Entry Threshold Ratio								
$\begin{aligned} & 1 / \\ & 512 \end{aligned}$	$\begin{aligned} & 2 / \\ & 512 \end{aligned}$	$\begin{aligned} & 41 \\ & 512 \end{aligned}$	$\begin{aligned} & 6 / \\ & 512 \end{aligned}$	$\begin{aligned} & 101 \\ & 512 \end{aligned}$	$\begin{aligned} & 14 / \\ & 512 \end{aligned}$	$\begin{aligned} & 18 / \\ & 512 \end{aligned}$	$\begin{aligned} & 24 / \\ & 512 \end{aligned}$	$\begin{array}{\|l} 321 \\ 512 \end{array}$

Corresponding Entry Threshold Counts ${ }^{\text {i }}$

3^{ii}	4	9	14	23	32	42	56	74

> Corresponding Release Threshold Counts (counts from reference)

3	3	7	11	18	24	32	42	56	
<More sensitive					Less sensitive				

It is important to note that most sensitive settings are heavily dependent on design factors influencing SNR. These may be in order where fail-safe activations are required, but is not recommended for activation critical applications.

[^1]
4.2 Timer Settings

Large environmental shifts (capacitance increases or decreases) are regarded as activations. Such conditions are intelligently cleared via the movement filter and timer. The timer would reset with each detected movement. If no movement is detected for the duration of the timer, the activation will be cleared. A few options exist for the duration of this timer.

Timer options are a summarized in the table below:

TIMER (pin 1)	Time-out
Low	60 sec
Float	3 min
High	10 min

For custom timers the IQS229 makes it possible to distinguish between a threshold release and a no-movement release. The master device may then override the IQS229 output until the custom master timer has expired.

Figure 4.1 Normal release with threshold crossing (top), time-out release after nomovement condition (bottom)

4.4 Human movement filter threshold

The MOV_THR pin offers adjustment of the threshold used to determine if a movement event should be triggered. From a default setting (pin FLOATING), the threshold can be increased or decreased by a percentage of the capacitive sensor operating point (long-term average).

MOV_THR (pin 7)	Movement Threshold
Low	More sensitive
Float	Default
High	Less sensitive

5 Design Considerations

5.1 Power Supply and PCB Layout

Azoteq IC's provide a high level of on-chip hardware and software noise filtering and ESD protection (refer to application note "AZD013 - ESD Overview"). Designing PCB's with better noise immunity against EMI, FTB and ESD in mind, it is always advisable to keep the critical noise suppression components like the de-coupling capacitors and series resistors in Figure 3.1. as close as possible to the IC. Always maintain a good ground connection and ground pour underneath the IC. For more guidelines please refer to the relevant application notes as mentioned in the next section.

5.3 High Sensitivity

Through patented design and advanced signal processing, the device is able to provide extremely high sensitivity to detect proximity. This enables designs to detect proximity at distances that cannot be equaled by most other products. When the device is used in environments where high levels of noise or floating metal objects exist, a reduced proximity threshold is proposed to ensure reliable functioning of the sensor. The high sensitivity also allows the device to sense through overlay materials with low dielectric constants, such as wood or porous plastics.
For more guidelines on the layout of capacitive sense electrodes, please refer to application note "AZD008 - Design Guidelines for Touch Pads", available on the Azoteq web page: www.azoteq.com.

5.2 Design Rules for Harsh EMC Environments

Applicable application notes: AZD013, AZD015, AZD051, and AZD052.

6 1-Wire data streaming mode

The IQS229 has the capability to stream data over the OUT pin to a master controller or debugging device. This provides the designer with the capability to obtain the parameters within the device in order to aid design into applications. Data streaming is performed as a 1 -wire data protocol on the OUT pin. The function of this pin is therefore lost when the device is placed in streaming mode. The function of the MOV_OUT pin remains. The MOV_OUT pin may now be used to only read streaming data when movements occur. This enables 1 -wire data processing only on the occurrence of movement events.

