The dual-output DFC10 Series provides power solutions to meet commercial and industrial requirements. With power densities above 11 watts per cubic inch (0.67 watts per cm^{3}), overcurrent protection, and five-sided shielded case, the DFC10 meets rigorous needs in an industry-standard case size.

The 120 kHz operating frequency of the DFC10 Series allows an increased power density while including adequate heatsinking and input/output filtering. This eliminates the need for external components in most applications.

Full overload protection is provided by pulse-by-pulse current limiting on models with 48 V input.

Key Features \& Benefits

- RoHS compliant
- High power density, up to 11 watts per cubic inch (0.67 watts per cm^{3})
- Efficiencies up to 79%
- Fully-isolated, fully-filtered design
- Greater than 700 V isolation
- Overcurrent protection
- Five-sided, shielded copper case
- Ultra-wide range input (4:1)

POWER

1. MODEL SELECTION

MODEL	INPUT RANGE [VDC]		OUTPUT		
	MIN	MAX	[VDC]	[mA]	POWER [W]
DFC10U24D5	9	36	± 5	± 850	9
DFC10U24D12	9	36	± 12	± 400	10
DFC10U24D15	9	36	± 15	± 320	10
DFC10U48D12	18	72	± 12	± 415	10
DFC10U48D15	18	72	± 15	± 330	10

2. GENERAL SPECIFICATIONS ${ }^{1}$ - ALL MODELS

PARAMETER	CONDITIONS / DESCRIPTION	MIN	TYP	MAX	UNITS
Isolation ${ }^{2}$					
Isolation Voltage	Input to Output	700			VDC
Leakage Current			10		$\mu \mathrm{A}$
Capacitance	Input to Output		350		pF
Environmental					
Case Operating Range (T_{c})	No Derating	-40		85	${ }^{\circ} \mathrm{C}$
Case Functional Range ${ }^{3}$		-50		100	${ }^{\circ} \mathrm{C}$
Storage Range		-55		105	${ }^{\circ} \mathrm{C}$
Thermal Impedance ${ }^{4}$			16		${ }^{\circ} \mathrm{C} / \mathrm{W}$
General					
MTBF	Calculated		800000		hrs
Weight			1.2/34		oz/g

NOTES

All parameters measured at $\mathrm{Tc}=25^{\circ} \mathrm{C}$, nominal input voltage and full rated load unless otherwise noted.
Case is tied to the COMMON output pin.
3 The functional temperature range is intended to give an additional data point for use in evaluating this power supply. At the low functional temperature the power supply will function with no side effects, however, sustained operation at the high functional temperature will reduce expected operational life. The data sheet specifications are not guaranteed beyond the case operating range.
$4 \quad$ The case thermal impedance is specified as the case temperature rise over ambient per package watt dissipated.

3. INPUT SPECIFICATIONS ${ }^{1}$

PARAMETER	CONDITIONS / DESCRIPTION	MIN	TYP	MAX	UNITS
Voltage Range	DFC10U24D5 / DFC10U24D12 / DFC10U24D15 DFC10U48D12 / DFC10U48D15	$\begin{gathered} 9 \\ 18 \end{gathered}$		$\begin{aligned} & 36 \\ & 72 \end{aligned}$	VDC
Input Current	Full Load / No Load DFC10U24D5 DFC10U24D12 / DFC10U24D15 DFC10U48D12 DFC10U48D15		$\begin{aligned} & 450 / 10 \\ & 510 / 15 \\ & 265 / 4 \\ & 260 / 4 \end{aligned}$		mA
Efficiency	DFC10U24D5 DFC10U24D12 / DFC10U24D15 / DFC10U48D12 DFC10U48D15		$\begin{aligned} & 79 \\ & 78 \\ & 79 \end{aligned}$		
Switching Frequency	DFC10U24D5 / DFC10U24D12 / DFC10U24D15 DFC10U48D12 / DFC10U48D15		$\begin{aligned} & 100 \\ & 120 \end{aligned}$		kHz
Maximum Input Overvoltage, 100 ms maximum	DFC10U24D5 / DFC10U24D12 / DFC10U24D15 DFC10U48D12 / DFC10U48D15			$\begin{aligned} & 45 \\ & 85 \end{aligned}$	VDC
Turn -on Time, 1\% Output Error			20		ms

