

Aluminum electrolytic capacitors

Series/Type: B41866

The following products presented in this data sheet are being withdrawn.

Ordering Code	Substitute Product		Deadline Last Orders	Last Shipments
B41866G8687M000		2018-06-22	2018-09-30	2018-12-31
B41866C5228M000		2018-06-22	2018-09-30	2018-12-31

For further information please contact your nearest EPCOS sales office, which will also support you in selecting a suitable substitute. The addresses of our worldwide sales network are presented at www.epcos.com/sales.

Single-ended capacitors

B41866

High ripple current - 125 °C

Long-life grade capacitors

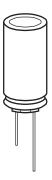
Applications

Automotive electronics

Features

- High reliability and long useful life
- High ripple current capability
- Wide temperature range up to 125 °C
- RoHS-compatible

Construction


- Charge-discharge proof, polar
- Aluminum case with insulating sleeve
- Minus pole marking on the insulating sleeve
- Case with safety vent

Delivery mode

Terminal configurations and packing:

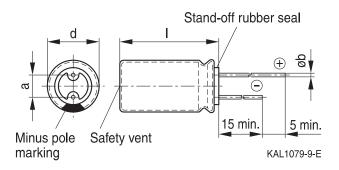
- Bulk
- Taped, Ammo pack
- Cut
- Kinked
- PAPR (Protection Against Polarity Reversal): crimped leads, J leads, bent leads

Refer to chapter "Single-ended capacitors — Taping, packing and lead configurations" for further details.