Data streaming can be enabled as shown in Figure 3.1 by simply placing a strong pull-up resistor on the OUT pin $(4.7 \mathrm{k} \Omega$ is recommended). Debugging and qualification during production may be done by simply probing the output pin with a strong pull-up while the weaker pull-down $(1 \mathrm{M} \Omega)$ is placed on
the PCB. This will put the standalone module in 1-wire streaming mode.
Data streaming is initiated by the IQS229. When data streaming is enabled data is sent following each charge cycle.

Figure 6.1 Illustrates the communication protocol for initialising and sending data with the 1 wire communication protocol.

1. Communication is initiated by a START bit. Bit defined as a low condition for $\mathrm{t}_{\text {start }}$.
2. Following the START bit, is a synchronisation byte ($\mathrm{T}_{\text {INIT }}=0 x A A$). This byte is used by the MCU for clock synchronisation.
3. Following $\mathrm{T}_{\text {INIT }}$ the data bytes will be sent. 20 bytes will be sent after each charge cycle.
4. Each byte sent will be preceded by a START bit and a STOP bit will follow every byte.
5. STOP bit indicated by taking pin 1 high. The STOP bit does not have a defined period.

Figure 6.1 1-wire data streaming mode

The following table defines the data streamed Azoteq provides a graphic user interface to from the IQS229 device during streaming evaluate the user interface and debug current mode.

Table 6.1 Byte definitions for 1 -wire streaming mode

Byte	Bit	Value
$\mathbf{0}$	$\mathbf{7 : 0}$	System Flags
	7	Activation
	6	Movement
	5	Timer Active
	4	Filter Halt
	3	Is channel 0
	2	ATI tuning busy
	1	Noise detected
Zoom		
1	0	$15: 8$
2	$23: 16$	CH0 CS High byte
3	$31: 24$	CH0 CS Low byte High byte
4	$39: 32$	CH0 LTA Low byte
5	$47: 40$	CH1 CS High byte
6	$55: 48$	CH1 CS Low byte
7	$63: 56$	CH1 LTA High byte
8	$71: 64$	CH1 LTA Low byte
9	$79: 72$	Movement Filter
10	$87: 80$	Movement Filter
11	$95: 88$	Entry threshold high byte
12	$103: 96$	Entry threshold low byte
13	$111: 104$	Exit threshold high byte
14	$119: 112$	Exit threshold low byte
$\mathbf{1 5}$	$\mathbf{1 2 7 : 1 2 0}$	Strap configuration Activation threshold Timer setting $127: 124$
$123: 122$	$121: 220$	Movement threshold
16	$135: 128$	Multiplier channel 0
17	$143: 136$	Multiplier channel 1
18	$151: 144$	Parasitic capacitance compensation (PCC) channel 0
19	$159: 152$	Parasitic capacitance compensation (PCC) channel 1

Sample code available: "AZD017-IQS127 1Wire Protocol SAMPLE CODE" This code represents the same protocol and only needs to be adapted for the longer data stream.

7 Typical Application

7.1 Minimizing Resistor straps

Component count is an important factor for applications with limited space and cost constraints. This section addresses this with a slightly more complex configuration than the standard reference design. This configuration should lead the designer to a safe minimal component design.

Figure 7.1 IQS229 configuration pin options
Table 7.1 Table of constraints for resistor strap optimization

Resistor strap state	Applicable pins	Output state after start-up	Resistor value	Current consumption	Combination strap
Pull down	All input pins	Written low when pulled low	$1 \mathrm{k} \Omega \leq R \leq 2 \mathrm{M} \Omega$	Only at power-on	Yes, all pins
Pull up	THR0 and TIMER	Written low when pulled high	$1 \mathrm{M} \Omega \leq \mathrm{R} \leq 2 \mathrm{M} \Omega$	Continuous	Applicable pins may be combined
Pull up	THR1 and MOV_THR	Written high when pulled high	$1 \mathrm{k} \Omega \leq \mathrm{R} \leq 2 \mathrm{M} \Omega$	Only at power-on	Applicable pins may be combined

Figure 7.2 shows the reference design for a minimal resistor layout. With a fixed design, a minimum of 0 strap resistors and maximum of 3 strap resistors are expected.

