MELCHER ${ }^{m}$
The Power Partners.

PSK / PSS Series Positive Switching Regulators

Table of Contents

Description 1
Model Selection 2
Functional Description 3
Electrical Input Data 4
Electrical Output Data 6
Auxiliary Functions 12

The PSK/PSS Series of positive switching regulators is designed as power supplies for electronic systems, where no input-to-output isolation is required. Their major advantages include a high level of efficiency, high reliability, low output ripple, and excellent dynamic response. Models with input voltages up to 144 V are specially designed for secondary switched and battery-driven mobile applications. The converters are suitable for railway applications according to EN 50155 and EN 50121.
Two types of housing are available allowing operation up to $71^{\circ} \mathrm{C}$. They are designed for insertion into a $19 "$ DIN-rack or for chassis mounting. Replacing the heat sink by an optional cooling plate, allows chassis or wall mounting on top of a metal surface, acting as heat sink.
Various options are available to adapt the converter to different applications. Connector type: H 15 or H15S4, depending on output current.

Features

- RoHS lead-free-solder and lead-solder-exempted products are available
- 5 year warranty for RoHS compliant products with an extended temperature range
- Input voltage up to 144 VDC
- Single output of 5.1 to 48 VDC
- No input-to-output isolation
- High efficiency up to 97%
- Extremely wide input voltage range
- Low input-to-output differential voltage
- Very good dynamic properties
- Input undervoltage lockout
- Active current sharing for parallel operation
- Output voltage adjustment, inhibit, and sense lines
- Continuously no-load and short-circuit proof
- All boards are coated with a protective lacquer

Safety-approved to the latest edition of IEC/EN 60950-1 and UL/CSA 60950-1

Electromagnetic Compatibility (EMC).................................... 14
Mechanical Data... 15
Immunity to Environmental Conditions 16
Safety and Installation Instructions..................................... 19
Description of Options .. 20
Accessories .. 21