Specifications and characteristics in brief

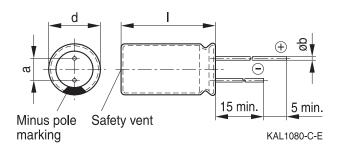
$ \begin{array}{c} \text{Rated voltage $V_{\rm S}$} & 10 \dots 75 \text{ V DC} \\ \text{Surge voltage $V_{\rm S}$} & 1.15 \cdot V_{\rm R} & (1.1 \cdot V_{\rm R} \text{for } 75 \text{V DC}) \\ \text{Rated capacitance $C_{\rm R}$} & 47 \dots 10000 \mu\text{F} \\ \text{Lapacitance tolerance} & 20\% \Delta \text{M} \\ \\ \text{Dissipation factor tan δ} & \text{For capacitance higher than } 1000 \mu\text{F} \text{add } 0.02 \text{for every increase of } 1000 \mu\text{F}. \\ \hline V_{\rm R}(\text{V DC}) & 10 & 16 \dots 25 & 35 & 50 & 63 & 75 \\ \text{tan δ} (\text{max.}) & 0.20 & 0.17 & 0.12 & 0.10 & 0.12 & 0.12 \\ \text{Leakage current I_{leak}} & 0.01 \mu\text{A} \cdot \left(\frac{C_{\rm R}}{C_{\rm R}} \cdot \frac{V_{\rm R}}{V_{\rm V}}\right) \\ \text{or 3 μA, whichever is greater} \\ \hline \text{Self-inductance ESL} & Diameter (mm) & 8 \dots 12.5 & 16 & 18 \\ \hline \text{ESL } (\text{H}) & 20 & 26 & 34 \\ \hline \text{Useful life}^{19} & 2000 \text{h for \emptyset} = 8 \text{mm and } V_{\rm R} \leq 63 \text{V} \\ \text{> 3000 h for \emptyset} \approx 10 \text{mm and } V_{\rm R} \leq 63 \text{V} \\ \text{> 3000 h for \emptyset} \approx 12.5 \text{mm and } V_{\rm R} \leq 63 \text{V} \\ \text{> 3000 h for \emptyset} \approx 212.5 \text{mm and } V_{\rm R} \leq 63 \text{V} \\ \text{> 3000 h for \emptyset} \approx 212.5 \text{mm and } V_{\rm R} \leq 63 \text{V} \\ \text{> 3000 h for \emptyset} \approx 3 \text{times initial specified limit} \\ \hline \text{Voltage endurance test} & 2000 \text{h for \emptyset} \approx 10 \text{mm and } V_{\rm R} \leq 63 \text{V} \\ \text{3000 h for \emptyset} \approx 212.5 \text{mm and } V_{\rm R} \leq 63 \text{V} \\ \text{3000 h for \emptyset} \approx 212.5 \text{mm and } V_{\rm R} \leq 63 \text{V} \\ \text{3000 h for \emptyset} \approx 212.5 \text{mm and } V_{\rm R} \leq 63 \text{V} \\ \text{3000 h for \emptyset} \approx 212.5 \text{mm and } V_{\rm R} \leq 63 \text{V} \\ \text{3000 h for \emptyset} \approx 212.5 \text{mm and } V_{\rm R} \leq 63 \text{V} \\ \text{3000 h for \emptyset} \approx 212.5 \text{mm and } V_{\rm R} \leq 63 \text{V} \\ \text{3000 h for \emptyset} \approx 212.5 \text{mm and } V_{\rm R} \leq 63 \text{V} \\ \text{3000 h for \emptyset} \approx 210 \text{mm and } V_{\rm R} \leq 63 \text{V} \\ \text{3000 h for \emptyset} \approx 210 \text{mm and } V_{\rm R} \leq 63 \text{V} \\ \text{3000 h for \emptyset} \approx 210 \text{mm and } V_{\rm R} \leq 63 \text{V} \\ \text{3000 h for \emptyset} \approx 210 \text{mm and } V_{\rm R} \leq 63 \text{V} \\ \text{3000 h for \emptyset} \approx 210 \text{mm and } V_{\rm R} \leq 63 \text{V} \\ \text{3000 h for \emptyset} \approx 210 \text{mm and } V_{\rm R} \leq 63 \text{V} \\ \text{3000 h for \emptyset} \approx 210 \text{mm and } V_{\rm$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rated voltage V _R	10 75 V DC										
$ \begin{array}{c} \text{Capacitance tolerance} & \pm 20\% \triangleq M \\ \\ \text{Dissipation factor tan δ} \\ \text{(20 °C, 120 Hz)} & \text{For capacitance higher than } 1000 \mu\text{F} \text{ add } 0.02 \text{ for every increase of } 1000 \mu\text{F}. \\ \hline & V_R(V \text{DC}) & 10 & 16 \dots 25 & 35 & 50 & 63 & 75 \\ \hline & \tan \delta \left(\text{max.}\right) & 0.20 & 0.17 & 0.12 & 0.10 & 0.12 & 0.12 \\ \hline & \text{Leakage current I_{leak}} \\ \text{(20 °C, 5 min)} & I_{\text{leak}} & = 0.01 \mu\text{A} \cdot \frac{C_R}{\mu\text{F}} \cdot \frac{V_R}{V} \\ \text{or 3 $\mu\text{A, whichever is greater} \\ \hline \\ \text{Self-inductance ESL} & Diameter (mm) & 8 \dots 12.5 & 16 & 18 \\ \hline & \text{ESL (nH)} & 20 & 26 & 34 \\ \hline \\ \text{Useful life"} \\ 125 ^{\circ}\text{C; V_{Ri}$ $I_{\text{AC,R}}$} & > 2000 \text{h for } \varnothing = 8 \text{mm and } V_R \le 63 \text{V} \\ & > 3000 \text{h for } \varnothing = 10 \text{mm and } V_R \le 63 \text{V} \\ & > 3000 \text{h for } \varnothing = 12.5 \text{mm and } V_R \le 63 \text{V} \\ & > 5000 \text{h for } \varnothing \ge 12.5 \text{mm and } V_R \le 63 \text{V} \\ & > 5000 \text{h for } \varnothing \ge 12.5 \text{mm and } V_R \le 63 \text{V} \\ & > 3000 \text{h for } \varnothing = 8 \text{mm and } V_R \le 63 \text{V} \\ & > 3000 \text{h for } \varnothing = 10 \text{mm and } V_R \le 63 \text{V} \\ & > 3000 \text{h for } \varnothing = 10 \text{mm and } V_R \le 63 \text{V} \\ & > 3000 \text{h for } \varnothing = 10 \text{mm and } V_R \le 63 \text{V} \\ & > 3000 \text{h for } \varnothing = 12.5 \text{mm and } V_R \le 63 \text{V} \\ & > 3000 \text{h for } \varnothing = 12.5 \text{mm and } V_R \le 63 \text{V} \\ & > 3000 \text{h for } \varnothing = 10 \text{mm and } V_R \le 63 \text{V} \\ & > 3000 \text{h for } \varnothing = 12.5 \text{mm and } V_R \le 63 \text{V} \\ & > 3000 \text{h for } \varnothing = 12.5 \text{mm and } V_R \le 63 \text{V} \\ & > 3000 \text{h for } \varnothing = 12.5 \text{mm and } V_R \le 63 \text{V} \\ & > 3000 \text{h for } \varnothing = 12.5 \text{mm and } V_R \le 63 \text{V} \\ & > 3000 \text{h for } \varnothing = 12.5 \text{mm and } V_R \le 63 \text{V} \\ & > 3000 \text{h for } \varnothing = 12.5 \text{mm and } V_R \le 63 \text{V} \\ & > 3000 \text{h for } \varnothing = 10 \text{mm and } V_R \le 63 \text{V} \\ & > 3000 \text{h for } \varnothing = 10 \text{mm and } V_R \le 63 \text{V} \\ & > 3000 \text{h for } \varnothing = 10 \text{mm and } V_R \le 63 \text{V} \\ & > 3000 \text{h for } \varnothing = 10 \text{mm and } V_R \le 63 \text{V} \\ & > 3000 \text{h for } \varnothing = 10 \text{mm and } V_R \le 63 \text{V} \\ & > 3000 \text{h for } \varnothing = $	Surge voltage V _S	1.15 · V _R	(1.1 · V	_R for 75 V I	DC)							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Rated capacitance C _R	47 10000 μF										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Capacitance tolerance	±20% ≙ M										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	· ·	higher th	ian 1000 μ	F add 0.0	02 for ev	ery incre	ease of				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		V _R (V DC)	10	16 25	35	50	63	75				
$Self-inductance ESL \qquad Diameter (mm) \qquad 8 \dots 12.5 \qquad 16 \qquad 18 \\ ESL (nH) \qquad 20 \qquad 26 \qquad 34 \\ Useful life¹¹) \\ 125 °C; V_B; I_{AC,B} \qquad > 2000 \ h \ for \varnothing = 8 \ mm \ and \ V_B \le 63 \ V \\ > 3000 \ h \ for V_B = 75 \ V \\ > 5000 \ h \ for \varnothing \ge 12.5 \ mm \ and \ V_B \le 63 \ V \\ > 3000 \ h \ for \varnothing \ge 12.5 \ mm \ and \ V_B \le 63 \ V \\ > 3000 \ h \ for \varnothing \ge 12.5 \ mm \ and \ V_B \le 63 \ V \\ > 3000 \ h \ for \varnothing \ge 12.5 \ mm \ and \ V_B \le 63 \ V \\ > 3000 \ h \ for \varnothing \ge 12.5 \ mm \ and \ V_B \le 63 \ V \\ > 3000 \ h \ for \varnothing = 8 \ mm \ and \ V_B \le 63 \ V \\ > 3000 \ h \ for \varnothing = 10 \ mm \ and \ V_B \le 63 \ V \\ > 3000 \ h \ for \varnothing = 10 \ mm \ and \ V_B \le 63 \ V \\ > 3000 \ h \ for \varnothing = 10 \ mm \ and \ V_B \le 63 \ V \\ > 3000 \ h \ for \varnothing \ge 12.5 \ mm \ and \ V_B \le 63 \ V \\ > 3000 \ h \ for \varnothing \ge 12.5 \ mm \ and \ V_B \le 63 \ V \\ > 3000 \ h \ for \varnothing \ge 12.5 \ mm \ and \ V_B \le 63 \ V \\ > 3000 \ h \ for \varnothing \ge 12.5 \ mm \ and \ V_B \le 63 \ V \\ > 1000 \ h \ for \varnothing \ge 12.5 \ mm \ and \ V_B \le 63 \ V \\ > 1000 \ h \ for \varnothing \ge 12.5 \ mm \ and \ V_B \le 63 \ V \\ > 1000 \ h \ for \varnothing \ge 12.5 \ mm \ and \ V_B \le 63 \ V \\ > 1000 \ h \ for \varnothing \ge 12.5 \ mm \ and \ V_B \le 63 \ V \\ > 1000 \ h \ for \varnothing \ge 12.5 \ mm \ and \ V_B \le 63 \ V \\ > 1000 \ h \ for \varnothing \ge 12.5 \ mm \ and \ V_B \le 63 \ V \\ > 1000 \ h \ for \varnothing \ge 12.5 \ mm \ and \ V_B \le 63 \ V \\ > 1000 \ h \ for \varnothing \ge 12.5 \ mm \ and \ V_B \le 63 \ V \\ > 1000 \ h \ for \varnothing \ge 12.5 \ mm \ and \ V_B \le 63 \ V \\ > 1000 \ h \ for \varnothing \ge 12.5 \ mm \ and \ V_B \le 63 \ V \\ > 1000 \ h \ for \varnothing \ge 12.5 \ mm \ and \ V_B \le 63 \ V \\ > 1000 \ h \ for \varnothing \ge 12.5 \ mm \ and \ V_B \le 63 \ V \\ > 1000 \ h \ for \varnothing \ge 12.5 \ mm \ and \ V_B \le 63 \ V \\ > 1000 \ h \ for \varnothing \ge 12.5 \ mm \ and \ V_B \le 63 \ V \\ > 1000 \ h \ for \varnothing \ge 10 \ mm \ and \ V_B \le 63 \ V \\ > 1000 \ h \ for \varnothing \ge 10 \ mm \ and \ V_B \le 63 \ V \\ > 1000 \ h \ for \varnothing \ge 10 \ mm \ and \ V_B \le 63 \ V \\ > 1000 \ h \ for \varnothing \ge 10 \ mm \ and \ V_B \le 63 \ V \\ > 1000 \ h \ for \varnothing \ge 10 \ mm \ and \ V_B \le 63 \ V \\ > 1000 \ h \ for \varnothing \ge 10 \ mm \ and \ V_B \ge 63 \ V \\ > 1000 \ h \ for \varnothing \ge 10 \ mm \ and \ V_B \ge 63 \ V \\ > 1000 \ h \ for \varnothing \ge 1$		$tan \delta (max.)$	0.20 0.17 0.12 0.10 0.12 0.12									
	•	I _{leak} = 0.01 μA	$\frac{C_R}{\mu F} \cdot \frac{V}{V}$	R/				·				
		or 3 µA, whichev	ver is gre	ater								
Useful life¹) 125 °C; V_R ; $I_{AC,R}$ > 2000 h for $\varnothing = 8$ mm and $V_R \le 63$ V > 3000 h for $V_R = 75$ V > 5000 h for $V_R = 75$ V $V_R = 75$ V $V_$	Self-inductance ESL	Diameter (mm)		8 12.5	16	18						
$\begin{array}{lll} 125~^\circ\text{C}; \ V_{\text{R}}; \ I_{\text{AC,R}} & > 2000 \ h \ for \ \varnothing = 8 \ mm \ and \ V_{\text{R}} \le 63 \ V \\ & > 3000 \ h \ for \ \varnothing = 10 \ mm \ and \ V_{\text{R}} \le 63 \ V \\ & > 5000 \ h \ for \ \varnothing \ge 12.5 \ mm \ and \ V_{\text{R}} \le 63 \ V \\ & > 5000 \ h \ for \ \varnothing \ge 12.5 \ mm \ and \ V_{\text{R}} \le 63 \ V \\ & > 5000 \ h \ for \ \varnothing \ge 12.5 \ mm \ and \ V_{\text{R}} \le 63 \ V \\ & > 1000 \ h \ for \ \varnothing \ge 35\% \ of \ initial \ value \\ & tan \ \delta \qquad \le 3 \ times \ initial \ specified \ limit \\ & > 1000 \ h \ for \ \varnothing = 8 \ mm \ and \ V_{\text{R}} \le 63 \ V \\ & > 1000 \ h \ for \ \varnothing = 8 \ mm \ and \ V_{\text{R}} \le 63 \ V \\ & > 1000 \ h \ for \ \varnothing = 10 \ mm \ and \ V_{\text{R}} \le 63 \ V \\ & > 1000 \ h \ for \ \varnothing = 10 \ mm \ and \ V_{\text{R}} \le 63 \ V \\ & > 1000 \ h \ for \ \varnothing \ge 12.5 \ mm \ and \ V_{\text{R}} \le 63 \ V \\ & > 1000 \ h \ for \ \varnothing \ge 12.5 \ mm \ and \ V_{\text{R}} \le 63 \ V \\ & > 1000 \ h \ for \ \varnothing \ge 12.5 \ mm \ and \ V_{\text{R}} \le 63 \ V \\ & > 1000 \ h \ for \ \varnothing \ge 12.5 \ mm \ and \ V_{\text{R}} \le 63 \ V \\ & > 1000 \ h \ for \ \varnothing \ge 12.5 \ mm \ and \ V_{\text{R}} \le 63 \ V \\ & > 1000 \ h \ for \ \varnothing \ge 12.5 \ mm \ and \ V_{\text{R}} \le 63 \ V \\ & > 1000 \ h \ for \ \varnothing \ge 12.5 \ mm \ and \ V_{\text{R}} \le 63 \ V \\ & > 1000 \ h \ for \ \varnothing \ge 12.5 \ mm \ and \ V_{\text{R}} \le 63 \ V \\ & > 1000 \ h \ for \ \varnothing \ge 12.5 \ mm \ and \ V_{\text{R}} \le 63 \ V \\ & > 1000 \ h \ for \ \varnothing \ge 12.5 \ mm \ and \ V_{\text{R}} \le 63 \ V \\ & > 1000 \ h \ for \ \varnothing \ge 12.5 \ mm \ and \ V_{\text{R}} \le 63 \ V \\ & > 1000 \ h \ for \ \varnothing \ge 12.5 \ mm \ and \ V_{\text{R}} \le 63 \ V \\ & > 1000 \ h \ for \ \varnothing \ge 12.5 \ mm \ and \ V_{\text{R}} \le 63 \ V \\ & > 1000 \ h \ for \ \varnothing \ge 12.5 \ mm \ and \ V_{\text{R}} \le 63 \ V \\ & > 1000 \ h \ for \ \varnothing \ge 12.5 \ mm \ and \ V_{\text{R}} \le 63 \ V \\ & > 1000 \ h \ for \ \varnothing \ge 12.5 \ mm \ and \ V_{\text{R}} \le 63 \ V \\ & > 1000 \ h \ for \ \varnothing \ge 12.5 \ mm \ and \ V_{\text{R}} \ge 1000 \ h \ for \ \varnothing \ge 10000 \ h \ for \ \varnothing \ge 100000 \ h \ for \ \varnothing \ge 10000000000000000000000000000000000$		ESL (nH)		20	26	34						