Figure 7.2 Minimal resistor strap configuration

8 Specifications

8.1 Absolute maximum ratings

The following absolute maximum parameters are specified for the device:
Exceeding these maximum specifications may cause damage to the device.

- Operating temperature
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Supply Voltage (VDDHI - VSS)
- Maximum pin voltage
- Maximum continuous current (for specific Pins)
- Minimum pin voltage
- Minimum power-on slope
- ESD protection
- Package Moisture Sensitivity Level (MSL)
3.6 V

VDDHI +0.5 V (may not exceed VDDHI max)
10 mA
VSS - 0.5V
100V/s
$\pm 8 \mathrm{kV}$ (Human body model)
1

Table 8.1 IQS229 General Operating Conditions ${ }^{1}$

DESCRIPTION	Conditions	PARAMETER	MIN	TYP	MAX	UNIT
Supply voltage		$\mathrm{V}_{\text {DDHI }}$	1.8	3.3 V	3.6	V
Internal regulator output	$1.8 \leq \mathrm{V}_{\text {DDHI }} \leq 3.6$	$\mathrm{~V}_{\text {REG }}$	1.62	1.7	1.79	V
Default Operating Current	3.3 V	$\mathrm{I}_{\text {IQS229NP }}$	-	100		$\mu \mathrm{~A}$
Low Power Setting 1*	$3.3 \mathrm{~V}, \mathrm{LP}=32$	$\mathrm{I}_{\text {IQS229LP32 }}$	-	<40		$\mu \mathrm{~A}$
Low Power Setting 2*	$3.3 \mathrm{~V}, \mathrm{LP}=64$	$\mathrm{I}_{\text {IQS229LP64 }}$	-	<20		$\mu \mathrm{~A}$
Low Power Setting 3*	$3.3 \mathrm{~V}, \mathrm{LP}=256$	$\mathrm{I}_{\text {IQS229LP256 }}$	7 $(1.8 \mathrm{~V})$	10 $(3.3 \mathrm{~V})$	12 $(3.6 \mathrm{~V})$	$\mu \mathrm{A}$

*LP interval period $=$ Low power value (LP) $\times 1 \mathrm{~ms}$
Table 8.2 Start-up and shut-down slope Characteristics

DESCRIPTION	Conditions	PARAMETER	MIN	MAX	UNIT
Power On Reset	$V_{\text {DDHI }}$ Slope $\geq 100 \mathrm{~V} / \mathrm{s}$ $@ 25^{\circ} \mathrm{C}$	POR		1.6	V
Brown Out Detect	$\mathrm{V}_{\text {DDH }}$ Slope @ $25^{\circ} \mathrm{C}$	BOD	$1.05 \mathrm{~V} / \mathrm{s}$		V

[^2]Table 8.3 Digital input trigger levels

DESCRIPTION	Conditions	PARAMETER	MIN	TYPICAL	MAX	UNIT
MOV_OUTpin OUT pin	VDD $=3.3 \mathrm{~V}$	Input low level voltage	1.19	1.3	1.3	V
THRO pin THR1 pin MOV_THR pin TIMER pin	VDD $=3.3 \mathrm{~V}$	Input low level voltage	0.73	0.9	1.55	V
All digital inputs	VDD $=1.8 \mathrm{~V}$	Input low level voltage	0.54	0.6	0.76	V
All digital inputs	VDD $=1.8 \mathrm{~V}$	Input high level voltage	0.9	1.0	1.2	V
All digital inputs	VDD $=3.3 \mathrm{~V}$	Input high level voltage	1.90	2.1	2.20	V

