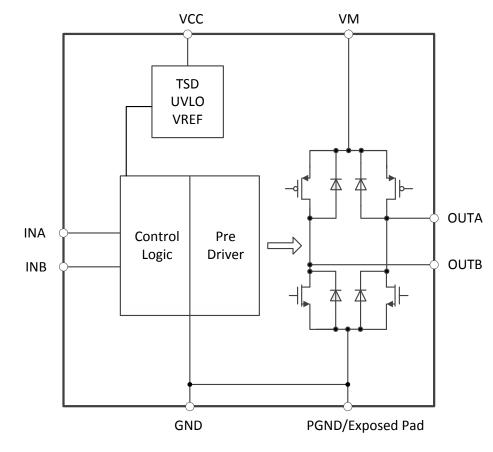


### DESCRIPTION


The BDR6133 is 1 Full-On Drive H-Bridge channel with two different packages. The driver features wide range operating from 2V to 24Vand low power consumption by fast switching speed.

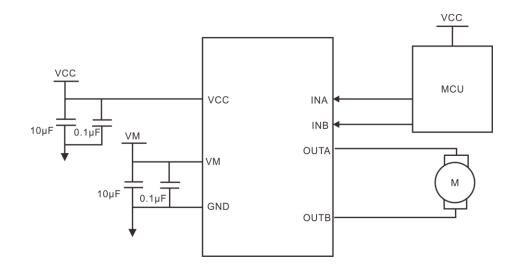
### **APPLICATIONS**

- DC brushed motor
- Auto icemaker or dumper drive for refrigerator
- Intelligent electronic lock

#### **FEATURES**

- It is low consumption by BCD process adoption
- Small packages: ESOP8
- Wide power-supply voltage range: -Control (VCC): 2.7V~5.5V
  Motor (VM): 2.0V~24V
- High DC output current: Max.=2.8A
- Ultra low RDSON(TOP+BOT): 0.51ΩTYP@25°C, 1A for ESOP8;
- Low current consumption when power-down: <0.05µA @25°C</li>
- PWM control, Max. input frequency: 200KHz.
- Operating temperature range: -40~+85°C
- Charge-pump less
- Shoot-through current protection
  - Built-in protection circuits - Under voltage lock out
- Thermal shut down

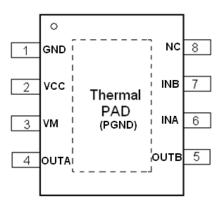



Note: GND and PGND/Exposed Pad are connected together internally.

## **BLOCK DIAGRAM**



# **APPLICATION CIRCUITS**


#### ESOP8



### **ORDER INFORMATION**

| Valid Part Number | Package Type | Top Code |
|-------------------|--------------|----------|
| BDR6133           | 8pins,ESOP   | BDR6133  |

# PIN CONFIGURATION ESOP8

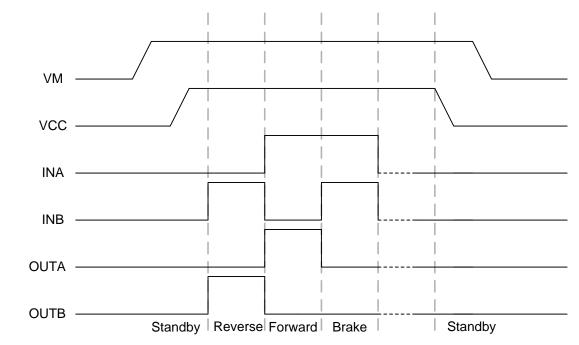




**BDR6133** 

### **PIN DESCRIPTION**

| Pin Name | I/O   | Description                              | Pin No.     |  |
|----------|-------|------------------------------------------|-------------|--|
| NC       | -     | NC pin                                   | 8           |  |
| GND      | GND   | Ground                                   | 1           |  |
| VCC      | Power | Power supply for logic circuit           | 2           |  |
| VM       | Power | Power supply for driver                  | 3           |  |
| OUTA     | 0     | H-Bridge output terminal A of the driver | 4           |  |
| OUTB     | 0     | H-Bridge output terminal B of the driver | 5           |  |
| INA      | I     | Control input                            | 6           |  |
| INB      | I     | Control input                            | 7           |  |
| PGND     | GND   | Power MOS GND                            | Thermal PAD |  |




### **FUNCTION TABLE**

#### **INPUT-OUTPUT LOGIC TABLE**

| Input Signal |     | Outpu | t Driver | Actuator status |  |
|--------------|-----|-------|----------|-----------------|--|
| INA          | INB | OUTA  | OUTB     | Actuator status |  |
| L            | L   | Z     | Z        | Stand-by(Stop)  |  |
| L            | Н   | L     | Н        | Reverse         |  |
| Н            | L   | Н     | L        | Forward         |  |
| Н            | Н   | L     | L        | Brake           |  |

#### **FUNCTION SEQUENCE**



Note: VM & VCC power on have no timing sequence

VM & VCC power off have no timing sequence



## **PROTECTION FUNCTION**

#### THERMAL SHUTDOWN (TSD) CIRCUIT

The BDR6133 includes a thermal shutdown circuit, which turns the output transistors off when the junction temperature (Tj) exceeds 175°C (typ.).