$ > 3000 \text{ h for } \varnothing = 10 \text{ mm and } V_{\text{R}} \le 63 \text{ V} \\ > 3000 \text{ h for } V_{\text{R}} = 75 \text{ V} \\ > 5000 \text{ h for } \varnothing \ge 12.5 \text{ mm and } V_{\text{R}} \le 63 \text{ V} \\ $	Useful life ¹⁾											
$tan \ \delta \qquad \leq 3 \ times \ initial \ specified \ limit$ $I_{leak} \qquad \leq initial \ specified \ limit$ $Voltage \ endurance \ test$ $125 \ ^{\circ}C; \ V_{R} \qquad 2000 \ h \ for \ \varnothing = 8 \ mm \ and \ V_{R} \leq 63 \ V$ $3000 \ h \ for \ \varnothing = 10 \ mm \ and \ V_{R} \leq 63 \ V$ $3000 \ h \ for \ \varnothing = 12.5 \ mm \ and \ V_{R} \leq 63 \ V$ $Post \ test \ requirements \qquad \Delta C/C \qquad \leq 30\% \ of \ initial \ value$ $tan \ \delta \qquad \leq 2 \ times \ initial \ specified \ limit$ $I_{leak} \qquad \leq initial \ specified \ limit$ $Vibration \ resistance \ test \qquad To \ IEC \ 60068-2-6, \ test \ Fc:$ $Frequency \ range \ 10 \ Hz \ \ 2 \ kHz, \ displacement \ amplitude \ max.$ $1.5 \ mm, \ acceleration \ max. \ 20 \ g, \ duration \ 3 \times 2 \ h.$ $Capacitor \ rigidly \ clamped \ by \ the \ aluminum \ case.$ $IEC \ climatic \ category \qquad To \ IEC \ 60068-1:$ $55/125/56 \ (-55 \ ^{\circ}C/+125 \ ^{\circ}C/56 \ days \ damp \ heat \ test)$	125 °C; V _R ; I _{AC,R}	$>$ 3000 h for \varnothing = $>$ 3000 h for V_R	> 3000 h for \emptyset = 10 mm and $V_R \le 63 \text{ V}$ > 3000 h for V_R = 75 V									
$ \begin{array}{c c} tan \ \delta & \leq 3 \ times \ initial \ specified \ limit \\ \hline \\ Voltage \ endurance \ test \\ 125 \ ^{\circ}C; \ V_{R} & 2000 \ h \ for \ \varnothing = 8 \ mm \ and \ V_{R} \leq 63 \ V \\ 3000 \ h \ for \ \varnothing = 10 \ mm \ and \ V_{R} \leq 63 \ V \\ 3000 \ h \ for \ \varnothing = 10 \ mm \ and \ V_{R} \leq 63 \ V \\ \hline \\ S000 \ h \ for \ \varnothing \geq 12.5 \ mm \ and \ V_{R} \leq 63 \ V \\ \hline \\ Post \ test \ requirements & \Delta C/C & \leq 30\% \ of \ initial \ value \\ tan \ \delta & \leq 2 \ times \ initial \ specified \ limit \\ \hline \\ I_{leak} & \leq initial \ specified \ limit \\ \hline \\ Vibration \ resistance \ test & To \ IEC \ 60068-2-6, \ test \ Fc: \\ Frequency \ range \ 10 \ Hz \ \ 2 \ kHz, \ displacement \ amplitude \ max. \\ 1.5 \ mm, \ acceleration \ max. \ 20 \ g, \ duration \ 3 \times 2 \ h. \\ Capacitor \ rigidly \ clamped \ by \ the \ aluminum \ case. \\ \hline IEC \ climatic \ category & To \ IEC \ 60068-1: \\ \hline \\ 55/125/56 \ (-55 \ ^{\circ}C/+125 \ ^{\circ}C/56 \ days \ damp \ heat \ test) \\ \hline \end{array}$	Requirements	ΔC/C	≤ 35% (of initial val	ue							
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	•		≤ 3 time	es initial spe	ecified lir	mit						
$\label{eq:continuous_problem} \begin{array}{lll} \mbox{Voltage endurance test} \\ \mbox{125 °C; V}_R & 2000 \ \mbox{h for } \varnothing = 8 \ \mbox{mm and V}_R \le 63 \ \mbox{V} \\ \mbox{3000 h for } \varnothing = 10 \ \mbox{mm and V}_R \le 63 \ \mbox{V} \\ \mbox{3000 h for } \varnothing \ge 12.5 \ \mbox{mm and V}_R \le 63 \ \mbox{V} \\ \mbox{Post test requirements} & \Delta C/C & \le 30\% \ \mbox{of initial value} \\ \mbox{tan } \delta & \le 2 \ \mbox{times initial specified limit} \\ \mbox{Vibration resistance test} & \mbox{To IEC } 60068-2-6, \mbox{test Fc:} \\ \mbox{Frequency range } 10 \ \mbox{Hz} \dots 2 \ \mbox{kHz, displacement amplitude max.} \\ \mbox{1.5 mm, acceleration max. } 20 \ \mbox{g, duration } 3 \times 2 \ \mbox{h.} \\ \mbox{Capacitor rigidly clamped by the aluminum case.} \\ \mbox{IEC climatic category} & \mbox{To IEC } 60068-1: \\ \mbox{55/125/56 } (-55 \ \mbox{°C/+125 °C/56 days damp heat test)} \\ \end{array}$		I _{leak}	≤ initial	specified li	mit							
$3000 \text{ h for } \varnothing = 10 \text{ mm and } V_{\text{R}} \leq 63 \text{ V}$ $3000 \text{ h for } V_{\text{R}} = 75 \text{ V}$ $5000 \text{ h for } \varnothing \geq 12.5 \text{ mm and } V_{\text{R}} \leq 63 \text{ V}$ Post test requirements $ \Delta C/C \leq 30\% \text{ of initial value}$ $\tan \delta \qquad \leq 2 \text{ times initial specified limit}$ $I_{\text{leak}} \qquad \leq \text{ initial specified limit}$ Vibration resistance test $ \Delta C = 0068-2-6 \text{ test Fc:}$ Frequency range 10 Hz 2 kHz, displacement amplitude max. 1.5 mm, acceleration max. 20 g , duration 3×2 h. Capacitor rigidly clamped by the aluminum case. $ \Delta C = 0068-1 \text{ To IEC } 60068-1 \text{ Solder} = 125 \text{ Color} = 125 Color$	Voltage endurance test											
$3000 \text{ h for } V_{\text{R}} = 75 \text{ V} \\ 5000 \text{ h for } \varnothing \geq 12.5 \text{ mm and } V_{\text{R}} \leq 63 \text{ V}$ Post test requirements $\begin{vmatrix} \Delta C/C \\ & \leq 30\% \text{ of initial value} \\ & \tan \delta & \leq 2 \text{ times initial specified limit} \end{vmatrix}$ Vibration resistance test $\begin{vmatrix} T_{\text{Leak}} \\ & \leq \text{ initial specified limit} \end{vmatrix}$ Vibration resistance test $\begin{vmatrix} T_{\text{O}} & E_{\text{C}} \\ & $	125 °C; V _R	2000 h for $\emptyset = 8$	3 mm and	$V_R \le 63 \text{ V}$								
$ \begin{array}{lll} & 5000 \text{ h for } \varnothing \geq 12.5 \text{ mm and } V_{\text{R}} \leq 63 \text{ V} \\ & \Delta \text{C/C} & \leq 30\% \text{ of initial value} \\ & \tan \delta & \leq 2 \text{ times initial specified limit} \\ & _{\text{leak}} & \leq \text{ initial specified limit} \\ & _{\text{Vibration resistance test}} & \text{To IEC } 60068\text{-}2\text{-}6, \text{ test Fc:} \\ & \text{Frequency range } 10 \text{ Hz } \dots 2 \text{ kHz, displacement amplitude max.} \\ & \text{1.5 mm, acceleration max. } 20 \text{ g, duration } 3 \times 2 \text{ h.} \\ & \text{Capacitor rigidly clamped by the aluminum case.} \\ & \text{IEC climatic category} & \text{To IEC } 60068\text{-}1\text{:} \\ & \text{55/125/56 } (-55 \text{ °C/+125 °C/56 days damp heat test)} \\ & \text{To IEC } 60068\text{-}1\text{:} \\ & \text{55/125/56 } (-55 \text{ °C/+125 °C/56 days damp heat test)} \\ & \text{To IEC } 60068\text{-}1\text{:} \\ & \text{55/125/56 } (-55 \text{ °C/+125 °C/56 days damp heat test)} \\ & \text{To IEC } 60068\text{-}1\text{:} \\ & \text{55/125/56 } (-55 \text{ °C/+125 °C/56 days damp heat test)} \\ & \text{To IEC } 60068\text{-}1\text{:} \\ & \text{55/125/56 } (-55 \text{ °C/+125 °C/56 days damp heat test)} \\ & \text{To IEC } 60068\text{-}1\text{:} \\ & \text{55/125/56 } (-55 \text{ °C/+125 °C/56 days damp heat test)} \\ & \text{To IEC } 60068\text{-}1\text{:} \\ & \text{55/125/56 } (-55 \text{ °C/+125 °C/56 days damp heat test)} \\ & \text{To IEC } 60068\text{-}1\text{:} \\ & \text{To IEC } $		3000 h for $\emptyset = 1$	0 mm an	d $V_R \le 63$	/							
Post test requirements $ \begin{array}{ll} \Delta \text{C/C} & \leq 30\% \text{ of initial value} \\ & \tan\delta & \leq 2 \text{ times initial specified limit} \\ \text{Vibration resistance test} & \text{To IEC } 60068\text{-}2\text{-}6\text{, test Fc:} \\ \text{Frequency range } 10 \text{ Hz } \dots 2 \text{ kHz, displacement amplitude max.} \\ 1.5 \text{ mm, acceleration max. } 20 \text{ g, duration } 3 \times 2 \text{ h.} \\ \text{Capacitor rigidly clamped by the aluminum case.} \\ \text{IEC climatic category} & \text{To IEC } 60068\text{-}1\text{:} \\ 55/125/56 \text{ (}-55\ ^{\circ}\text{C/+}125\ ^{\circ}\text{C/56 days damp heat test)} \\ \end{array} $		1										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$5000 \text{ h for } \emptyset \ge 1$	2.5 mm a	and $V_R \le 63$	3 V							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Post test requirements	ΔC/C	≤ 30% (of initial val	ue							
$\begin{tabular}{ll} I_{leak} & \leq initial \ specified \ limit \\ \hline Vibration \ resistance \ test & To \ IEC \ 60068-2-6, \ test \ Fc: \\ Frequency \ range \ 10 \ Hz \ \ 2 \ kHz, \ displacement \ amplitude \ max. \\ 1.5 \ mm, \ acceleration \ max. \ 20 \ g, \ duration \ 3 \times 2 \ h. \\ Capacitor \ rigidly \ clamped \ by \ the \ aluminum \ case. \\ \hline IEC \ climatic \ category & To \ IEC \ 60068-1: \\ 55/125/56 \ (-55\ ^{\circ}C/+125\ ^{\circ}C/56 \ days \ damp \ heat \ test) \\ \hline \end{tabular}$	·		≤ 2 time	es initial spe	ecified lir	mit						
Vibration resistance test To IEC 60068-2-6, test Fc: Frequency range 10 Hz 2 kHz, displacement amplitude max. 1.5 mm, acceleration max. 20 g , duration 3×2 h. Capacitor rigidly clamped by the aluminum case. IEC climatic category To IEC 60068-1: $55/125/56$ (-55 °C/+125 °C/56 days damp heat test)		I _{leak}										
1.5 mm, acceleration max. 20 g , duration 3×2 h. Capacitor rigidly clamped by the aluminum case. IEC climatic category To IEC 60068-1: 55/125/56 (-55 °C/+125 °C/56 days damp heat test)	Vibration resistance test											
Capacitor rigidly clamped by the aluminum case. IEC climatic category To IEC 60068-1: 55/125/56 (-55 °C/+125 °C/56 days damp heat test)		Frequency range	e 10 Hz .	2 kHz, di	splacem	ent amp	litude ma	ax.				
IEC climatic category To IEC 60068-1: 55/125/56 (-55 °C/+125 °C/56 days damp heat test)				_								
55/125/56 (-55 °C/+125 °C/56 days damp heat test)				by the alu	minum c	ase.						
	IEC climatic category											
Sectional specification IEC 60384-4, AEC-Q200				°C/56 days	damp h	eat test))					
	Sectional specification	IEC 60384-4, A	-C-Q200									

