FXP1500/1800 AC-DC Power Supply
 FXR-3-48G Power Shelf

Key Features \&| Benefils

- RoHS compliant for all six substances
- High density front-ends 15.2 to $18.3 \mathrm{~W} / \mathrm{in}^{3}$
- Wide input voltage range 85 to 264 VAC
- 12 V standby voltage, 1 A per front-end
- Highly efficient topology reduces operating costs
- $\quad I^{2} \mathrm{C}$ interface status and control
- $\quad I^{2} \mathrm{C}$ voltage and current limit setting
- Analog output voltage setting
- Overtemperature, output overvoltage, and output overcurrent protection
- ORing circuits for true redundant operation: V_{o1} : ORing FETs; V_{oz} : ORing Diodes
- Status LEDs: AC OK, DC OK, and Fan Fail/Overtemperature Fail

Applications

- Telecommunications
- Data Communications
- Servers
- Distributed Power

FXP1500/1800;FXR-3-48G

1. MODEL SELECTION

MODEL	INPUT VOLTAGE	OUTPUT 1		OUTPUT 2		RATED POWER W	COMPATIBLE SHELF ${ }^{2}$
	$\begin{gathered} \text { VAC } \\ \text { AUTO SELECTED }{ }^{1} \end{gathered}$	$V_{01} \text { nom }$ VDC	$\begin{aligned} & I_{1 \text { max }} \\ & \text { ADC } \end{aligned}$	Vo2 nom VDC	$\begin{aligned} & \text { lo2 max } \\ & \text { ADC } \end{aligned}$		
FXP1500-48G	105-264	48	32.2	12	1	1512	FXR-3-48G
	85-105	48	25.4	12	1	1212	
FXP1800-48G	180-264	48	39.2	12	1	1812	FXR-3-48G
	105-180	48	32.2	12	1	1512	
	85-105	48	25.4	12	1	1212	

1 The available output power is automatically adjusted depending on the input voltage.
21 U standard racks are available from Bel Power Solutions. See the Rack (Power Shelf) section of this data sheet for configurations and details.

2. ABSOLUTE MAXIMUM RATINGS

Stress in excess of the absolute maximum ratings may cause performance degradation, adversely affect long-term reliability, or cause permanent damage to the converter.

PARAMETER	CONDITIONS / DESCRIPTION		MIN	MAX	UNIT
Input Voltage	Continuous Transient, 60 ms max.			$\begin{aligned} & 264 \\ & 300 \end{aligned}$	VAC
Operating Ambient Temperature	$V_{\text {min }}-V_{\text {max }}, l_{\text {onom, }}$, cooling by internal fan	$\begin{aligned} & \text { @ } 100 \% \text { load } \\ & @ 50 \% \text { load } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 50 \\ & 70 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Storage Temperature	Non-Operating		-40	85	${ }^{\circ} \mathrm{C}$

3. INPUT SPECIFICATIONS

Specification is valid for input voltage, load, and temperature ranges, unless otherwise stated.

PARAMETER	CONDITIONS / DESCRIPTION	MIN	NOM	MAX	UNIT
Input Voltage		85	230	264	VAC
Input Frequency		47	50/60	63	Hz
Turn-On Input Voltage	Ramping up	79		85	VAC
Turn-Off Input Voltage	Ramping down	70		78	VAC
Inrush Current Limitation	$\begin{aligned} & \text { 115/230 VAC acc. ETS } 300 \text { 132-1 } \\ & <100 \mathrm{~ms} \end{aligned}$			50	A_{pk}
Hold-Up Time	After last AC line peak, $V_{i}=230 \mathrm{VAC}, P_{\text {o nom }}$	20			ms
Power Factor	$V_{\text {inom, }}$ Io nom	0.95			W/VA
Efficiency	$V_{i}=230 \mathrm{VAC}, I_{\text {nom, }}, T_{\mathrm{C}}=25^{\circ} \mathrm{C}$	89	90		\%
Max Input Current				20	$\mathrm{A}_{\text {rms }}$
Input Connector	16 A - 20 A / 250 VAC; according to IEC320 C19				

FXP1500/1800; FXR-3-48G

4. OUTPUT SPECIFICATIONS - $\mathbf{4 8}$ VOUT MODELS

Specification is valid for input voltage, load, and temperature ranges, unless otherwise stated.