The output transistors are automatically turned on when Tj cools past the shutdown threshold, which is lowered by a hysteresis of 30°C.

TSD = 175°C ΔTSD = 30°C

\* In thermal shutdown mode, the circuits powered by VCC are work normal, and the circuits powered by VM are shut down.

### UNDER VOLTAGE LOCKOUT (UVLO) CIRCUIT

The BDR6133 includes an under voltage lockout circuit, which puts the output transistors in the high-impedance state when VCC decreases to 2.13V (typ.) or lower.

The output transistors are automatically turned on when VCC increases past the lockout threshold, which is raised to 2.21 V by a hysteresis of 0.08 V.

\*In UVLO shutdown mode, a part of circuits powered by VCC are work normal, and the circuits powered by VM are shut down.

#### SHOOT-THROUGH CURRENT PROTECTION

During Dead Time (Shoot through current circuit is operated.), Power MOS both of HI side and Low side are turned off. But in this time, internal parasitic diode is turned on according to current direction.



### **ABSOLUTE MAXIMUM RATINGS**

| Parameter                    | Symbol          | Min  | Max | Unit | Note  |
|------------------------------|-----------------|------|-----|------|-------|
| Supply voltage VCC           | VCC             | -0.5 | 6   | V    |       |
| Control input voltage        | INA/INB         | -0.5 | 6   | V    |       |
| Supply voltage VM            | VM              | -0.5 | 26  | V    |       |
| H-Bridge output current DC   | lload_dc_MD     | -    | 2.8 | А    |       |
| H-Bridge output current AC   | lload_peak_MD   | -    | 4.8 | A    | Note1 |
| II-Bhage output current AC   | libad_peak_iviD | -    | 7.5 | A    | Note2 |
| Continuous nower dissinction | Pd Ta=25℃       | -    | 3   | W    | Note4 |
| Continuous power dissipation | Pd Ta=85℃       | -    | 1.6 | W    | NOLE4 |
| Operation temperature        | Та              | -40  | 85  | °C   |       |
| Junction temperature         | Tj              | -    | 150 | °C   |       |
| Storage temperature          | Tstg            | -40  | 150 | °C   |       |
| Minimum ESD rating(HBM)      | Vesd            | 2000 | -   | V    |       |
| Minimum ESD rating(MM)       | Vesd            | 200  | -   | V    |       |

Notes:

1. Terminal OUTA,OUTB pulse with =<200ms:Duty 5%

2. Terminal OUTA,OUTB pulse with =<200ms:Duty 1%

 Maximum power dissipation is a function of TJ(max), Rja, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) - TA)/Rja. Operating at the absolute maximum TJ of 150° C can affect reliability.

4. The package thermal impedance for ESOP8 is calculated in accordance with JEDEC, 2S2P test PCB, Rja=41 °C/W

#### **RECOMMENDED OPERATION CONDITIONS**

| Parameter                                                                                                        | Symbol  | Min  | Тур.    | Max | Unit |
|------------------------------------------------------------------------------------------------------------------|---------|------|---------|-----|------|
| Supply voltage VCC                                                                                               | VCC     | 2.7  | 3.3     | 5.5 | V    |
| Control input voltage                                                                                            | INA/INB | 1.62 | 1.8/3.3 | VCC | V    |
| Supply voltage VM                                                                                                | VM      | 2    | -       | 24  | V    |
| Logic input frequency                                                                                            | Fin     | 0    | -       | 200 | KHz  |
| Logic input duty for frequency=200KHz<br>(Ta=25°C, VCC=3.3V,VM=12V, Rload=50Ω,<br>Output state: Forward↔Reverse) | Duty    | 6%   | -       | 94% | %    |