Table 8.4 Digital output levels

DESCRIPTION	Conditions	PARAMETER	$@ 1 m A$	$@ 10 \mathrm{~mA}$	UNIT
Output voltage low	$\mathrm{VDDHI}=3.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}$	0.01	0.1	V
Output voltage high	$\mathrm{VDDHI}=3.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}$	$\mathrm{VDDHI}-0.02$	$\mathrm{VDDHI}-0.2$	V

Table 8.5 MOV_OUT pin input signal characteristic

DESCRIPTION	Conditions	PARAMETER	MIN	MAX	UNIT
Input signal for reseed instruction	MOV_OUT pin low	$\mathrm{t}_{\text {reseed }}$	20	40	ms
Input signal for sleep instruction	MOV_OUT pin low	$\mathrm{t}_{\text {sleep }}$	80	-	ms

9 Package information

Table 9.1 DFN-10 Package dimensions (bottom)

Dimension	$[\mathrm{mm}]$
A	3 ± 0.1
B	0.5
C	0.25
D	n / a
F	3 ± 0.1
L	0.4
P	2.4
Q	1.65

Figure 9.1 DFN-10 Package dimensions (bottom view)

Figure 9.2 DFN-10 Package dimensions (side)

Figure 9.3 DFN-10 Landing dimensions

10 Ordering and Part-number Information

10.1 Ordering Information

Please check stock availability with your local distributor.

CONFIGURATION	zzz zzz zz	=	IC configuration (hexadecimal)
			Default 00000000 (other configurations available on special request)
PACKAGE TYPE	DN	=	DFN(3x3)-10
BULK PACKAGING	R	=	Reel (3000pcs/reel) - MOQ = 3000pcs
			MOQ = 1 reel (orders shipped as full reels)

10.2 Device Numbering Convention

REVISION	x	$=$	IC Revision Number
TEMPERATURE RANGE	t	$=$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (Industrial)
DATE CODE	P	$=$	Internal use
	WWYY $=$	Batch number	

Revision History

Revision Number	Description	Date of issue
V0.9	Draft revision	22 August 2013
V0.9.1	Pre-Release	1 October 2013
V1.0	Release	7 October 2013
V1.1	Update: Known issue and workaround added to section 1.2.2. Current consumption figures updated.	21 November 2013
V1.2	Digital input trigger level data added	3 February 2014
V1.3	Figure 9.1 corrected - top view changed to bottom view Movement figures Figure 1.2 and Figure 1.3 updated to show the practical case	22 May 2014
V1.4	Package MSL rating updated Section on minimizing resistor straps added. Figure 1.2 and Figure 1.3 updated to be more intuitive	30 May 2014
V1.5	Table 4.1 updated to show related counts for activation and release. Figure 9.3 updated to show correct relation to package outline	14 Jul 2014
V1.7	Document contact information updated Extended datasheet created from v1.6 of standard datasheet Section 2 updated to show pin-out information for IC debug mode and programming	4 Aug 2014
V1.6	Last page contact \& patent information updated Reseed/Sleep instruction timing specified	10 Apr 2015
Digital output voltage levels added	8 March 2016	
Updated Electrical Specifications	15 October 2015	
	V1.8	

Appendix A OTP Options

The IQS229 offers various user selectable options. Most common user options have been directed as external configuration pins.
Configuration of the OTP settings can be done on packaged devices or in-circuit. In-circuit configuration may be limited by values of external components chosen.