PARAMETER		CONDITIONS / DESCRIPTION	MIN	NOM	MAX	UNITS
Nominal Output Voltage Vo1		$\mathrm{l}_{0}=16.1 \mathrm{~A}$		48		VDC
Nominal Output Voltage Vo2		$10=0.5 \mathrm{~A}$		12		VDC
Output Voltage Set Point Accuracy		$\begin{aligned} & V_{1}=230 \mathrm{VAC}, I_{01}=16.1 \mathrm{~A}, T_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & (47.8-48.2 \mathrm{VDC}) \end{aligned}$	-0.5		+0.5	\% Vo1 nom
Output Voltage Trimming (via $\mathrm{I}^{2} \mathrm{C}$ or with external resistor)		Adjustable (44.16 to 51.84 VDC$)$	-8		+8	\% Vo1 nom
Nominal Current Output 1	FXP1500-48G			$\begin{aligned} & 32.2 \\ & 25.4 \end{aligned}$		$\begin{aligned} & \text { ADC } \\ & \text { ADC } \end{aligned}$
	FXP1800-48G			$\begin{aligned} & 39.2 \\ & 32.2 \\ & 25.4 \end{aligned}$	39.2	$\begin{aligned} & \text { ADC } \\ & \text { ADC } \\ & \text { ADC } \end{aligned}$
Current Limit Output 1	FXP1500-48G FXP1800-48G			$\begin{gathered} 36.8 \\ 30 \\ 43.8 \\ 36.8 \\ 30 \end{gathered}$		ADC ADC ADC ADC ADC
Nominal Current Output 2		lo2 nom@ Vi = $85 \mathrm{VAC}-264 \mathrm{VAC}, P_{0} 12 \mathrm{~W}$		1.0	1.0	ADC
Current Limit Output 2		102 max @ $V_{i}=85 \mathrm{VAC}-264$ VAC		1.5		ADC
Static Line Regulation Output 1		$V_{\text {min }}-V_{\text {imax }}, 50 \% \mathrm{I}_{\text {nom }}$	-0.5		0.5	\% $V_{\text {onom }}$
Static Load Regulation Output 1 (Droop Characteristic)	FXP1500-48G FXP1800-48G	$V_{1}=230 \mathrm{~V}, 5-100 \% /$ nom V_{0} : full load (32.2 ADC) to no load $V_{1}=230 \mathrm{~V}, 5-100 \%$ lonom V_{0} : full load (32.2 ADC) to no load	46.65 46.07	$\begin{gathered} 83.5 \\ 48 \\ 83.5 \\ 48 \end{gathered}$	49.34 49.34	mV/A VDC mV/A VDC
Static Load Regulation Output 2 (Droop Characteristic)		$V_{\mathrm{I}}=230 \mathrm{~V}, 5-100 \% \text { /o nom }$ V_{0} : full load (32.2 ADC) to no load		0.4		VDC
Dynamic Load Regulation	Load change $50 \% \ll 100 \%$ Io nom, $\mathrm{dlo}_{0} / \mathrm{dt}=1 \mathrm{~A}$ Voltage deviation (droop + over- or undershoot FXP1500-48G FXP1800-48G					
			-5		5	\% $V_{\text {onom }}$
			-5.7		5.7	$\% V_{\text {onom }}$
	All models	Max. recovery time to within 1% of V_{01} nom			400	$\mu \mathrm{S}$
Current Share		Difference in current between two units for V_{01} above 10 \% load.				
	FXP1500-48G				3.2	ADC
	FXP1800-48G				3.9	ADC
Start-Up Time		Time required for output within regulation after initial application of AC-input ($V_{\text {inom }}, l_{\text {o nom }}$) after removal of inhibit ($V_{\text {nom }}$ I onom)		100	1.5	$\begin{gathered} \mathrm{s} \\ \mathrm{~ms} \end{gathered}$
Output Voltage Ripple and Noise (Filter $10 \mathrm{nF} / 10 \mu \mathrm{~F}$)		$V_{\text {inom, }}$ lo nom, 20 MHz bandwidth V_{01} V_{02}			$\begin{aligned} & 480 \\ & 120 \end{aligned}$	$\begin{aligned} & \mathrm{mV}_{\mathrm{pp}} \\ & \mathrm{mV} \mathrm{~V}_{\mathrm{pp}} \end{aligned}$
Remote Sense		Total compensation for cable losses			500	mV