¹⁾ Refer to chapter "General technical information, 5 Useful life" on how to interpret useful life.



High ripple current - 125 °C

Dimensional drawings


With stand-off rubber seal

Diameters (mm): 10, 12.5, 16, 18

With flat rubber seal

Diameter (mm): 8

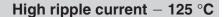
Dimensions and weights

Dimensions (mm)			Approx. weight
d +0.5	1	a ±0.5	b	g
8	11.5 +1.5	3.5	0.60 ±0.05	1.0
10	12.5 +1.0	5.0	0.60 ±0.05	1.6
10	16 +1.0	5.0	0.60 ±0.05	1.9
10	20 +2.0	5.0	0.60 ±0.05	2.6
12.5	20 +2.0	5.0	0.60 ±0.05	3.6
12.5	25 +2.0	5.0	0.60 ±0.05	4.5
12.5	40 +2.0	5.0	0.80 ±0.05	7.4
16	20 +2.0	7.5	0.80 ±0.05	5.5
16	25 +2.0	7.5	0.80 ±0.05	7.5
16	31.5 +2.0	7.5	0.80 ±0.05	7.8
16	35.5 +2.0	7.5	0.80 ±0.05	9.2
18	20 +2.0	7.5	0.80 ±0.1	8.0
18	25 +2.0	7.5	0.80 ±0.1	9.0
18	31.5 +2.0	7.5	0.80 ±0.1	11.0
18	35 +2.0	7.5	0.80 ±0.1	13.0
18	40 +2.0	7.5	0.80 ±0.1	16.0

Overview of available types

Other voltage and capacitance ratings are available upon request.

V _R (V DC)	10	16	25	35
	Case dimension	s d×l (mm)		
C _R (μF)				
100			8 × 11.5	8 ×11.5
120			8 × 11.5	8 ×11.5
150			8 × 11.5	10 × 12.5
180			8 × 11.5	10 × 12.5
220			8 × 11.5	10 × 12.5
270			10 × 12.5	10 × 16
330		8 × 11.5	10 × 12.5	10 × 16
390			10 × 16	10 × 20
470	8 ×11.5	10 × 12.5	10 × 16	10 × 20
560	10 × 12.5		10 × 20	12.5 × 20
680	10 × 16		10 × 20	12.5 × 20
820		10 × 16	12.5 × 20	12.5 × 25
1000	10 × 16	10 × 20	12.5 × 20	16 × 20
1200		12.5 × 20	12.5×25	16 × 25
1500	10 × 20		12.5 × 25	16 × 25
				18 × 20
1800		12.5 × 25	16 × 20	16 × 31.5
				18 × 25
2200	12.5 × 20	16 × 20	12.5 × 40	16 × 35.5
			16 × 25 18 × 20	18 × 31.5
2700	12.5 × 25	18 × 20	18 × 25	18 × 35
3300	16 × 20	18 × 25	16 × 31.5	18 × 40
3900	10 × 20	10 × 20	16 × 35.5	10 / 40
0000			18 × 31.5	
4700	18 × 20	18 × 31.5	18 × 35	
5600		18 × 35	18 × 40	
6800		18 × 40		
8200	18 × 31.5			
10000	18 × 40			


High ripple current - 125 $^{\circ}\text{C}$

Overview of available types

Other voltage and capacitance ratings are available upon request.

V _R (V DC)	50	63	75
	Case dimensions $d \times I$ (r	nm)	
C _R (μF)			
47	8 × 11.5		
56	8 × 11.5		
68	8 × 11.5		
82	8 × 11.5		
100	10 × 12.5	10 × 16	
120	10 × 16		
150	10 × 16		
180	10 × 20	10 × 20	
220	10 × 20	12.5 × 20	
270	10 × 20		16 × 20
330	12.5 × 20	12.5 × 20	16 × 25 18 × 25
390	12.5 × 25		
470	12.5 × 25 16 × 20	16 × 20	16 × 31.5 18 × 25
560	16 × 20		
680	16 × 25	12.5 × 40 16 × 25 18 × 20	18 × 31.5
820	16 × 25 18 × 20	16 × 31.5	18 × 35
1000	16 × 31.5 18 × 25	16 × 31.5	18 × 40
1200	16 × 35.5 18 × 31.5	18 × 31.5	
1500	18 × 35	18 × 35	
1800	18 × 40	18 × 40	

Technical data and ordering codes

$\overline{C_{R}}$	Case	ESR _{max}	ESR _{max}	Z _{max}	I _{AC,R}	Ordering code
120 Hz	dimensions	10 kHz	10 kHz	100 kHz	100 kHz	(composition see
20 °C	d×I	-40 °C	20 °C	20 °C	125 °C	below)
μF	mm	Ω	Ω	Ω	mA	,
$V_R = 10 V \Gamma$	C					
470	8 × 11.5	5.170	0.646	0.573	297	B41866C3477M***
560	10 × 12.5	2.980	0.373	0.336	450	B41866C3567M***
680	10 × 16	1.404	0.175	0.160	714	B41866C3687M***
1000	10 × 16	1.404	0.175	0.160	714	B41866C3108M***
1500	10 × 20	1.070	0.134	0.127	875	B41866C3158M***
2200	12.5×20	0.881	0.110	0.104	1105	B41866C3228M***
2700	12.5×25	0.710	0.089	0.082	1358	B41866C3278M***
3300	16 × 20	0.401	0.050	0.046	1895	B41866C3338M***
4700	18 × 20	0.341	0.043	0.040	2190	B41866D3478M***
8200	18 × 31.5	0.226	0.028	0.027	3178	B41866C3828M***
10000	18 × 40	0.153	0.019	0.018	4244	B41866C3109M***
$V_R = 16 V E$	C					
330	8 × 11.5	5.170	0.646	0.573	297	B41866C4337M***
470	10 × 12.5	2.980	0.373	0.336	450	B41866C4477M***
820	10 × 16	1.404	0.175	0.160	714	B41866C4827M***
1000	10 × 20	1.070	0.134	0.127	875	B41866C4108M***
1200	12.5×20	0.881	0.110	0.104	1105	B41866C4128M***
1800	12.5×25	0.710	0.089	0.082	1358	B41866C4188M***
2200	16 × 20	0.401	0.050	0.046	1895	B41866C4228M***
2700	18 × 20	0.341	0.043	0.040	2190	B41866D4278M***
3300	18 × 25	0.314	0.039	0.037	2454	B41866C4338M***
4700	18 × 31.5	0.226	0.028	0.027	3178	B41866C4478M***
5600	18 × 35	0.187	0.023	0.022	3638	B41866C4568M***
6800	18 × 40	0.153	0.019	0.018	4244	B41866C4688M***

Composition of ordering code

*** = Version

000 = for standard leads, bulk

001 = for kinked leads, bulk (for $d \times I = 10 \times 20 \dots 12.5 \times 25 \text{ mm}$ and $\varnothing 16 \dots 18 \text{ mm}$)

002 = for cut leads, bulk (for \emptyset 10 ... 18 mm, excluding d \times I = 12.5 \times 40 mm)

 $003 = \text{ for crimped leads, blister (for } \emptyset 16 \dots 18 \text{ mm)}$

004 = for J leads, blister (for \varnothing 10 ... 18 mm, excluding d × I = 12.5 × 40 and 18 × 40 mm)

006 = for taped leads, Ammo pack, lead spacing F = 3.5 mm (for \emptyset 8 mm)

008 = for taped leads, Ammo pack, lead spacing F = 5.0 mm (for $d \times I = 8 \times 11.5 \dots 12.5 \times 25 \text{ mm}$)

009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (for d \times I = 16 \times 20 ... 16 \times 31.5 mm and 18 \times 20 ... 18 \times 31.5 mm)