Azoteq offers a Configuration Tool (CT210 or later) and associated software that can be used to program the OTP user options for prototyping purposes. For further information regarding this subject, please contact your local distributor or submit enquiries to Azoteq at: ProxSenseSupport@azoteq.com

A. 1 User Selectable OTP options

User Selectable OTP options : Bank0

bit7	Bank 0					bit0	
Activation Output Polarity	Target Counts	Charge Transfer Frequency	Activation Threshold Range	Debounce1	Debounce0	Filter Halt1	Filter Halt0

Bank0: bit 7	Activation Output Polarity
	$\begin{aligned} & 0=\text { Active Low (SAR Failsafe) } \\ & 1=\text { Active High } \end{aligned}$
Bank0: bit 6	Target Counts (Number of samples per measurement cycle)
	$\begin{aligned} & 0=1200 \\ & 1=768 \end{aligned}$
Bank0: bit 5	Charge Transfer Frequency
	$\begin{aligned} & 0=512 \mathrm{kHz} \\ & 1=250 \mathrm{kHz} \end{aligned}$
Bank0: bit 4	Activation Threshold Range (range for external strap options)
	$\begin{aligned} & 0=\text { Sensitive } \\ & \quad \text { (externally selectable: } 1 / 512,2,4,6,10,14,18,24,32 / 512 \text {) } \\ & 1 \text { = Less sensitive } \\ & \quad \text { (externally selectable: } 24 / 512,32,4048,56,64,80,96,128 / 512 \text {) } \end{aligned}$
Bank0: bit 3:2	Activation Debounce
	$\begin{aligned} & 00=2 \\ & 01=0 \\ & 10=4 \\ & 11=8 \end{aligned}$
Bank0: bit 1:0	Filter Halt Threshold
	$\begin{aligned} & 00=2 \\ & 01=4 \\ & 10=6 \\ & 11=10 \end{aligned}$ *Prevent the filter from following a slow activation by selecting a small value

ProxSense ${ }^{\circledR}$ Series

User Selectable OTP options : Bank1

bit7	Bank 1						bit0
Low power mode1	Low power mode0	Re-ATI out of bounds	Short Timer Definition	Movement Reaction Speed	Streaming 1-wire $/$ $I^{2} C$	Base Value1	Base Value0

Bank1: bit 7:6	Low-Power Sleep mode
	$\begin{aligned} & 00=32 \mathrm{~ms} \text { (30uA mode) } \\ & 01=\text { Normal Power (100uA mode) } \\ & 10=64 \mathrm{~ms} \text { (18uA mode) } \\ & 11=256 \mathrm{~ms} \text { (} 6 \mathrm{uA} \text { mode) } \end{aligned}$ *Low power sleep mode of the IQS229 was designed to give constant power consumption regardless of being in or out of activation. Therefore sleep periods remain constant between capacitive sensing conversions.
Bank1: bit 5	Re-ATI when activated out of bounds
	$\begin{aligned} & 0=\text { No } \\ & 1=\text { Yes } \end{aligned}$
Bank1: bit 4	Short timer definition
	$0=0.5 \mathrm{~s}$ release delay (only when short timer is 0 s) $1=0$ s release delay (overrides all short timers of Bank2Bits3:2)
Bank1: bit 3	Movement Reaction Speed
	$\begin{aligned} & 0=\text { Fast }(B=16) \\ & 1=\text { Slow }(B=64) \end{aligned}$
Bank1: bit 2	Streaming (enabled with pull-up on OUT pin)
	$\begin{aligned} & 0=1-\text { wire } \\ & 1=I^{2} C \end{aligned}$
Bank0: bit 1:0	Base Value Range (from light capacitive loads to heavier loads)
	$\begin{aligned} & 00=225,200,175,150 \\ & 01=250,225,200,175 \\ & 10=300,250,200,150 \\ & 11=350,325,300,275 \end{aligned}$ *Constant base values tend to give a reduced sensitivity with an increasing capacitive load. By varying the base value for the four main capacitive load regions ($\mathrm{N}=0,1,2,3$) the sensor is designed with different adaptive base value sets in order to keep sensitivity high. Smaller base values lead to a more sensitive result.