5. PROTECTION

PARAMETER	CONDITIONS/DESCRIPTION	MIN	NOM	MAX
Input Fuse	Not user accessible	25 A , fast blow		
Inrush Current Limitation		With NTCs		
Output		No-load -, short circuit - and overload proof		
Overvoltage Protection Latching ${ }^{3}$	Tracking	Absolute	115	122
Overtemperature Protection	Automatic power shutdown at T_{C}	V_{0} nom		

3 Remove input voltage to reset.

6. CONTROLS AND INDICATORS

Specification is valid for input voltage, load, and temperature ranges, unless otherwise stated.

| PARAMETER | TYPE ${ }^{4}$ | CONDITIONS / DESCRIPTION |
| :--- | :---: | :--- | :--- |

4 Abbreviations used:

- OC[\#] => Hardwired signal accessible at PSU output connector, with pin number reference
- FP => Provided by devices located on PSU Front panel
- $\quad I^{2} \mathbf{C} \quad=>$ Signal provided over $I^{2} \mathrm{C}$ communication system; detailed $\mathrm{I}^{2} \mathrm{C}$ information is available from the specific model's ${ }^{2} \mathrm{C}$ Manual found on the Bel Power Solutions web site.
5 See LED Function table for further details
bel
POWER
SOLUTIONS \&
PROTECTION

FXP 1500/1800; FXR-3-48G

7. ENVIRONMENTAL, MECHANICAL, \& RELIABILITY SPECIFICATIONS

PARAMETER	CONDITIONS / DESCRIPTION	MIN	NOM	MAX	UNIT
Altitude	Operating Non-Operating			$\begin{aligned} & 10 \mathrm{k} \\ & 40 \mathrm{k} \end{aligned}$	ASL Ft.
Relative Humidity, Non-Condensing	Operating	10		90	\% RH
	Storage	5		95	\% RH
Temperature Coefficient	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (after 15 min warm-up)			0.02	\%/K
Shock	IEC/EN 60068-2-27, 11 ms			40	gpk
Sinusoidal Vibration	$\begin{aligned} & \text { IEC/EN 60068-2-6 } \\ & 2-8 \mathrm{~Hz} \\ & 8-200 \mathrm{~Hz} \\ & 200-500 \mathrm{~Hz} \end{aligned}$		$\begin{gathered} 7.5 \\ 2 \\ 4 \end{gathered}$		$\begin{aligned} & \text { mil } \\ & \mathrm{g}_{\mathrm{pk}} \\ & \mathrm{~g}_{\mathrm{pk}} \end{aligned}$
Random Vibration	$10-2000 \mathrm{~Hz}$		6.15		grms
MTBF	Calculated per Bellcore (SR-332, Issue 1): GB $25^{\circ} \mathrm{C}$ GB $25^{\circ} \mathrm{C}$ (FNP1500-12G) Demonstrated	$\begin{aligned} & 230 \\ & \text { TBD } \\ & 250 \end{aligned}$			kh

8. SAFETY SPECIFICATIONS

Maximum electric strength testing is performed in the factory according to EN50514, IEC/EN60950-1 $2^{\text {nd }}$ ed. and UL/CSA60950-1 $2^{\text {nd }}$ ed. Input-to-output electric strength tests should not be repeated in the field. Bel Power Solutions will not honor any warranty claims resulting from electric strength field tests.

| PARAMETER | CONDITIONS / DESCRIPTION | MIN | NOM | MAX |
| :--- | :--- | :--- | :--- | :--- | UNIT

6 Subassemblies are pre-tested with 4.2 kVDC in accordance with EN50514 and IEC/EN60950-1 $2^{\text {nd }} \mathrm{ed}$.

9. EMC SPECIFICATIONS

PARAMETER	DESCRIPTION	CRITERION
Electrostatic Discharge	IEC/EN 61000-4-2, level 4	Performance criterion B
Electromagnetic Field	IEC/EN 61000-4-3, level 3	Performance criterion A
Electrical Fast Transients/Burst	IEC/EN 61000-4-4, level 3	Performance criterion B
Surge	IEC/EN 61000-4-5, level 3	Performance criterion B
Voltage Dips and Interruptions	IEC/EN 61000-4-11	Performance criterion B or better
RF Conducted Immunity	IEC/EN 61000-4-6	10 VAC, AM 80 \%, 1 kHz
Emissions Conducted	CISPR 22/EN 55022/EN 61204	Performance criterion A
Emissions Radiated	CISPR 22/EN 55022/EN 61204	Class B
Harmonics	IEC/EN 61000-3-2	Class B
Voltage Fluctuation and Flicker	IEC/EN 61000-3-3	Pass
Voltage Sag	SEMI F47-0200 (High Line 230 V)	Pass