High ripple current - 125 °C

Technical data and ordering codes

$\overline{C_R}$	Case	ESR _{max}	ESR _{max}	Z _{max}	I _{AC,R}	Ordering code
120 Hz	dimensions	10 kHz	10 kHz	100 kHz	100 kHz	(composition see
20 °C	$d \times I$	-40 °C	20 °C	20 °C	125 °C	below)
μF	mm	Ω	Ω	Ω	mA	,
$V_R = 25 V \Gamma$	C					
100	8 × 11.5	5.170	0.646	0.573	297	B41866C5107M***
120	8 × 11.5	5.170	0.646	0.573	297	B41866C5127M***
150	8 ×11.5	5.170	0.646	0.573	297	B41866C5157M***
180	8 × 11.5	5.170	0.646	0.573	297	B41866C5187M***
220	8 ×11.5	5.170	0.646	0.573	297	B41866C5227M***
270	10 × 12.5	2.980	0.373	0.336	450	B41866C5277M***
330	10 × 12.5	2.980	0.373	0.336	450	B41866C5337M***
390	10 × 16	1.404	0.175	0.160	714	B41866C5397M***
470	10 × 16	1.404	0.175	0.160	714	B41866C5477M***
560	10 × 20	1.070	0.134	0.127	875	B41866C5567M***
680	10 × 20	1.070	0.134	0.127	875	B41866C5687M***
820	12.5×20	0.881	0.110	0.104	1105	B41866C5827M***
1000	12.5×20	0.881	0.110	0.104	1105	B41866C5108M***
1200	12.5×25	0.710	0.089	0.082	1358	B41866C5128M***
1500	12.5×25	0.710	0.089	0.082	1358	B41866C5158M***
1800	16 × 20	0.401	0.050	0.046	1895	B41866C5188M***
2200	12.5×40	0.406	0.051	0.047	2185	B41866C5228M***
2200	16 × 25	0.314	0.039	0.037	2279	B41866D5228M***
2200	18 × 20	0.341	0.043	0.040	2190	B41866E5228M***
2700	18 × 25	0.312	0.039	0.037	2454	B41866D5278M***
3300	16 × 31.5	0.248	0.031	0.029	2822	B41866D5338M***
3900	16 × 35.5	0.200	0.025	0.024	3230	B41866E5398M***
3900	18 × 31.5	0.224	0.028	0.027	3178	B41866D5398M***
4700	18 × 35	0.184	0.023	0.022	3638	B41866D5478M***
5600	18 × 40	0.152	0.019	0.018	4244	B41866C5568M***

Composition of ordering code

- *** = Version
 - 000 = for standard leads, bulk
 - 001 = for kinked leads, bulk (for d \times I = 10 \times 20 ... 12.5 \times 25 mm and \varnothing 16 ... 18 mm)
 - 002 = for cut leads, bulk (for \emptyset 10 ... 18 mm, excluding d \times I = 12.5 \times 40 mm)
 - 003 = for crimped leads, blister (for \emptyset 16 ... 18 mm)
 - 004 = for J leads, blister (for \varnothing 10 ... 18 mm, excluding d × I = 12.5 × 40 and 18 × 40 mm)
 - 006 = for taped leads, Ammo pack, lead spacing F = 3.5 mm (for \emptyset 8 mm)
 - 008 = for taped leads, Ammo pack, lead spacing F = 5.0 mm (for $d \times I = 8 \times 11.5 \dots 12.5 \times 25 \text{ mm}$)
 - 009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (for $d \times I = 16 \times 20 \dots 16 \times 31.5$ mm and $18 \times 20 \dots 18 \times 31.5$ mm)
 - $012 = \text{ for bent } 90^{\circ} \text{ leads, blister (for } \emptyset 16 \dots 18 \text{ mm)}$

Technical data and ordering codes

$\overline{C_R}$	Case	ESR _{max}	ESR _{max}	Z _{max}	1	Ordering code
120 Hz	dimensions	10 kHz	10 kHz	100 kHz	I _{AC,R} 100 kHz	(composition see
20 °C	d×I	-40 °C	20 °C	20 °C	125 °C	l ` .
						below)
μF	mm	Ω	Ω	Ω	mA	
$V_R = 35 V D$)C					
100	8 × 11.5	5.170	0.646	0.573	297	B41866C7107M***
120	8 × 11.5	5.170	0.646	0.573	297	B41866C7127M***
150	10 × 12.5	2.980	0.373	0.336	450	B41866C7157M***
180	10 × 12.5	2.980	0.373	0.336	450	B41866C7187M***
220	10 × 12.5	2.980	0.373	0.336	450	B41866C7227M***
270	10 × 16	1.404	0.175	0.160	714	B41866C7277M***
330	10 × 16	1.404	0.175	0.160	714	B41866C7337M***
390	10 × 20	1.070	0.134	0.127	875	B41866C7397M***
470	10 × 20	1.070	0.134	0.127	875	B41866C7477M***
560	12.5×20	0.881	0.110	0.104	1105	B41866C7567M***
680	12.5×20	0.881	0.110	0.104	1105	B41866C7687M***
820	12.5 × 25	0.710	0.089	0.082	1358	B41866C7827M***
1000	16 × 20	0.401	0.050	0.046	1895	B41866C7108M***
1200	16 × 25	0.314	0.039	0.037	2279	B41866C7128M***
1500	16 × 25	0.314	0.039	0.037	2279	B41866C7158M***
1500	18 × 20	0.341	0.043	0.040	2190	B41866D7158M***
1800	16 × 31.5	0.249	0.031	0.029	2822	B41866C7188M***
1800	18 × 25	0.314	0.039	0.037	2454	B41866D7188M***
2200	16 × 35.5	0.200	0.025	0.024	3230	B41866D7228M***
2200	18 × 31.5	0.226	0.028	0.027	3178	B41866C7228M***
2700	18 × 35	0.187	0.023	0.022	3638	B41866C7278M***
3300	18 × 40	0.153	0.019	0.018	4244	B41866C7338M***

Composition of ordering code

*** = Version

000 = for standard leads, bulk

001 = for kinked leads, bulk (for $d \times I = 10 \times 20 \dots 12.5 \times 25 \text{ mm}$ and \emptyset 16 ... 18 mm)

002 = for cut leads, bulk (for \emptyset 10 ... 18 mm, excluding d \times I = 12.5 \times 40 mm)

 $003 = \text{ for crimped leads, blister (for } \emptyset 16 \dots 18 \text{ mm)}$

004 = for J leads, blister (for \emptyset 10 ... 18 mm, excluding d × I = 12.5 × 40 and 18 × 40 mm)

006 = for taped leads, Ammo pack, lead spacing F = 3.5 mm (for \emptyset 8 mm)

008 = for taped leads, Ammo pack, lead spacing F = 5.0 mm (for $d \times I = 8 \times 11.5 \dots 12.5 \times 25 \text{ mm}$)

009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (for d \times I = 16 \times 20 ... 16 \times 31.5 mm and 18 \times 20 ... 18 \times 31.5 mm)

High ripple current - 125 °C

Technical data and ordering codes

$\overline{C_R}$	Case	ESR _{max}	ESR _{max}	Z _{max}	I _{AC,R}	Ordering code
120 Hz	dimensions	10 kHz	10 kHz	100 kHz	100 kHz	(composition see
20 °C	d×I	−40 °C	20 °C	20 °C	125 °C	below)
μF	mm	Ω	Ω	Ω	mA	,
$V_R = 50 V D$	C					
47	8 × 11.5	5.687	0.711	0.631	370	B41866C6476M***
56	8 × 11.5	5.429	0.679	0.602	370	B41866C6566M***
68	8 × 11.5	5.170	0.646	0.573	370	B41866C6686M***
82	8 × 11.5	5.170	0.646	0.573	370	B41866C6826M***
100	10 × 12.5	2.980	0.373	0.336	450	B41866C6107M***
120	10 × 16	1.404	0.175	0.160	714	B41866C6127M***
150	10 × 16	1.404	0.175	0.160	714	B41866C6157M***
180	10 × 20	1.070	0.134	0.127	875	B41866C6187M***
220	10 × 20	1.070	0.134	0.127	875	B41866C6227M***
270	10 × 20	1.070	0.134	0.127	875	B41866C6277M***
330	12.5×20	0.881	0.110	0.104	1105	B41866C6337M***
390	12.5×25	0.710	0.089	0.082	1358	B41866C6397M***
470	12.5×25	0.710	0.089	0.082	1358	B41866C6477M***
470	16 × 20	0.680	0.085	0.080	1370	B41866D6477M***
560	16 × 20	0.401	0.050	0.046	1895	B41866C6567M***
680	16 × 25	0.314	0.039	0.037	2279	B41866C6687M***
820	16 × 25	0.314	0.039	0.037	2279	B41866C6827M***
820	18 × 20	0.344	0.043	0.040	2190	B41866E6827M***
1000	16 × 31.5	0.249	0.031	0.029	2822	B41866C6108M***
1000	18 × 25	0.314	0.039	0.037	2454	B41866D6108M***
1200	16 × 35.5	0.200	0.025	0.024	3230	B41866D6128M***
1200	18 × 31.5	0.226	0.028	0.027	3178	B41866C6128M***
1500	18 × 35	0.187	0.023	0.022	3638	B41866C6158M***
1800	18 × 40	0.153	0.019	0.018	4244	B41866C6188M***

Composition of ordering code

*** = Version

000 = for standard leads, bulk

001 = for kinked leads, bulk (for $d \times I = 10 \times 20 \dots 12.5 \times 25 \text{ mm}$ and \emptyset 16 ... 18 mm)

002 = for cut leads, bulk (for \emptyset 10 ... 18 mm, excluding d \times I = 12.5 \times 40 mm)

 $003 = \text{ for crimped leads, blister (for } \emptyset 16 \dots 18 \text{ mm)}$

004 = for J leads, blister (for \varnothing 10 ... 18 mm, excluding d × I = 12.5 × 40 and 18 × 40 mm)

006 = for taped leads, Ammo pack, lead spacing F = 3.5 mm (for \emptyset 8 mm)

008 = for taped leads, Ammo pack, lead spacing F = 5.0 mm (for $d \times I = 8 \times 11.5 \dots 12.5 \times 25 \text{ mm}$)

009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (for d \times I = 16 \times 20 ... 16 \times 31.5 mm and 18 \times 20 ... 18 \times 31.5 mm)