### **ELECTRICAL CHARACTERISTICS**

(Unless otherwise specified, Ta=25°C, VCC=3.3V, VM=7.4V)

| Parameter                             | Symbol    | Conditions                                               | Min.    | Тур.  | Max.    | Unit |
|---------------------------------------|-----------|----------------------------------------------------------|---------|-------|---------|------|
| VDET1                                 |           |                                                          |         |       |         |      |
| VCC UVLO                              | VCDET_LV  |                                                          | 1.90    | 2.13  | 2.50    | V    |
| TSD (Note)                            |           |                                                          |         |       | •       |      |
| Thermal shut down temperature         | TDET      |                                                          | -       | 175   | -       | °C   |
| Hysteresis                            | TDETHYS   |                                                          | -       | 30    | -       | °C   |
| Power Supply Current                  |           |                                                          |         |       | •       |      |
| VM standby current1                   | IVM_NOPOW | VCC=L                                                    | -       | 0.005 | 0.05    | μA   |
| VM standby current2                   | IVM_STBY  | INA=INB=L                                                | -       | 0.005 | 0.05    | μA   |
| VCC work current                      | IVCC_WORK | INA=H, INB=L                                             | -       | 130   | 300     | μA   |
| Operation circuit current             | IVCC_PWM  | INA=200KHz,INB=H                                         | -       | 0.38  | 0.8     | mA   |
| Driver                                |           |                                                          |         |       | 1       |      |
| Output onresistance 1                 | DONIA     | VCC=3.3V,IOUT=100mA                                      |         | 0.05  | 0.07    |      |
| (HSD or LSD)                          | RON1      | Ta=25℃                                                   | -       | 0.25  | 0.27    | Ω    |
| Output onresistance 2<br>(HSD or LSD) | RON2      | VCC=3.3V,Iouт=1.0A<br>Ta=25℃(Tj=65℃)                     | -       | 0.255 | 0.29    | Ω    |
| Output onresistance 3<br>(HSD or LSD) | RON3      | VCC=3.3V,I <sub>OUT</sub> =1.0A<br>Ta=85℃(Tj=125℃)       | -       | 0.295 | 0.35    | Ω    |
| Diode forward voltage                 | VF_MD     | IF=100mA                                                 | -       | 0.7   | 1.2     | V    |
| Control Terminal                      |           |                                                          |         |       | •       |      |
| H level input voltage(INA, INB)       | VIH       |                                                          | 0.7xVCC | -     | -       | V    |
| L level input voltage(INA, INB)       | VIL       |                                                          | -       | -     | 0.3xVCC | V    |
| H level input current(INA, INB)       | IIH1      |                                                          | -       | -     | 1       | μA   |
| L level input current(INA, INB)       | IIL1      |                                                          | -       | -     | 1       | μA   |
| Full Swing                            |           |                                                          |         |       |         |      |
| Turn on time 1                        | TfONH     | VCC=3.3V,VM=7.4V                                         | -       | 0.42  | 1.0     | μs   |
|                                       |           | I <sub>OUT</sub> =500mA,                                 | -       | 0.11  | 0.5     | μs   |
| Output rise time 1                    | Tfr       | Output state:<br>Forward→Reverse.                        | -       | 0.09  | 1.0     | μs   |
| Output fall time 1                    | Tff       | Refer to Fig.1                                           | -       | 0.04  | 0.5     | μs   |
| Turn on time 2                        | TrONH     | VCC=3.3V,VM=7.4V                                         | -       | 0.38  | 1.0     | μs   |
| Turn off time 2                       | TrOFFH    | Ιουτ=500mA,                                              | -       | 0.11  | 0.5     | μs   |
| Output rise time 2                    | Trr       | Output state:<br>Reverse→Forward.                        | -       | 0.09  | 1.0     | μs   |
| Output fall time 2                    | Trf       | Refer to Fig.1                                           | -       | 0.04  | 0.5     | μs   |
| Turn on time 1                        | TfONH     | VCC=3.3V,VM=7.4V<br>I <sub>OUT</sub> =500mA,             | -       | 2.10  | 10      | μs   |
| Output rise time 1                    | Tfr       | Output state:<br>STBY→Forward/Reverse.<br>Refer to Fig.2 | -       | 0.09  | 1.0     | μs   |
| Turn off time 1                       | TfOFFH    | VCC=3.3V,VM=7.4V<br>I <sub>OUT</sub> =500mA,             | -       | 0.11  | 0.5     | μs   |
| Output fall time 1                    | Tff       | Output state:<br>Forward/Reverse→STBY<br>Refer to Fig.2  | -       | 0.04  | 0.5     | μs   |

Note: OUTA and OUTB are Hi-Z (off state) at thermal shut down.