10. OUTPUT CONNECTOR PINNING AND SIGNAL SPECIFICATION (48V MODELS)

OUTPUT CONNECTOR DESCRIPTION	$\begin{gathered} \text { OC } \\ \text { PIN \# } \end{gathered}$	TYPE	SIGNAL REFERENCE	LOW LEVEL HIGH LEVEL	V MAX I MAX
Over-temperature / Fan Fail	U1	OC-output, protected by 16 V Zener diode and a 10Ω resistor in series	LGND	$\begin{aligned} & <0.4 \text { V @ } 20 \mathrm{~mA} \\ & \text { Pull up } \end{aligned}$	$\begin{gathered} 15 \mathrm{~V} \\ 20 \mathrm{~mA} \end{gathered}$
AC Fail / Power down warning	U2			$\begin{gathered} <0.4 \mathrm{~V} @ 20 \mathrm{~mA} \\ \text { Pull up } \end{gathered}$	$\begin{gathered} 15 \mathrm{~V} \\ 20 \mathrm{~mA} \end{gathered}$
Power Supply Present	U3	$1 \mathrm{~K} \Omega$ Resistor connected to logic GND	LGND	Open Pull up	$\begin{gathered} 10 \mathrm{~V} \\ 10 \mathrm{~mA} \end{gathered}$
DC Fail / Output voltage fault	U4	OC-output, protected by 16 V Zener diode and a 10Ω resistor in series	LGND	$\begin{gathered} <0.4 \mathrm{~V} @ 20 \mathrm{~mA} \\ \text { Pull up } \end{gathered}$	$\begin{gathered} 15 \mathrm{~V} \\ 20 \mathrm{~mA} \end{gathered}$
Internal ground (INT GND)	U5	Used only for ADDRx and V_{01} set. Do not connect the internal grounds in systems with several units.	Connected to V_{01} - line before the output filter	-	-
ADDRO $1^{2} \mathrm{C}$ address bus	T1	```High = internal 10 K\Omega PU to 5V=> Logic 1 Low = connect to INT GND => Logic 0```	INT GND	$\begin{aligned} & \text { Logic } 1 \\ & \text { Logic } 0 \end{aligned}$	$\begin{aligned} & 5 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$
ADDR1 $1^{2} \mathrm{C}$ address bus	T2				
ADDR2 ${ }^{2} \mathrm{C}$ address bus	T3				
ADDR3 $1^{2} \mathrm{C}$ address bus	T4				
ADDR4 ${ }^{2} \mathrm{C}$ address bus	T5				
SDA, $I^{2} \mathrm{C}$ serial data line	S1	$I^{2} \mathrm{C}$ compatible signal referenced to logic GND 5 V or 3.3 V logic	LGND	$\begin{aligned} & \text { Logic } 1 \\ & \text { Logic } 0 \end{aligned}$	$\begin{aligned} & 3.3 \mathrm{~V} \text { to } 5 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$
SCL, $I^{2} \mathrm{C}$ serial clock line	S2				
Auxiliary power +12 V	S3	$\mathrm{V}_{\mathrm{o} 2+}$ output, isolated from main output	Aux output is floating	-	-
Auxiliary power +12 VRTN	S4	Aux output return; ground isolated from main output			
Logic ground (LGND)	S5	Internally connected to Aux GND through 10Ω resistor. Wire LGND separately from Aux RTN and main output GND to minimize noise on signals and $I^{2} \mathrm{C}$ bus. Leave open if not used.	-	-	-
Output inhibit R1	R1	PS active when pulled low (DC-DC stage off when left open)	LGND	$\begin{aligned} & <0.8 \mathrm{~V} \\ & >2.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 10 \mathrm{~V} \\ 3.5 \mathrm{~mA} \end{gathered}$
V sense +	R2	Open or connected toV V_{01} at the load Internally connected to $\mathrm{V}_{01}+$ via 100Ω.	-	-	$\begin{gathered} \mathrm{dV}<3 \mathrm{Vpp} \\ 30 \mathrm{~mA} \end{gathered}$
V sense -	R3	Open or connected toV V_{1-} - at the load Internally connected to V_{01} - via 100Ω.	-	-	
Output margin	R4	Oper or connected to INT GND ($+8 \% \mathrm{~V}_{\mathrm{O} 1}$) or $\mathrm{V}_{\text {sense+ }}\left(-8 \% \mathrm{~V}_{\mathrm{o1}}\right)$, Do not interconnect margin pins in systems with paralleled PSUs.	-	-	60 V
Synchronized Startup (for paralleled units)	R5	Open or connected to synch startup circuit	Vo1 - at the OC		$\begin{aligned} & 12 \mathrm{~V} \\ & 2 \mathrm{~mA} \end{aligned}$
Vo1-	P1, P3, P5	Main output - pins	-	-	-
Vo1+	P2, P4, P6	Main output + pins	-	-	-
INPUT CONNECTOR DESCRIPTION	$\begin{aligned} & \text { OC } \\ & \text { PIN \# } \end{aligned}$	TYPE			
Protection Earth	P1	PE			
Phase	P2	L			
Neutral	P3	N			