Technical data and ordering codes

$\overline{C_R}$	Case	ESR _{max}	ESR _{max}	Z _{max}	I _{AC,R}	Ordering code
120 Hz	dimensions	10 kHz	10 kHz	100 kHz	100 kHz	(composition see
20 °C	d×I	-40 °C	20 °C	20 °C	125 °C	below)
μF	mm	Ω	Ω	Ω	mA	
$V_R = 63 \text{ V D}$	C					
100	10 × 16	2.560	0.320	0.300	670	B41866G8107M***
180	10 × 20	2.160	0.270	0.250	820	B41866G8187M***
220	12.5×20	1.760	0.220	0.200	1040	B41866G8227M***
330	12.5×20	1.760	0.220	0.200	1040	B41866G8337M***
470	16 × 20	0.728	0.091	0.085	1790	B41866G8477M***
680	12.5×40	0.752	0.094	0.088	2060	B41866G8687M***
680	16 × 25	0.536	0.067	0.061	2030	B41866H8687M***
680	18 × 20	0.600	0.075	0.070	1910	B41866J8687M***
820	16 × 31.5	0.472	0.059	0.053	2330	B41866G8827M***
1000	16 × 31.5	0.472	0.059	0.053	2330	B41866G8108M***
1200	18 × 31.5	0.368	0.046	0.041	2580	B41866G8128M***
1500	18 × 35	0.320	0.040	0.035	2890	B41866G8158M***
1800	18 × 40	0.280	0.035	0.030	3210	B41866G8188M***
$V_R = 75 V D$	C					
270	16 × 20	0.880	0.110	0.102	1790	B41866G0277M***
330	16 × 25	0.640	0.080	0.073	2030	B41866G0337M***
330	18 × 25	0.720	0.090	0.084	1910	B41866H0337M***
470	16 × 31.5	0.568	0.071	0.064	2330	B41866G0477M***
470	18 × 25	0.520	0.065	0.059	2280	B41866H0477M***
680	18 × 31.5	0.440	0.055	0.049	2580	B41866G0687M***
820	18 × 35	0.384	0.048	0.042	2890	B41866G0827M***
1000	18 × 40	0.336	0.042	0.036	3210	B41866G0108M***

Composition of ordering code

*** = Version

000 = for standard leads, bulk

001 = for kinked leads, bulk (for $d \times I = 10 \times 20 \dots 12.5 \times 25 \text{ mm}$ and \emptyset 16 \dots 18 mm)

002 = for cut leads, bulk (for \emptyset 10 ... 18 mm, excluding d \times I = 12.5 \times 40 mm)

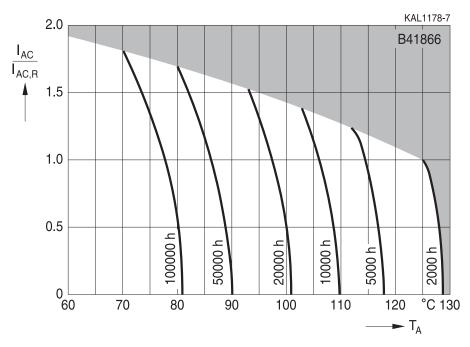
 $003 = \text{ for crimped leads, blister (for } \emptyset 16 \dots 18 \text{ mm)}$

004 = for J leads, blister (for \emptyset 10 ... 18 mm, excluding d \times I = 12.5 \times 40 and 18 \times 40 mm)

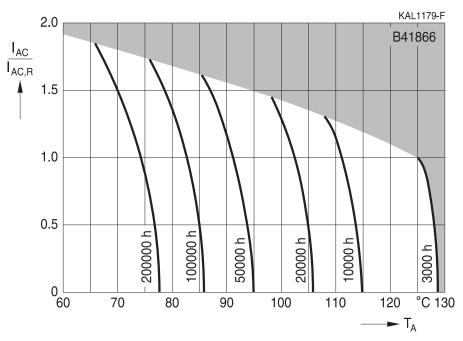
006 = for taped leads, Ammo pack, lead spacing F = 3.5 mm (for \emptyset 8 mm)

008 = for taped leads, Ammo pack, lead spacing F = 5.0 mm (for $d \times I = 8 \times 11.5 \dots 12.5 \times 25 \text{ mm}$)

009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (for d \times I = 16 \times 20 ... 16 \times 31.5 mm and 18 \times 20 ... 18 \times 31.5 mm)



High ripple current - 125 °C

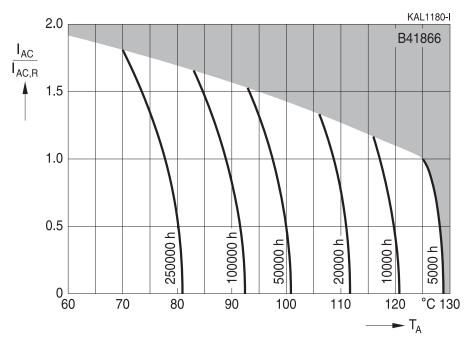

Useful life1)

depending on ambient temperature T_A under ripple current operating conditions d = 8 mm and $V_R \leq 63\ V_{DC}$

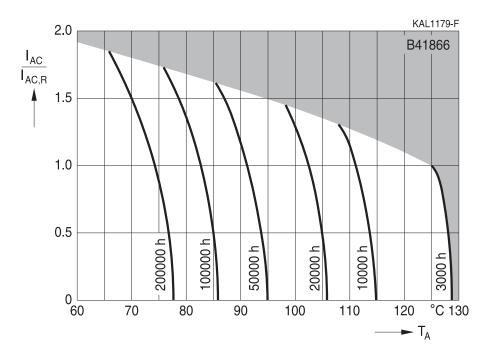
Useful life1)

depending on ambient temperature T_A under ripple current operating conditions d = 10 mm and $V_R \leq 63~V_{\text{DC}}$

¹⁾ Refer to chapter "General technical information, 5 Useful life" on how to interpret useful life.



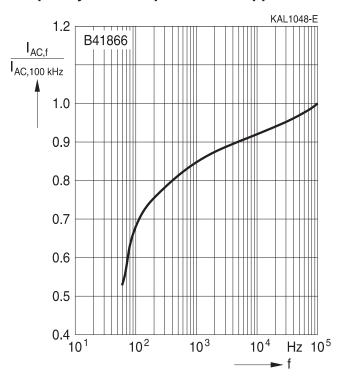
Useful life1)

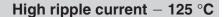

depending on ambient temperature T_{A} under ripple current operating conditions

 $d \geq 12.5 \ mm$ and $V_R \leq 63 \ V_{DC}$

Useful life1)

depending on ambient temperature T_{A} under ripple current operating conditions $V_{\text{R}} = 75 \ V_{\text{DC}}$


1) Refer to chapter "General technical information, 5 Useful life" on how to interpret useful life.



High ripple current - 125 $^{\circ}$ C

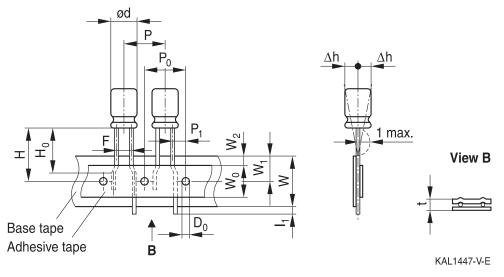
Frequency factor of permissible ripple current I_{AC} versus frequency f

Taping, packing and lead configurations

Taping

Single-ended capacitors are available taped in Ammo pack from diameter 8 to 18 mm as follows:

Lead spacing F = 3.5 mm ($\emptyset \text{ d} = 8 \text{ mm}$)


Lead spacing $F = 5.0 \text{ mm} (\emptyset \text{ d} = 8 \dots 12.5 \text{ mm})$

Lead spacing F = 7.5 mm ($\emptyset \text{ d} = 16 \dots 18 \text{ mm}$).

The dimensions for F, P₁ and 1 max. are specified with reference to the center of the terminal wires.

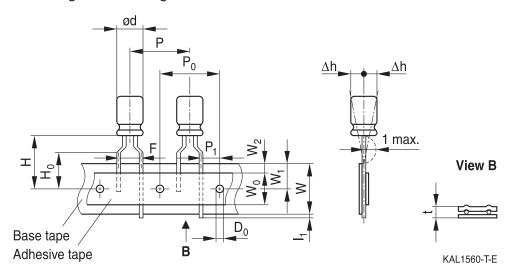
Lead spacing 3.5 mm (\emptyset d = 8 mm)

Last 3 digits of ordering code: 006

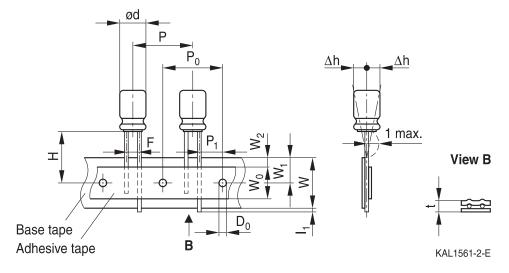
Dimensions in mm

Ø d	F	Н	W	W_0	W ₁	W_2	Р	P ₀	P ₁	I ₁	t	Δh	D ₀
8	3.5	18.5	18.0	9.5	9.0	3.0	12.7	12.7	4.6	1.0	0.7	1.0	4.0
Toler-	+0.8	±1.0	±0.5	min.	±0.5	max.	±1.0	±0.3	±0.6	max.	±0.2	max.	±0.2
ance	-0.2												

Leads can also run straight through the taping area.



High ripple current - 125 °C


Lead spacing 5.0 mm (\emptyset d = 8 mm)

Last 3 digits of ordering code: 008

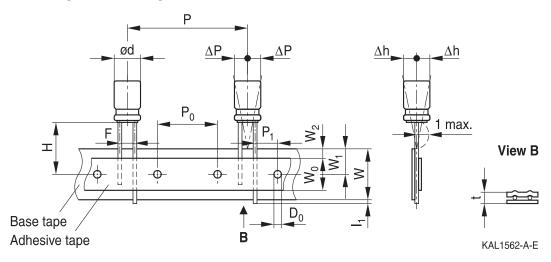
Lead spacing 5.0 mm (\varnothing d = 10 ... 12.5 mm)

Last 3 digits of ordering code: 008

Dimensions in mm

\emptyset d	F	Н	W	W_0	W_1	W_2	H ₀	Р	P ₀	P ₁	I ₁	t	Δh	D ₀
8		20.0		9.5			16.0	12.7	12.7	3.85				
10	5.0	19.0	18.0	9.5	9.0	1.5	_	12.7	12.7	3.85	1.0	0.6	1.0	4.0
12.5		19.0		11.5	1.5		_	15.0	15.0	5.0				
Toler- ance	+0.8 -0.2	±0.75	±0.5	min.	±0.5	max.	±0.5	±1.0	±0.2	±0.5	max.	+0.3 -0.2	max.	±0.2

Taping is available up to dimensions $d \times I = 12.5 \times 25$ mm.