### SWITCHING CHARACTERISTICS WAVEFORM

#### SWITCHING WAVEFORM

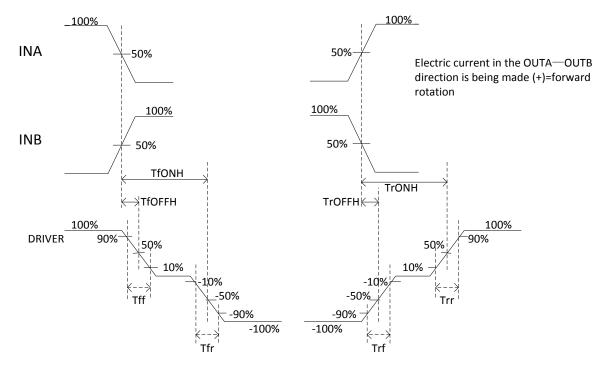



Fig.1 switching characteristics waveform

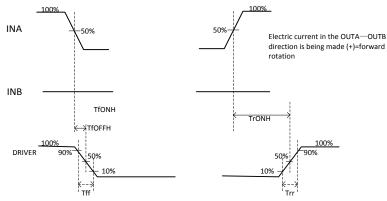
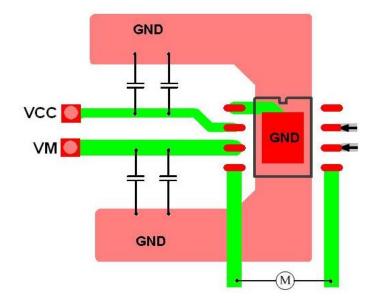
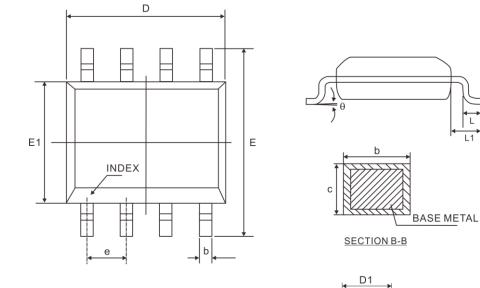
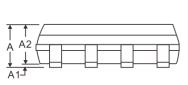



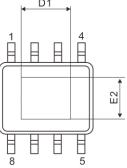

Fig.2 switching characteristics waveform



## PCBLAYOUT


8-PIN, ESOP




## **PACKAGE INFORMATION**

#### 8-PIN, ESOP







L 1

| Symbol | Dimensions(mm) |          |      |  |  |
|--------|----------------|----------|------|--|--|
| Symbol | Min.           | Nom.     | Max. |  |  |
| A      | -              | -        | 1.70 |  |  |
| A1     | 0.00           | -        | 0.15 |  |  |
| A2     | 1.25           | -        | -    |  |  |
| b      | 0.31           | -        | 0.51 |  |  |
| С      | 0.17           | 0.25     |      |  |  |
| е      | 1.27 BSC       |          |      |  |  |
| D      |                | 4.90 BSC |      |  |  |
| D1     | 3.1 3.3 3.5    |          |      |  |  |
| E      | 6.00 BSC       |          |      |  |  |
| E1     | 3.90 BSC       |          |      |  |  |
| E2     | 2.2 2.4 2.6    |          |      |  |  |
| L      | 0.40 - 1.27    |          |      |  |  |
| L1     | 1.04 REF       |          |      |  |  |
| θ      | 0° - 8°        |          |      |  |  |

Notes:

1. Refer to JEDEC MS-012 BA

2. All dimensions are in millimeter.

3. D1 and E2 refer to supplier spec. The JEDEC MS-012BA classify D1 and E2 minimum value are 1.5mm and 1.0mm.



#### **IMPORTANT NOTICE**

Shenzhen Bardeen Microelectronics(BDM) CO.,LTD reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and to discontinue any product without notice at any time.

BDM cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a BDM product. No circuit patent licenses are implied.

Shenzhen Bardeen Microelectronics(BDM) CO.,LTD. 208-209,Building No.1 Yoho Space QunHui Road No.1,Xin'an Street, Bao'an District ,ShenZhen Tel: 86-755-23505821 http://www.bdasic.com

#### **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Motor/Motion/Ignition Controllers & Drivers category:

Click to view products by Bardeen Micro manufacturer:

Other Similar products are found below :

LV8133JA-ZH LV8169MUTBG LV8774Q-AH MC33931EKR2 FSB50250UTD FSB50550TB2 FSBF15CH60BTH MSVCPM2-63-12 MSVGW45-14-2 MSVGW54-14-3 NTE7043 LA6565VR-TLM-E LB11650-E LB1837M-TLM-E LB1845DAZ-XE LV8281VR-TLM-H IRAM236-1067A LA6584JA-AH LB11847L-E NCV70501DW002R2G AH293-PL-B TND315S-TL-2H FNA23060 FSB50250AB FNA41060 MSVBTC50E MSVCPM3-54-12 MSVCPM3-63-12 MSVCPM4-63-12 FSB50550AB NCV70501DW002G LC898301XA-MH LV8413GP-TE-L-E MSVGW45-14-3 MSVGW45-14-4 MSVGW54-14-4 TB6552FNG,C,8,EL LB11651-E IRSM515-025DA4 LV8127T-TLM-H MC33812EKR2 IKCM10H60GA MC33PT2000AF TDA21801 LB11851FA-BH LB1938FAGEVB IGCM04G60GAXKMA1 IKCM15H60HA TB6569FTG,8,EL IGCM04F60HAXKMA1