Model Selection

Table 1: Model Selection

Output voltage $V_{\text {o nom }}[\mathbf{V}]$	Output current $I_{\text {o nom }}[A]$	Operating input voltage range $V_{\mathrm{i}}[\mathrm{~V}]$	Nom. input voltage $V_{\text {o nom }}[\mathrm{V}]$	Efficiency ${ }^{2}$		Type designation ${ }^{4}$	Connector type	Options
5.1	20	8-80	40	78	79	PSK5A20-9ECKG	H15	B, B1
$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	$\begin{gathered} 9 \\ 12 \\ 12 \\ 16 \\ 20 \end{gathered}$	$\begin{gathered} 18-144^{1} \\ 15-80 \\ 18-144^{1} \\ 15-80 \\ 15-80 \end{gathered}$	$\begin{aligned} & 60 \\ & 40 \\ & 60 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \\ & 90 \\ & 89 \\ & 89 \end{aligned}$	$\begin{aligned} & 91 \\ & 91 \\ & 91 \\ & 90 \\ & 90 \end{aligned}$	PSS129-9G PSS1212-9G PSK1212-9G PSK1216-9G PSK1220-9G	$\begin{gathered} \text { H15 } \\ \text { H15S4 } \end{gathered}$	-7, E, B, B1 B, B1 $-7, ~ E, ~ C, ~ B, ~ B 1 ~$ $-7, ~ E, ~ C, ~ B, ~ B 1 ~$ $-7, ~ E, ~ C, ~ K, ~ B, ~ B 1 ~$
$\begin{aligned} & 15^{3} \\ & 15^{3} \\ & 15^{3} \\ & 15^{3} \\ & 15^{3} \end{aligned}$	$\begin{gathered} \hline 9 \\ 12 \\ 12 \\ 16 \\ 20 \end{gathered}$	$\begin{gathered} 22-144^{1} \\ 19-80 \\ 22-144^{1} \\ 19-80 \\ 19-80 \end{gathered}$	$\begin{aligned} & 60 \\ & 40 \\ & 60 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \\ & 90 \\ & 89 \\ & 89 \end{aligned}$	$\begin{aligned} & 92 \\ & 92 \\ & 92 \\ & 90 \\ & 90 \end{aligned}$	PSS129-9G PSS1212-9G PSK1212-9G PSK1216-9G PSK1220-9G	$\begin{gathered} \text { H15 } \\ \text { H15S } 4 \end{gathered}$	E, B, B1 -7, E, B, B1 -7, E, C, B, B1 -7, E, C, B, B1 -7, E, C, K, B, B1
$\begin{aligned} & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \end{aligned}$	$\begin{gathered} 9 \\ 12 \\ 12 \\ 14 \\ 16 \\ 20 \end{gathered}$	$\begin{gathered} 31-144^{1} \\ 29-80 \\ 31-144^{1} \\ 29-60 \\ 29-80 \\ 29-80 \end{gathered}$	$\begin{aligned} & 60 \\ & 50 \\ & 60 \\ & 40 \\ & 50 \\ & 50 \end{aligned}$	$\begin{gathered} 93 \\ 93.5 \\ 93.5 \\ 94.5 \\ 93.5 \\ 93.5 \end{gathered}$	$\begin{aligned} & 94 \\ & 94 \\ & 94 \\ & 94 \\ & 95 \end{aligned}$	PSS249-9G PSS2412-9G PSK2412-9G PSS2414-2 PSK2416-9G PSK2420-9G	$\begin{gathered} \text { H15 } \\ \text { H15S4 } \end{gathered}$	$-7, E, C, B, B 1$ $-7, E, B, B 1$ $-7, ~ E, ~ C, ~ B, ~ B 1 ~$ $-7, ~ E, ~ C, ~ B 1 ~ B 1 ~$ $-7, ~ E, ~ C, ~ K, ~ B, ~ B 1 ~$
$\begin{aligned} & 36 \\ & 36 \\ & 36 \\ & 36 \\ & 36 \end{aligned}$	$\begin{gathered} \hline 9 \\ 12 \\ 12 \\ 16 \\ 20 \end{gathered}$	$\begin{gathered} 44-144^{1} \\ 42-80 \\ 44-144^{1} \\ 42-80 \\ 42-80 \end{gathered}$	$\begin{aligned} & 80 \\ & 60 \\ & 80 \\ & 60 \\ & 60 \end{aligned}$	$\begin{gathered} 95 \\ 95 \\ 95 \\ 94.5 \\ 94.5 \end{gathered}$	$\begin{aligned} & 96 \\ & 94 \\ & 96 \\ & 95 \\ & 95 \end{aligned}$	PSS369-9G PSS3612-9G PSK3612-9G PSK3616-9G PSK3620-9G	$\begin{gathered} \text { H15 } \\ \text { H15S4 } \end{gathered}$	$\begin{array}{r} -7, \text { E, B, B1 } \\ \text { B, B1 } \\ -7, \text { E, C, B, B1 } \\ -7, \mathrm{E}, \mathrm{C}, \mathrm{~B}, \mathrm{~B} 1 \\ -7, \mathrm{E}, \mathrm{C}, \mathrm{~K}, \mathrm{~B}, \mathrm{~B} 1 \end{array}$
48	12	58-144 ${ }^{1}$	80	96	97	PSK4812-9G	H15	-7, E, C, B, B1

1 Surges up to 156 V for 2 s; see Electrical Input Data
2 Efficiency at $V_{\text {inom }}$ and $I_{\text {nom }}$. Models with opt. K (standard H 15 connector) exhibit approx. 1 to 2% lower efficiency.
${ }^{3}$ Output voltage V_{o} set to 15 V by R input.
4 Part numbers without suffix ' G ' use the leaded solder exemption.

Note: Non-standard input/output configurations or special custom adaptations are available on request.
NFND: Not for new designs.
Preferred for new designs.