FXP1500/1800; FXR-3-48G

11.LED INDICATOR FUNCTIONALITY

CONDITION	POWER FAIL (AC OK)	OUTPUT GOOD (DC OK)	FAN FAIL AND OVER - TEMPERATURE
Normal Operation	Green	Green	OFF
Power Supply is Inhibited	Green	OFF	Amber
Input AC is Low	OFF	OFF	Amber
Input AC is Low Or Missing	OFF	OFF	Amber/OFF
Over-Temperature	Green	OFF	Amber
Output Overload (In Regulation)	Green	Green	OFF
Output Overloaded (Out Of Regulation)	Green	OFF	OFF
Fan Fault (No Overtemperature Shutdown)	Green	Green	Amber
Fan Fault (With Overtemperature Shutdown)	Green	OFF	Amber
Power Supply Failed	OFF	OFF	OFF/ Amber

12. MECHANICAL DATA

Mechanical Dimensions (W x H x D): $\quad 5.6 "(141.2 \mathrm{~mm}) \times 1.6 "(40.5 \mathrm{~mm}) \times 12 "(304.8 \mathrm{~mm})$

Output Connector FCI part no. 51732-020LF

13. INPUT \& OUTPUT CONNECTOR DESCRIPTION

FXP series front bezel showing LED indicators and recessed enable switch

Female ledge connector: Manufacturer: FCI
Output connector Part No.: 51762-106020000AA LF (Horizontal)
Output connector Part No.: 51742-106020000AA LF (Vertical)
Input connector Part No.: 51915-056LF (Horizontal)
Input connector Part No.: 51940-099LF (Vertical)
Information on availability under http://www.stkcheck.com/evs/fcielectronics/fcisearch.asp

14.PARALLELING FRONT-ENDS

For parallel use in minimal configuration systems, only the inhibit pins must be shorted to logic GND. All other pins can be left open. The power supplies will share the output current automatically (droop current share).
For parallel applications without I2C bus, but the use of all other features, it is recommended to connect all logic GND's on a backplane together, to connect all Vo2 -, all V o2 + and to leave the internal GND's open.
The sense wires can be left open or connected to a common load point, the synch-start pin can be left open or connected to a synch-start circuit, the inhibit pins can be connected together or used individually. All I2C signals (T1-T5, S1, and S2) can be left open.
Use of a small foil capacitor $>3 \mu \mathrm{~F}$ directly at the power outputs of each unit is recommended in order to prevent voltage drops at the hot plug. For additional information on paralleling see the following Rack (Power Shelf) section.

15. COOLING

To achieve best cooling results sufficient airflow through the unit must be ensured. Do not block or obstruct the airflow at the rear of the unit by placing large components directly at the output connector.

FXP1500/1800; FXR-3-48G

16.FXR-3-48G POWER SHELF

Each rack (power shelf) is 1 U high with backplane and designed for up to three front-end models in parallel or in $\mathrm{n}+1$ operation. Each power shelf has:

- Massive copper bus bars for low-loss current distribution.
- Output terminals with two M4-screws on each power tab.
- Two fast-on contacts for system earthing.
- Address coding over five pole DIP switch on each unit, 37-pin D-Sub connector with ${ }^{2} \mathrm{C}$-lines, monitoring signals and support functions.
- Provides a start-up synchronization circuit and EMV filters.