Lead spacing 7.5 mm (\varnothing d = 16 ...18 mm)

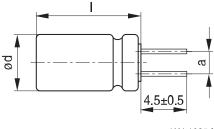
Last 3 digits of ordering code: 009

Dimensions in mm

\emptyset d	F	Н	W	W_0	W ₁	W_2	Р	P ₀	P ₁	I ₁	t	ΔΡ	Δh	D ₀
16	7.5	18.5	10 0	10.5	0.0	1.5	20.0	15.0	2.75	1.0	0.7	0	0	4.0
18													U	
Toler-	±0.8	-0.5	+0.5	min	+0.5	may	±1 0	+0.2	+0.5	may	+0.2	±1 0	±1 0	+0.2
ance		$\begin{array}{c c} -0.5 \\ +0.75 \end{array} \pm 0.5$	111111.	10.5	max.	1.0	∪.∠	0.5	max.	∪.∠	1.0	1.0	∪.∠	

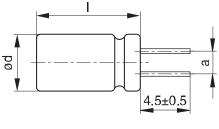
Taping is available up to dimensions $d \times I = 16 \times 31.5$ mm and 18×31.5 mm.

High ripple current - 125 $^{\circ}$ C


Cut or kinked leads

Single-ended capacitors are available with cut or kinked leads. Other lead configurations also available upon request.

Cut leads


Last 3 digits of ordering code: 002

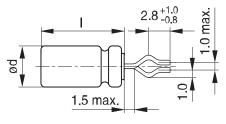
With stand-off rubber seal

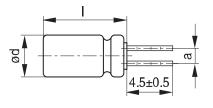
KAL1085-I

With flat rubber seal

KAL1086-R

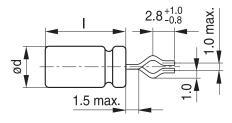
Case size	Dimensions (mm)
$d \times I (mm)$	a ±0.5
10 × 12.5	5.0
10 × 16	5.0
10 × 20	5.0
12.5 × 20	5.0
12.5 × 25	5.0
16 × 20	7.5
16 × 25	7.5
16 × 31.5	7.5
16 × 35.5	7.5
18 × 20	7.5
18 × 25	7.5
18 × 31.5	7.5
18 × 35	7.5
18 × 40	7.5


High ripple current - 125 $^{\circ}\text{C}$

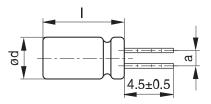

Kinked leads

Last 3 digits of ordering code: 001

With stand-off rubber seal



KAL1081-K



KAL1083-2

With flat rubber seal

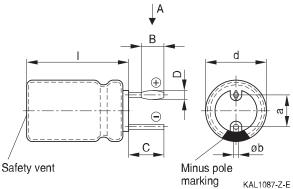
KAL1082-T

KAL1084-A

Case size	Dimensions (mm)
$d \times I (mm)$	a ±0.5
10 × 20	5.0
12.5 × 20	5.0
12.5 × 25	5.0
16 × 20	7.5
16 × 25	7.5
16 × 31.5	7.5
16 × 35.5	7.5
18 × 20	7.5
18 × 25	7.5
18 × 31.5	7.5
18 × 35	7.5
18 × 40	7.5

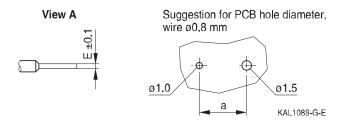
High ripple current - 125 °C

PAPR leads (Protection Against Polarity Reversal)


These lead configurations ensure correct placement of the capacitor on the PCB with regard to polarity. PAPR leads are available for diameters from 10 mm up to 18 mm (excluding $d \times I = 12.5 \times 30/35/40$ mm).

There are three configurations available: Crimped leads, J leads, bent 90° leads.

Crimped leads

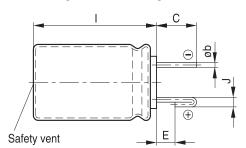

Last 3 digits of ordering code: 003

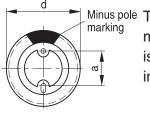
With stand-off rubber seal

The series B41898 has no sleeve nor minus pole marking, the positive pole is marked on the aluminum case side instead.

Suggestion for PCB hole diameter

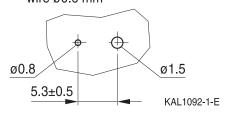
Case size	Dimension	Dimensions (mm)					
$d \times I (mm)$	B ±0.2	C ±0.5	D ±0.1	E ±0.1	a ±0.5	∅b	
16 × 20	1.5	3.0	1.3	0.3	7.5	0.8 ±0.05	
16 × 25	1.5	3.0	1.3	0.3	7.5	0.8 ±0.05	
16 × 31.5	1.5	3.0	1.3	0.3	7.5	0.8 ±0.05	
16 × 35.5	1.5	3.0	1.3	0.3	7.5	0.8 ±0.05	
18 × 20	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1	
18 × 25	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1	
18 × 31.5	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1	
18 × 35	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1	
18 × 40	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1	



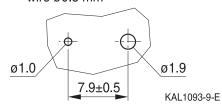


J leads

Last 3 digits of ordering code: 004


KAL1091-S-E

Minus pole marking

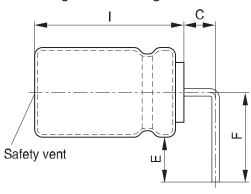

The series B41898 has no sleeve nor minus pole marking, the positive pole is marked on the aluminum case side instead.

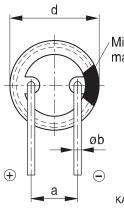
Suggestion for PCB hole diameter

Suggestion for PCB hole diameter, wire $\emptyset 0.6 \text{ mm}$

Suggestion for PCB hole diameter, wire $\emptyset 0.8 \text{ mm}$

Case size	Dimensions (mm)					
$d \times I (mm)$	C ±0.5	E ±0.5	J ±0.2	a ±0.5	Øb	
10 × 12.5	3.2	0.7	1.2	5.0	0.6 ±0.05	
10 × 16	3.2	0.7	1.2	5.0	0.6 ±0.05	
10 × 20	3.2	0.7	1.2	5.0	0.6 ±0.05	
12.5 × 20	3.2	0.7	1.2	5.0	0.6 ±0.05	
12.5 × 25	3.2	0.7	1.2	5.0	0.6 ±0.05	
16 × 20	3.5	0.7	1.6	7.5	0.8 ±0.05	
16 × 25	3.5	0.7	1.6	7.5	0.8 ±0.05	
16 × 31.5	3.5	0.7	1.6	7.5	0.8 ±0.05	
16 × 35.5	3.5	0.7	1.6	7.5	0.8 ±0.05	
18 × 20	3.5	0.7	1.6	7.5	0.8 ±0.1	
18 × 25	3.5	0.7	1.6	7.5	0.8 ±0.1	
18 × 31.5	3.5	0.7	1.6	7.5	0.8 ±0.1	
18 × 35	3.5	0.7	1.6	7.5	0.8 ±0.1	





High ripple current - 125 °C

Bent 90° leads for horizontal mounting pinning

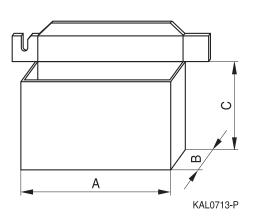
Last 3 digits of ordering code: 012

Minus pole The series B41898 has no marking sleeve nor minus pole marking, the positive pole is marked on the aluminum case side instead.

KAL1094-H-E

Case size	Dimension	Dimensions (mm)					
$d \times I (mm)$	C ±0.5	E ±0.5	F ±0.5	a ±0.5	Øb		
16 × 20	4.0	4.0	12.0	7.5	0.8 ±0.05		
16 × 25	4.0	4.0	12.0	7.5	0.8 ±0.05		
16 × 31.5	4.0	4.0	12.0	7.5	0.8 ±0.05		
16 × 35.5	4.0	4.0	12.0	7.5	0.8 ±0.05		
18 × 20	4.0	4.0	13.0	7.5	0.8 ±0.1		
18 × 25	4.0	4.0	13.0	7.5	0.8 ±0.1		
18 × 31.5	4.0	4.0	13.0	7.5	0.8 ±0.1		
18 × 35	4.0	4.0	13.0	7.5	0.8 ±0.1		
18 × 40	4.0	4.0	13.0	7.5	0.8 ±0.1		

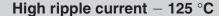
Bent leads for diameter 12.5 mm available upon request.



Packing units and box dimensions

Ammo pack

Case size d × l	Dimens	Packing units		
mm	A_{max}	B _{max}	C_{max}	pcs.
8 × 11.5	345	60	240	1000
10 × 12.5	345	60	280	750
10 × 16	345	65	200	500
10×20	345	65	200	500
12.5 × 20	345	65	260	500
12.5 × 25	345	70	260	500
16 × 20	325	65	285	300
16 × 25	325	65	285	300
16 × 31.5	325	80	275	300
18 × 20	325	65	285	250
18 × 25	325	65	285	250
18 × 31.5	325	80	275	250



High ripple current - 125 $^{\circ}$ C

Overview of packing units and code numbers

								PAPR	
Case size	Stan-	Taped	,		Kinked	Cut	Crimped	J leads,	Bent 90°
$d \times I$	dard,	Ammo	pack		leads,	leads,	leads,	blister	leads,
	bulk				bulk	bulk	blister		blister
mm	pcs.	pcs.			pcs.	pcs.	pcs.	pcs.	pcs.
8 × 11.5	1000	1000			_	_	_	_	
10 × 12.5	1000	750			_	1000	_	900	
10 × 16	1000	500			_	1000	_	675	
10 × 20	500	500			500	500	_	500	
12.5 × 20	350	500			350	350	_	300	1)
12.5 × 25	250	500			500	500	_	225	1)
12.5 × 30	200	_			_	_	_	_	
12.5 × 35	175	_			_	_	_	_	
12.5 × 40	175	_	_			_	_	_	
16 × 20	250	300	300			200	200	200	420
16 × 25	250	300			200	200	216	216	216
16 × 31.5	200	300			250	250	180	180	180
16 × 35.5	100	_			100	100	150	150	150
18 × 20	175	250			175	175	200	200	420
18 × 25	150	250			150	150	200	200	200
18 × 31.5	100	250			100	100	150	150	150
18 × 35	100	_			100	100	150	150	150
18 × 40	125	_				100	72	_	72
The last three	000	Code	F (mm)	d (mm)	001	002	003	004	012
digits of the		006	3.5	8					
complete		800	5	812.5					
ordering code		009	7.5	1618					
state the lead									
configuration									

Cautions and warnings

Personal safety

The electrolytes used by EPCOS have been optimized both with a view to the intended application and with regard to health and environmental compatibility. They do not contain any solvents that are detrimental to health, e.g. dimethyl formamide (DMF) or dimethyl acetamide (DMAC).