Part Number Description

1 Option P excludes R -features and vice versa.
2 G is always placed at the end of the part number.

Example: PSS129-9ECB = Positive switching regulator with output $12 \mathrm{~V}, 9 \mathrm{~A}$, ambient temperature range of -25 to $71^{\circ} \mathrm{C}$, inrush current limitation, crowbar, and large cooling plate option B.
Note: The sequence of options must follow the order above.

PSK / PSS Series

Positive Switching Regulators

Product Marking

Type designation, applicable approvals marks, warnings, pin allocation, identification of LED, test sockets, and optional potentiometer. Label with input voltage range, output voltage and current, protection degree, batch and serial no., and data code including production site, version, and date of production.

Functional Description

The switching regulators are using the buck topology. The input is not electrically isolated from the output. During the on period of the switching FET, current is transferred to the output, and energy is stored in the output choke. During the off period, this energy forces the current to continue flowing through the output choke and the freewheeling diode to the load. Regulation is accomplished by varying on/off duty cycle. Switching frequency is approx. 100 kHz . The converters exhibit an undervoltage monitor to prevent high currents at low input voltage, but no overvoltage monitor.
These regulators are ideal for applications, where an input to output isolation is not necessary or where it is already provided by an external front end, e.g. a transformer with rectifier. To optimize customers' needs, various options and accessories are available.

Fig. 1
Block diagram

POWER SOLUTIONS \& PROTECTION

Electrical Input Data

Table 2a：Input data．General Conditions：$T_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ，unless T_{C} is specified

Model			PSS2414			PSK5A20			PSS1212 PSK1216 PSK1220			Unit
Characteristics		Conditions	min	typ	max	min	typ	max	min	typ	max	
V_{i}	Operating input voltage	$\begin{aligned} & I_{\mathrm{o}}=0-I_{\mathrm{onom}}, \\ & T_{\mathrm{C} \text { min }}-T_{\mathrm{C} \text { max }} \end{aligned}$	29		60	8		80	15		80	VDC
$\Delta V_{\text {io min }}$	Min．diff．voltage $V_{i}-V_{0}$				5			2.9			3	
$V_{\text {i }}$ 。	Undervoltage lockout			12			6.5			7.3		
$I_{\text {io }}$	No－load input current	$I_{0}=0, V_{i \text { min }}-V_{i \text { max }}$			50			50			50	mA
$I_{\text {inr } p}$	Inrush peak current	$V_{\text {inom }}$ ，with option E			40			40			40	A
C_{i}	Input capacitance			1600			1600			1600		$\mu \mathrm{F}$

Table 2b：Input data．General Conditions：$T_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ，unless T_{C} is specified

Model			$\begin{aligned} & \text { PSS1212 }{ }^{1} \\ & \text { PSK121616 }^{1} \\ & \text { PSK1220 }^{1} \end{aligned}$			PSS2412 PSK2416 PSK2420			PSS3612 PSK3616 PSK3620			Unit
Characteristics		Conditions	min	typ	max	min	typ	max	min	typ	max	
V_{i}	Operating input voltage ${ }^{1}$	$\begin{aligned} & I_{0}=0-I_{\text {o nom }} \\ & T_{\mathrm{C} \text { min }}-T_{\mathrm{C} \text { max }} \end{aligned}$	19		80	29		80	42		80	VDC
$\Delta V_{\text {io min }}$	Min．diff．voltage $V_{i}-V_{\text {o }}$				4			5			6	
$V_{\text {io }}$	Undervoltage lockout			7.3			12			19		
I_{10}	No－load input current	$I_{0}=0, V_{i \text { min }}-V_{\text {imax }}$			50			50			50	mA
$I_{\text {inr }}$	Inrush peak current	$V_{\text {inom }}$ ，with option E			40			50			90	A
C_{i}	Input capacitance			1600			1600			1600		$\mu \mathrm{F}$

${ }^{1}$ Output set to 15 V with the R －input．

Table 2c：Input data．General Conditions：$T_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ，unless T_{C} is specified