Overall Mechanical Dimensions (W x H x D): 17.7" (449.6 mm) x 1.7" (43.1 mm) x $14^{\prime \prime}$ (355.6 mm)

FXR-3-48G Power Shelf Front View

Output Connector Descriptions (FXR-3-48G)

LOCATION	DESCRIPTION	
A	Earth connection	
B	5-bit DIP switch for $\mathrm{I}^{2} \mathrm{C}$ addressing of PSU \#3	
C	Mains connector of PSU \#3	
D	Output 1 Minus	
E	Output 1 Plus	
F	5-bit DIP switch for $\mathrm{I}^{2} \mathrm{C}$ addressing of PSU \#2	
G	Mains connector of PSU \#2	
H	37-pin SUB-D connector, control, sense, check and Auxiliary power (Output 2)	
1	5-bit DIP switch for $\mathrm{I}^{2} \mathrm{C}$ addressing of PSU \#1	
J	Mains connector of PSU \#1	

FXP1500/1800; FXR-3-48G

SUB-D Output Connector Pinout and Signal Specification

OUTPUT CONNECTOR DESCRIPTION	$\begin{aligned} & \text { OC } \\ & \text { PIN } \end{aligned}$	TYPE	SIGNAL REFERENCE	LOW LEVEL HIGH LEVEL	$\begin{aligned} & \text { V MAX } \\ & \text { I MAX } \end{aligned}$
Overtemperature / Fan Fail PSU1	1	OC-output, protected by 16 V Zener diode and a 10Ω resistor in series.	LGND	$\begin{gathered} <0.4 \mathrm{~V} @ 20 \mathrm{~mA} \\ \text { Pull up } \end{gathered}$	$\begin{gathered} 15 \mathrm{~V} \\ 20 \mathrm{~mA} \end{gathered}$
Power Supply Present PSU 1 Power Supply Present PSU 2	2 3	Resistor (1 k) connected to logic GND	LGND	Open Pull up	$\begin{gathered} 10 \mathrm{~V} \\ 10 \mathrm{~mA} \end{gathered}$
Spare	4				
Overtemperature / Fan Fail PSU 3 AC Fail /Power down warning PSU 3	5	OC-output, protected by 16 V Zener diode and a 10Ω resistor in series.	LGND	$\begin{gathered} <0.4 \mathrm{~V} @ 20 \mathrm{~mA} \\ \text { Pull up } \end{gathered}$	$\begin{gathered} 15 \mathrm{~V} \\ 20 \mathrm{~mA} \end{gathered}$
Power Supply Present PSU 3	7	Resistor ($1 \mathrm{k} \Omega$) connected to logic GND	LGND	Open Pull up	$\begin{gathered} 10 \mathrm{~V} \\ 10 \mathrm{~mA} \end{gathered}$
DC Fail / Output voltage fault PSU 3 Overtemperature / Fan Fail PSU 2	9	OC-output, protected by 16 V Zener diode and a 10Ω resistor in series	LGND	$\begin{gathered} <0.4 \mathrm{~V} @ 20 \mathrm{~mA} \\ \text { Pull up } \end{gathered}$	$\begin{gathered} 15 \mathrm{~V} \\ 20 \mathrm{~mA} \end{gathered}$
Synch._Start_A	10	Sync_start_A , Active high The signals of several racks can be connected together in such a way that all supplies will be inhibited until the last supply has recovered from its overcurrent condition.	LGND	$\begin{aligned} & <7 \mathrm{~V} \text { off } \\ & <9 \mathrm{~V} \end{aligned}$	$\begin{gathered} 15 \mathrm{~V} \\ 10 \mathrm{~mA} \end{gathered}$
Spare	11				
Output inhibit PSU 1-3	12	DC-DC stage ON when pin is open or connected to LGND DC-DC stage OFF when pin is connected on high potential	LGND	$\begin{aligned} & <0.8 \mathrm{~V} \\ & >2.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 10 \mathrm{~V} \\ 3.5 \mathrm{~mA} \end{gathered}$
V sense +	13	Open or connected to $V_{01}+$ at the load Internally (PSU) connected to $V_{01}+$ over 100Ω	Vo1+		$\begin{gathered} \mathrm{dV}<3 \mathrm{~V}_{\mathrm{pp}} \\ 30 \mathrm{~mA} \end{gathered}$
V sense -	14	Open or connected to V_{01} - at the load Internally (PSU) connected to V_{01} - over 100Ω	V_{01} -		$\begin{gathered} \mathrm{dV}<3 \mathrm{~V}_{\mathrm{pp}} \\ 30 \mathrm{~mA} \end{gathered}$
Spare	15				
NC	16				
NC	17				
NC	18				
NC	19				
AC Fail/Power-down warning PSU 1	20				
DC Fail/Output voltage fault PSU 1	21	OC-output, protected by 16 V Zener diode	LGND	<0.4 V @ 20 mA	
AC Fail/Power-down warning PSU 2	22	and a 10Ω resistor in series		Pull up	20 mA
DC Fail/Output voltage fault PSU 2	23				
SDA, $I^{2} \mathrm{C}$ data line	24	$I^{2} \mathrm{C}$ compatible signal	LGND	5 V or 3.3 Vlogic	
SCL, $I^{2} \mathrm{C}$ clock line	25	$1^{2} \mathrm{C}$ compatible signal	LGND	5 V or 3.3 V logic	
Vo2+ = +12 V (Auxiliary power)	26	Vo2+ Aux output, insulated from main output	Aux output is isolated supply		
Vo2- = +12 VRTN (Auxiliary power)	27	Vo2- Aux output, insulated from main output			
Logic Gnd (LGND)	28	Wire separately from auxiliary and main output GND to minimize noise and avoid voltage drops on signal- and I2C return. Leave open if not used.	Internally connected to Vo2 Auxiliary GND via 10Ω		
Output margin PSU 1	29	Open or connected to V sense: V sense- (+8 \% Vo1) or V sense+ (-8 \% Vo1)			60 V
Output margin PSU 2	30				
Output margin PSU 3	31				
NC	32				
NC	33				
NC	34				
NC	35				
NC	36				
NC	37				