Furthermore, some of the high-voltage electrolytes used by EPCOS are self-extinguishing.

As far as possible, EPCOS does not use any dangerous chemicals or compounds to produce operating electrolytes, although in exceptional cases, such materials must be used in order to achieve specific physical and electrical properties because no alternative materials are currently known. We do, however, restrict the amount of dangerous materials used in our products to an absolute minimum.

Materials and chemicals used in EPCOS aluminum electrolytic capacitors are continuously adapted in compliance with the EPCOS Corporate Environmental Policy and the latest EU regulations and guidelines such as RoHS, REACH/SVHC, GADSL, and ELV.

MDS (Material Data Sheets) are available on the EPCOS website for all types listed in the data book. MDS for customer specific capacitors are available upon request.

MSDS (Material Safety Data Sheets) are available for all of our electrolytes upon request.

Nevertheless, the following rules should be observed when handling aluminum electrolytic capacitors: No electrolyte should come into contact with eyes or skin. If electrolyte does come into contact with the skin, wash the affected areas immediately with running water. If the eyes are affected, rinse them for 10 minutes with plenty of water. If symptoms persist, seek medical treatment. Avoid inhaling electrolyte vapor or mists. Workplaces and other affected areas should be well ventilated. Clothing that has been contaminated by electrolyte must be changed and rinsed in water.

High ripple current - 125 $^{\circ}$ C

Product safety

The table below summarizes the safety instructions that must be observed without fail. A detailed description can be found in the relevant sections of chapter "General technical information".

Topic	Safety information	Reference chapter "General technical information"
Polarity	Make sure that polar capacitors are connected with the right polarity.	1 "Basic construction of aluminum electrolytic capacitors"
Reverse voltage	Voltages of opposite polarity should be prevented by connecting a diode.	3.1.6 "Reverse voltage"
Mounting position of screw-terminal capacitors	Screw terminal capacitors must not be mounted with terminals facing down unless otherwise specified.	11.1. "Mounting positions of capacitors with screw terminals"
Robustness of terminals	The following maximum tightening torques must not be exceeded when connecting screw terminals: M5: 2.5 Nm M6: 4.0 Nm	11.3 "Mounting torques"
Mounting of single-ended capacitors	The internal structure of single-ended capacitors might be damaged if excessive force is applied to the lead wires. Avoid any compressive, tensile or flexural stress. Do not move the capacitor after soldering to PC board. Do not pick up the PC board by the soldered capacitor. Do not insert the capacitor on the PC board with a hole space different to the lead space specified.	11.4 "Mounting considerations for single-ended capacitors"
Soldering	Do not exceed the specified time or temperature limits during soldering.	11.5 "Soldering"
Soldering, cleaning agents Upper category temperature	Do not allow halogenated hydrocarbons to come into contact with aluminum electrolytic capacitors. Do not exceed the upper category temperature.	11.6 "Cleaning agents" 7.2 "Maximum permissible operating temperature"
Passive flammability	Avoid external energy, e.g. fire.	8.1 "Passive flammability"

Topic	Safety information	Reference chapter "General
		technical information"
Active	Avoid overload of the capacitors.	8.2
flammability		"Active flammability"
Maintenance	Make periodic inspections of the capacitors.	10
	Before the inspection, make sure that the power supply is turned off and carefully discharge the	"Maintenance"
	capacitors.	
	Do not apply excessive mechanical stress to the	
	capacitor terminals when mounting.	
Storage	Do not store capacitors at high temperatures or	7.3
	high humidity. Capacitors should be stored at	"Shelf life and storage
	+5 to +35 °C and a relative humidity of \leq 75%.	conditions"
		Reference
		chapter "Capacitors with screw terminals"
Breakdown strength	Do not damage the insulating sleeve, especially	"Screw terminals -
of insulating	when ring clips are used for mounting.	accessories"
sleeves		

Display of ordering codes for EPCOS products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of EPCOS, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products.

Detailed information can be found on the Internet under www.epcos.com/orderingcodes.

High ripple current - 125 $^{\circ}\text{C}$

Symbols and terms

Symbol	English	German
С	Capacitance	Kapazität
C_R	Rated capacitance	Nennkapazität
C_s	Series capacitance	Serienkapazität
$C_{S,T}$	Series capacitance at temperature T	Serienkapazität bei Temperatur T
C_{f}	Capacitance at frequency f	Kapazität bei Frequenz f
d	Case diameter, nominal dimension	Gehäusedurchmesser, Nennmaß
d_{max}	Maximum case diameter	Maximaler Gehäusedurchmesser
ESL	Self-inductance	Eigeninduktivität
ESR	Equivalent series resistance	Ersatzserienwiderstand
ESR _f	Equivalent series resistance at frequency f	Ersatzserienwiderstand bei Frequenz f
ESR _T	Equivalent series resistance at temperature T	Ersatzserienwiderstand bei Temperatur T
f	Frequency	Frequenz
1	Current	Strom
I_{AC}	Alternating current (ripple current)	Wechselstrom
$I_{AC,RMS}$	Root-mean-square value of alternating current	Wechselstrom, Effektivwert
$I_{AC,f}$	Ripple current at frequency f	Wechselstrom bei Frequenz f
$I_{AC,max}$	Maximum permissible ripple current	Maximal zulässiger Wechselstrom
$I_{AC,R}$	Rated ripple current	Nennwechselstrom
l _{leak}	Leakage current	Reststrom
I _{leak,op}	Operating leakage current	Betriebsreststrom
1	Case length, nominal dimension	Gehäuselänge, Nennmaß
I _{max}	Maximum case length (without terminals and mounting stud)	Maximale Gehäuselänge (ohne Anschlüsse und Gewindebolzen)
R	Resistance	Widerstand
R_{ins}	Insulation resistance	Isolationswiderstand
R_{symm}	Balancing resistance	Symmetrierwiderstand
Т	Temperature	Temperatur
ΔT	Temperature difference	Temperaturdifferenz
T_A	Ambient temperature	Umgebungstemperatur
T_C	Case temperature	Gehäusetemperatur
T_B	Capacitor base temperature	Temperatur des Gehäusebodens
t	Time	Zeit
Δt	Period	Zeitraum
t_b	Service life (operating hours)	Brauchbarkeitsdauer (Betriebszeit)

Symbol	English	German
V	Voltage	Spannung
V_{F}	Forming voltage	Formierspannung
V_{op}	Operating voltage	Betriebsspannung
V_{R}	Rated voltage, DC voltage	Nennspannung, Gleichspannung
V_S	Surge voltage	Spitzenspannung
X_{C}	Capacitive reactance	Kapazitiver Blindwiderstand
X_L	Inductive reactance	Induktiver Blindwiderstand
Z	Impedance	Scheinwiderstand
Z_T	Impedance at temperature T	Scheinwiderstand bei Temperatur T
$tan \ \delta$	Dissipation factor	Verlustfaktor
λ	Failure rate	Ausfallrate
ϵ_0	Absolute permittivity	Elektrische Feldkonstante
ϵ_{r}	Relative permittivity	Dielektrizitätszahl
ω	Angular velocity; $2 \cdot \pi \cdot f$	Kreisfrequenz; $2 \cdot \pi \cdot f$

Note

All dimensions are given in mm.

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).

Important notes

7. The trade names EPCOS, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PQSine, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, TFAP, ThermoFuse, WindCap are **trademarks registered or pending** in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Aluminium Electrolytic Capacitors - Radial Leaded category:

Click to view products by EPCOS manufacturer:

Other Similar products are found below:

NRELS102M35V16X16C.140LLF ESRG160ETC100MD07D 227RZS050M 335CKR250M 476CKH100MSA 477CKR100M 107CKR010M 107CKH063MSA RJH-25V222MI9# RJH-35V221MG5# B43827A1106M8 RJH-50V221MH6# EKYA500ELL470MF11D B41022A5686M6 ESRG250ELL101MH09D EKMA160EC3101MF07D RJB-10V471MG3# ESMG160ETD221MF11D EKZH160ETD152MJ20S RJH-35V122MJ6# EGXF630ELL621ML20S RBD-25V100KE3#N EKMA350ELL100ME07D ESMG160ETD101ME11D ELXY100ETD102MJ20S EGXF500ELL561ML15S EKMG350ETD471MJ16S 35YXA330MEFC10X12.5 RXW471M1ESA-0815 ELXZ630ELL221MJ25S ERR1HM1R0D11OT LPE681M30060FVA LPL471M22030FVA HFE221M25030FVA LKMD1401H221MF B41888G6108M000 EKMA160ETD470MF07D UHW1J102MHD6 EKMG500ETD221MJC5S LKMK2502W101MF LKMD1401H181MF LKMI2502G820MF LKMJ2001J122MF LKML2501C472MF LKMJ4002C681MF 450MXH330MEFCSN25X45 450MXK330MA2RFC22X50 63ZLH560MEFCG412.5X30 ELH2DM331O25KT ELH2DM471P30KT