Model			PSS129／PSK1212			PSS129 ${ }^{1} /$ PSK1212 ${ }^{1}$			PSS249／PSK2412			Unit
Characteristics		Conditions	min	typ	max	min	typ	max	min	typ	max	
V_{i}	Operating input voltage ${ }^{1}$	$\begin{aligned} & I_{\mathrm{o}}=0-I_{\mathrm{onom}} \\ & T_{\mathrm{C} \min }-T_{\mathrm{C} \max } \end{aligned}$	18		144^{2}	22		144^{2}	31		144^{2}	VDC
$\Delta V_{\text {io min }}$	Min．diff．voltage $V_{\mathrm{i}}-V_{\text {o }}$				6			7			7	
$V_{\text {io }}$ 。	Undervoltage lockout			12			12			24		
$I_{\text {i0 }}$	No－load input current	$I_{0}=0, V_{\mathrm{imin}}-V_{\mathrm{imax}}$			50			50			50	mA
$I_{\text {inr } p}$	Inrush peak current	$V_{\text {inom }}$ ，with option E			4.5			4.5			4.5	A
C_{i}	Input capacitance			620			620			620		$\mu \mathrm{F}$

1 Output set to 15 V with the R －input．
2 Surges up to 156 V for 2 s are allowed（no shutdown）．

Table 2d：Input data．General Conditions：$T_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ，unless T_{C} is specified

Model			PSS369／PSK3612			PSK4812			Unit
Characteristics		Conditions	min	typ	max	min	typ	max	
V_{i}	Operating input voltage ${ }^{1}$	$\begin{aligned} & I_{\mathrm{o}}=0-I_{\mathrm{onom}} \\ & T_{\mathrm{C} \min }-T_{\mathrm{C} \max } \end{aligned}$	18		$144{ }^{2}$	22		$144{ }^{2}$	VDC
$\Delta V_{\text {io min }}$	Min．diff．voltage $V_{i}-V_{0}$				8			10	
$V{ }_{\text {i }}$ 。	Undervoltage lockout			36			48		
$I_{\text {i }}$	No－load input current	$I_{0}=0, V_{\mathrm{imin}}-V_{\mathrm{i} \text { max }}$			50			50	mA
$l_{\text {inr } p}$	Inrush peak current	$V_{\text {inom }}$ ，with option E			6			6	A
$C_{\text {i }}$	Input capacitance			620			620		$\mu \mathrm{F}$

Input Filter and Fuse

An input filter and a fuse are incorporated in all converters as standard. The filter reduces emitted electrical noise and prevents oscillations caused by the negative input impedance characteristic of a switched mode regulator. The input fuse protects against fatal defects; see table 3 .

Table 3: Input fuses

Model	Fuse type	Size	Supplier
PSK5A20 PSK1220, PSK2420, PSK3620	F 25A		
PSK1216 PSK2416, PSK2418, PSK3620	F 20A		
PSS1212, PSK1212 PSS2412, PSK2412	$6.3 \times 32 \mathrm{~mm}$	Littlefuse	
PSS3612, PSK3612, PSK3616 PSK4812			
PSS129, PSS249, PSS369			

The maximum permissible additionally superimposed ripple v_{i} of the input voltage (rectifier mode) at a specified input frequency f_{i} has the following values:

$$
v_{\mathrm{i} \max }=1000 \mathrm{~Hz} / f_{\mathrm{i}} \cdot 1 \mathrm{~V}\left(\text { or } 10 V_{\mathrm{pp}} \text { at } 100 \mathrm{~Hz}\right)
$$

Inrush Current

Depending on the input source and the input impedance, the inrush current into the converter may reach a high peak value during the switch-on. The inrush current peak value can be determined by following calculation; see also fig. 2:

Fig. 2
Equivalent input circuit

$$
I_{\text {inr p }}=\frac{V_{\mathrm{i} \text { source }}}{\left(R_{\mathrm{s} \text { ext }}+R_{\mathrm{i}}\right)}
$$

To limit the inrush current, we recommend the choice of the active inrush current limitation circuit, option E.