SUB-D Output Connector

Synchronized Start-Up Circuit for Paralleling Operation

The FXP1500-48G and FXP1800-48G power supplies exhibit an overcurrent hiccup behaviour. This means if either of these supplies reaches an overcurrent limit, the output voltage will immediately turn OFF and after a delay turn ON again. In parallel use, all power supplies have to start synchronized because of the internal hiccup behaviour. Otherwise, the supply which has reached overcurrent first will go to hiccup; this will overload the other supplies, which then will also go to hiccup. When the first supply has recovered from hiccup (hiccup dead time), the others remain in hiccup. This will immediately drive the first one into hiccup once again. This means that without a start-up circuit, a system with several power supplies can never recover from an overload condition or start-up into full load.

The following additional circuit, required to reach synchronized startup, is already implemented inside the FXR-3-48G shelf.

Synch Start-up Connection between Shelves

The following connection between the shelves is required to achieve a parallel operation. The synch-start circuits inside the shelves inhibit all power supplies until the last one has recovered from its overcurrent condition and then synchronize the restart of the outputs.

Shelf 1

Shelf 2
37 pin SUB-D

Shelf 3
37 pin SUB-D

Synch Start-up Circuit Description

DESCRIPTION	$\begin{gathered} \text { PIN } \\ \text { LOCATION, } \\ \text { DEFINITION } \end{gathered}$	TYPE	SIGNAL REFERENCE	LOW LEVEL HIGH LEVEL	V MAX I MAX
Auxiliary Power +12 V (Output 2)	26	$\mathrm{V}_{\text {o2+ }}$, Aux output, insulated from main output			
Logic Ground	28	Logic_GND ,Internally connected over 10Ω to $\mathrm{V}_{\mathrm{o2}}{ }^{-}$, (Auxiliary power ground (Output 2))	Internally connected over 10 to $V_{\text {o2- }}$		
Output Inhibit_A PSU 1-3	12	Inhibit_A, DC-DC stage ON when pin is open or connected to LGND DC-DC stage OFF when pin is connected on high potential	LGND	$\begin{aligned} & <0.8 \mathrm{~V} \\ & >2.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 10 \mathrm{~V} \\ 3.5 \mathrm{~mA} \end{gathered}$
Synch. Startup 1 PSU 1-3	$\begin{gathered} \text { R5 } \\ \text { (at PSU) } \end{gathered}$	The synch_start pin is connected to the overcurrent signal of the PSU1-3. In the case of an overcurrent shutdown, this signal goes high.	V_{01-}	$\begin{gathered} <7 \mathrm{~V} \text { off } \\ >9 \mathrm{~V} \end{gathered}$	$\begin{gathered} 15 \mathrm{~V} \\ 10 \mathrm{~mA} \end{gathered}$
Synch. Startup_A Rack FXR-3-48G 1-N Pin on the D-Sub connector on the backplane	10	Sync_start_A, Active high The signals of several racks can be connected together in such a way that all supplies will be inhibited until the last supply has recovered from its overcurrent condition.	LGND		