User Selectable OTP options: Bank2

bit7	Bank 2						bit0
Noise Detection	cs capacitor	Release Threshold	Sensing Technology	No movement timer1	No movement timer0	Start-up Activation	Movement Threshold

Bank2: bit 7	Noise detection
	$\begin{aligned} & 0=\text { Disable } \\ & 1=\text { Enable (RF noise detection on Pin 8: THRO }- \text {) } \end{aligned}$
Bank2: bit 6	Internal Base Capacitor (CS)
	$\begin{aligned} & 0=\text { Large } \\ & 1=\text { Small } \end{aligned}$
Bank2: bit 5	System Use
Bank2: bit 4	Sensing Technology
	$0=$ Self Capacitance 1 = Projected Capacitance (Pin 7: MOV_THR becomes TX, no movement threshold options - movement threshold remains default depending on Bank2: bit 0)
Bank2: bit 3:2	No-movement timer (external strap selection)
	$00=$ SAR specific: 60sec, $\mathbf{3 m i n}$, 10min (short: 0sec, 0sec, 0sec) 01 = SAR specific (extra): 60sec, $\mathbf{3 m i n}$, 10min (short: $10 \mathrm{sec}, 10 \mathrm{sec}, 10 \mathrm{sec}$) 10 = Long range: $\mathbf{2 m i n}$, $\mathbf{5 m i n}$, never timeout (short: 30sec, 30sec, 60sec) 11 = Short range: 15sec, 15sec, 30sec (short: 0sec, 3sec, 10sec) "short" timers start when a release is made. The output remains active until no movement is detected for the period of the short timer. This is an enhanced safety feature for safety critical applications. Short timers can also be used for applications to keep the load active for a few seconds after deactivation. NOTE: Be sure to disable the short timer in Bank1:bit4 for SAR applications when non-default settings are selected.
Bank2: bit 1	Start-up Activation (auto-activation at power-on/reset)
	$\begin{aligned} & 0=\text { Disabled } \\ & 1 \text { = Enabled (long timer }- \text { for safety critical applications) } \end{aligned}$
Bank2: bit 0	Movement Threshold (\% of LTA)
	$0=$ External strap selection: $1 / 256,3 / 256,5 / 256$ 1 = External strap selection: 3/256, 5/256, 10/256 note: with this bit set, the release threshold changes from default 75% to 100%

User Selectable OTP options: Bank3

bit7	Bank 3						bit0
System use	System use	System use	System use	Blocking Channel1	Blocking Channel0	Activation Direction1	Activation Direction0

Bank3: bit7	System Use
Bank3: bit6	System Use
Bank3: bit5	System Use
Bank3: bit4	System Use
Bank3: bit 3:2	$00=$ Disabled $10=$ Threshold 32 $11=$ Threshold16
Bank3: bit 1:0	Activation threshold direction 64
	$00=$ Normal (SELF: capacitance increase, PROJ: capacitance decrease) $01=$ Reversed (SELF: capacitance decrease, PROJ: capacitance increase) $10=$ Dual direction (Activation for capacitance increase or decrease) $11=$ Dual direction

	USA	Asia	South Africa
Physical Address	11940 Jollyville Suite 120-S Austin TX 78750 USA	Room 501A, Block A, T-Share International Centre, Taoyuan Road, Nanshan District, Shenzhen, Guangdong, PRC	1 Bergsig Avenue Paarl 7646 South Africa
Postal Address	11940 Jollyville Suite 120-S Austin TX 78750 USA	Room 501A, Block A, T-Share International Centre, Taoyuan Road, Nanshan District, Shenzhen, Guangdong, PRC	PO Box 3534 Paarl 7620 South Africa
Tel	+15125381995	$\begin{gathered} +8675583035294 \\ \text { ext } 808 \end{gathered}$	+27 218630033
Email	info@azoteq.com	info@azoteq.com	info@azoteq.com

iqs229_datasheet www.azoteq.com

for a list of distributors and worldwide representation.

Patents as listed on www.azoteq.com/patents-trademarks/ may relate to the device or usage of the device.

Azoteq ${ }^{\circledR}$, Crystal Driver ${ }^{\boxtimes}$, IQ Switch ${ }^{\circledR}$, ProxSense ${ }^{\circledR}$, ProxFusion ${ }^{\circledR}$, LightSense ${ }^{T M}$, SwipeSwitch ${ }^{\text {TM }}$, and the logo are trademarks of Azoteq.