4. OUTPUT SPECIFICATIONS ${ }^{1}$

PARAMETER	CONDITIONS / DESCRIPTION	MIN	TYP	MAX	UNITS
Output Voltage	DFC10U24D5 DFC10U24D12 / DFC10U48D12 DFC10U24D15 / DFC10U48D15		$\begin{gathered} \pm 5 \\ \pm 12 \\ \pm 15 \end{gathered}$		VDC
Output Voltage Accuracy	DFC10U24D5 DFC10U24D12 / DFC10U48D12 DFC10U24D15 / DFC10U48D15	$\begin{gathered} \pm 4.95 \\ \pm 11.90 \\ \pm 14.90 \end{gathered}$	$\begin{gathered} \pm 5.00 \\ \pm 12.00 \\ \pm 15.10 \end{gathered}$	$\begin{gathered} \pm 5.05 \\ \pm 12.10 \\ \pm 15.10 \end{gathered}$	VDC
Rated Load Range ${ }^{3}$	DFC10U24D5 DFC10U24D12 DFC10U48D12 DFC10U24D15 DFC10U48D15	0.0		$\begin{aligned} & \pm 850 \\ & \pm 400 \\ & \pm 320 \\ & \pm 415 \\ & \pm 330 \end{aligned}$	mA
Load Regulation ${ }^{4}$ 25\% Max Load - Max Load	DFC10U24D5 / DFC10U24D12 / DFC10U24D15 DFC10U48D12 / DFC10U48D15		$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	\%
Cross Regulation ${ }^{5}$			3		\%
Line Regulation	$\begin{array}{r} \text { DFC10U24D5 } \\ \text { DFC10U24D12 / DFC10U24D15 } \\ \text { DFC10U48D12 / DFC10U48D15 } \end{array}$		0.1	$\begin{aligned} & 0.7 \\ & 0.3 \\ & 0.5 \end{aligned}$	\%
Short Term Stability ${ }^{6}$			<0.01		\% / 24 Hrs
Long Term Stability			<0.1		\% / kHrs
Noise, Peak-Peak ${ }^{2}$			100		$m V_{p p}$
RMS Noise			35		mV rms
Temperature Coefficient			50	250	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Short Circuit Protection	24 V Models: Short Term Current Limit 48 V Models: Pulse by Pulse Current Limit				

NOTES

1 All parameters measured at $\mathrm{Tc}=25^{\circ} \mathrm{C}$, nominal input voltage and full rated load unless otherwise noted.
${ }^{2}$ Noise measurement bandwidth is $0-20 \mathrm{MHz}$. RMS noise is measured over a $0.01-1 \mathrm{MHz}$ bandwidth. To simulate standard PCB decoupling practices, output noise is measured with a $10 \mu \mathrm{f}$ tantalum and $0.01 \mu \mathrm{~F}$ ceramic capacitor located 1 inch away from the converter.
The converter may be safely operated at any load from zero to the full rating. Dynamic response of the converter may degrade if the converter is operated with less than 25\% output load.
$4 \quad$ Load regulation is defined for loading/unloading both outputs simultaneously. Load range is 25 to 100%.
5 Cross regulation is defined for loading/unloading one output while the other output is kept at full load. Load range is 25 to 100%.
6 Short term stability is specified after a 30 minute warmup at full load, constant line and recording the drift over a 24 hour period.
+35361225977

North America
+14087855200

5. DFC10 SERIES APPLICATION NOTES

EXTERNAL CAPACITANCE REQUIREMENTS:
No external capacitance is required for operation of the DFC10 Series. If a capacitive input source is farther than 1 " from the converter, an additional capacitor may be required at the input pins for proper operation.
This input capacitor should have an ESR greater than 0.25 ohms. Input capacitors with an ESR less than 0.25 ohms may cause peaking of the input filter and actually degrade circuit performance.
External output capacitance is not required for operation. However, it is recommended that $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ of tantalum and 0.001 to $0.1 \mu \mathrm{~F}$ ceramic capacitance be selected for reduced system noise. Additional output capacitance may be added for increased filtering, but should not exceed $400 \mu \mathrm{~F}$.

24 VOLT INPUT MODELS

EFFICIENCY Vs. LINE INPUT VOLTAGE

EINPUT (VOLTS)

RMS INPUT CURRENT Vs. LINE INPUT

48 VOLT INPUT MODELS

Figure 1. Typical Performance $\left(T C=25^{\circ} \mathrm{C}\right.$, Vin $=$ Nom VDC, Rated Load $)$

Figure 2. Typical Performance: $\left(T c=25^{\circ} \mathrm{C}\right.$, Vin $=$ Nom VDC, Rated Load $)$

North America
+14087855200

BCD.00813_AB

Figure 3. Mechanical Dimensions

For more information on these products consult: tech.support@psbel.com

NUCLEAR AND MEDICAL APPLICATIONS - Products are not designed or intended for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems.
TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Isolated DC/DC Converters category:
Click to view products by Bel Fuse manufacturer:
Other Similar products are found below :
ESM6D044440C05AAQ FMD15.24G PSL486-7LR Q48T30020-NBB0 JAHW100Y1 SPB05C-12 SQ24S15033-PS0S $\underline{18952} \underline{19-130041}$
CE-1003 CE-1004 GQ2541-7R RDS180245 MAU228 J80-0041NL DFC15U48D15 XGS-0512 XGS-1205 XGS-1212 XGS-2412 XGS2415 XKS-1215 06322 NCT1000N040R050B SPB05B-15 SPB05C-15 L-DA20 DCG40-5G QME48T40033-PGB0 XKS-2415 XKS-2412 XKS-1212 XKS-1205 XKS-0515 XKS-0505 XGS-2405 XGS-1215 XGS-0515 PS9Z-6RM4 73-551-5038I AK1601-9RT VI-N61-CM VI-R5022-EXWW PSC128-7iR RPS8-350ATX-XE DAS1004812 PQA30-D24-S24-DH VI-M5F-CQ VI-LN2-EW VI-PJW01-CZY