NOTE: The Sync-Start pins can be wired together only if the power supplies are connected with a minimal voltage drop on power ground as achieved on a backplane with massive copper bus bars. If there is a less ideal connection, it is recommended to use an opto-coupler for each unit (IC1, D3, D2).

Mechanical Data (FXR-3-48G Power Shelf)

FXP 1500/1800; FXR-3-48G

17.ACCESSORIES

Center Angular Brackets are set in the middle for shelf mounting:

Center Angular Bracket sets can be ordered: Bel Power Solutions part no.: HZZ01222 Note:
Each Center Angular Bracket set contains 2 brackets and 8 screws.
Filler for covering of the empty shelf slots

Filler can be ordered: Bel Power Solutions part no.: XAK.00043.0
Plastic cover set for the bus bars:

Plastic cover set can be ordered: Bel Power Solutions part no.: XEB.00031.0
Note1: Available upon special request.
Note2: Each plastic cover set contains 2pcs.

Fulcrum

The handle has been designed to allow easy plug-in and -out in a rack system. The handle (lever) fits into a counter piece (fulcrum) which is fixed to the bottom of the rack. During the plug, the fulcrum holds the unit down and guides it towards the output connector. The Bel Power Solutions part number of the fulcrum and its associated mounting accessories is: HZZ01223.

Individual fulcrum sets can be also ordered: Bel Power Solutions part no.: HZZO1223.
Note: Each HZZ01223 set contain 2 fulcrums, 2 supports, and mounting accessories.

FXP 1500/1800; FXR-3-48G

${ }^{12} \mathrm{C}$ to USB Interface HZZO2002G

$I^{2} \mathbf{C}$ Management Software: All FNP and FXP front-ends can be controlled via Bel Power Solutions GUI-driven I ${ }^{2}$ C Management software and an $I^{2} \mathrm{C}$-to-USB interface (P/N HZZO2002G). An $I^{2} \mathrm{C}$ Programming Manual describes the complete range of parameters that can be programmed to the FXP1500/1800 front-ends. This manual is available by searching on "FXP1500" at www.belpowersolutions.com.

For more information on these products consult: tech.support@psbel.com

NUCLEAR AND MEDICAL APPLICATIONS - Products are not designed or intended for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems.
TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Rack Mount Power Supplies category:
Click to view products by Bel Fuse manufacturer:
Other Similar products are found below :
HFE2500BP PET1300-12-054NAE HFE1600BP 73-311-0001 73-317-0148 73-495-0233 750-1016 SFP450-S101G FUP550SNRPS VRA.00335.0 VRA.00334.0 VRA.00333.0 HFE1600-KIT CC109146503 RKP-1UI PFE1100-12-054ND FND300-1012G 73-951-0001T 73-954-0001C DS550DC-3 RCP-2000-24 TSR10 TET2000-12-086NA PET2000-12-074RA RCP-MU 605-10144-2AC 6609006-5 D1U54P-W-1200-12-HC4PC DS450DC-3 DS650DC-3 HPR12K-00-001 LCM300Q-T LCM300W-T-4 LCM600N-T-4-A FNP600-48G FNR-3-48G FNR-5-12G PFS1200-12-054RAH PFS1200-12-054RD SPSPFE3-05G TET3200-12-069RA IEC-A-1 FXX1600PCRPS 915606 DHP-1UT-A DRP-3200-24 RCP-1000-12 RCP-1000-12-C RCP-1000-24 RCP-1000-24-C RCP-1000-48