The information in this Datasheet is believed to be accurate at the time of publication. Azoteq uses reasonable effort to maintain the information up-to-date and accurate, but does not warrant the accuracy, completeness or reliability of the information contained herein. All content and information are provided on an "as is" basis only, without any representations or warranties, express or implied, of any kind, including representations about the suitability of these products or information for any purpose. Azoteq disclaims all warranties and conditions with regard to these products and information, including but not limited to all implied warranties and conditions of merchantability, fitness for a particular purpose, title and non-infringement of any third party intellectual property rights. Azoteq assumes no liability for any damages or injury arising from any use of the information or the product or caused by, without limitation, failure of performance, error, omission, interruption, defect, delay in operation or transmission, even if Azoteq has been advised of the possibility of such damages. The applications mentioned herein are used solely for the purpose of illustration and Azoteq makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Azoteq products are not authorized for use as critical components in life support devices or systems. No licenses to patents are granted, implicitly, express or implied, by estoppel or otherwise, under any intellectual property rights. In the event that any of the abovementioned limitations or exclusions does not apply, it is agreed that Azoteq's total liability for all losses, damages and causes of action (in contract, tort (including without limitation, negligence) or otherwise) will not exceed the amount already paid by the customer for the products. Azoteq reserves the right to alter its products, to make corrections, deletions, modifications, enhancements, improvements and other changes to the content and information, its products, programs and services at any time or to move or discontinue any contents, products, programs or services without prior notification. For the most up-to-date information and binding Terms and Conditions please refer to www.azoteq.com.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Capacitive Touch Sensors category:
Click to view products by Azoteq manufacturer:
Other Similar products are found below :
FK 8-1 SMBTASK3KIT6 LC717A30UR-NH CR12CN04DPO-E2 CR30SCF10ATO CR30SCF10DPO BCS M30BBI2-PSC15D-S04K FDC1004DGSR FDC1004DGST CDWM3020ZPM MTCH6301-I/ML AT42QT1011-TSHR BCS M12B4G2-PSC40D-S04K BCS M12B4I1-PSC40D-EP02 CFAK 12P1103 CFAK 12P1140/L CFAK 18P1100 CFAK 18P1200 CFAK 30P1100 CFAM 12P1600 CFAM 18P1600 CFAM 30P1600 CR12CN04DNC KN056050 KN086050 KN186050 KV750450 KV750455 17-9291-226 98-0003-3048-4 CR12CN04DNO-E2 PROXISWITCH CR12CN04DPO BCS M12BBG1-PSC80H-EP02 BCS M30B4I1-PSC15D-EP02 BCS M18B4G2-PSC15H-S04K CR18CF05DPO-E2 CM30-25NNP-EW1 CM30-16BPP-EW1 CM30-16BNP-EW1 CM18-12NPP-EW1 CM18-12NPP-EC1 CM18-12NNP-EW1 CM18-12NNP-EC1 CM18-08BPP-EW1 CM18-08BNP-EW1 CM30-25NNP-EC1 BCS M30B4E1-PSC25H-EP02 CDWM3020ZRPM BCS M18B4N1-PSC80D-EP02

[^0]: ${ }^{1}$ Known issue \& workaround: The THRO and TIMER pin are written low when pulled high. Use a $1 \mathrm{M} \Omega$ on these pins to limit current consumption.

[^1]: ${ }^{\text {i }}$ Assuming a target of 1200 counts, threshold may be more for a larger amount, and less for a smaller amount (usually by only 1 count)
 ${ }^{i i}$ Threshold calculations limit any threshold value to always be larger than 2 counts

[^2]: ${ }^{1}$ Operating current shown in this datasheet does include power dissipation through the recommended $1 \mathrm{M} \Omega$ strapping resistor on the OUT pin for failsafe modes.