POWER SOLUTIONS \& PROTECTION

Electrical Out put Data

General conditions：
$-T_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ，unless T_{C} is specified
－R－input open（or V_{0} set to $V_{\text {o nom }}$ with option P）
Table 3a：Output data of PSS models

Output				PSS5A12			PSS1212			PSS1212 ${ }^{1}$			Unit
Characteristics			Conditions	min	typ	max	min	typ	max	min	typ	max	
V 。	Output voltage		$V_{\text {inom }}, l_{\text {onom }}$	5.07		5.13	11.93		12.07	14.91		15.09	V
1 。	Output current		$\begin{aligned} & V_{\mathrm{i} \text { min }}-V_{\mathrm{imax}} \\ & T_{\mathrm{C} \text { min }}-T_{\mathrm{C} \text { max }} \end{aligned}$	0		12	0		12	0		12	A
$I_{\text {oL }}$	Output current limitation			12		15	12		15	12		15	
V_{0}	Output voltage noise	Switching freq．	$\begin{aligned} & V_{\text {inom }}, I_{\text {onom }} \\ & \text { IEC/EN } 61204 \\ & \text { BW }=20 \mathrm{MHz} \end{aligned}$		20	40		20	45		30	50	
		Total incl．spikes			24	44		29	49		34	54	
$\Delta V_{o v}$	Static line regulation		$V_{\text {imin }}-V_{\text {i max }}, I_{\text {onom }}$		15	35		40	70		50	80	mV
ΔV_{01}	Static load regulation		$V_{\text {inom }}, I_{0}=0-I_{\text {onom }}$		10	25		30	50		35	55	
$V_{\text {od }}$	Dynamic load regulation	Voltage deviation	$\begin{aligned} & V_{\text {inom }} \\ & I_{\text {o nom }} \leftrightarrow 1 / 3 I_{\text {o nom }} \\ & \text { IEC/EN } 61204 \end{aligned}$	70			140			150			
$t_{\text {d }}$		Recovery time		40				60			60		$\mu \mathrm{s}$
a_{vo}	Temperature coefficient $\Delta V_{\mathrm{o}} / \Delta T_{\mathrm{C}}\left(T_{\mathrm{C} \text { min }}\right.$ to $\left.T_{\mathrm{C} \text { max }}\right)$		$\begin{aligned} & V_{\mathrm{i} \min }-V_{\mathrm{i} \max } \\ & I_{\mathrm{o}}=0-I_{\mathrm{onom}} \end{aligned}$			± 1			± 3			± 4	mV／K
					± 0.02			± 0.02			± 0.02	\％／K	

${ }^{1}$ Output set to 15 V with R－input．

Table 3b：Output data of PSS models．General conditions as per table 3a

Output				PSS2412			PSS2414			PSS3612			Unit
Characteristics			Conditions	min	typ	max	min	typ	max	min	typ	max	
V 。	Output voltage		$V_{\text {inom }},{ }_{\text {o }}$ nom	23.86		24.14	23.2		24.7	35.78		36.22	V
l_{0}	Output current		$\begin{aligned} & V_{\mathrm{i} \text { min }}-V_{\mathrm{i} \text { max }} \\ & T_{\mathrm{C}_{\text {min }}}-T_{\mathrm{C} \text { max }} \end{aligned}$	0		12	0		14	0		12	A
$I_{\text {oL }}$	Output current limitation			12		15	14		17.5	12		15	
$V_{\text {o }}$	Output voltage noise	Switching freq．	$\begin{aligned} & V_{\text {innom }}, I_{\text {onom }} \\ & \text { IEC/EN } 61204 \\ & \text { BW }=20 \mathrm{MHz} \end{aligned}$		30	40			300		35	60	
		Total incl．spikes			34	44			310		39	64	
ΔV_{ov}	Static line regulation		$V_{\text {imin }}-V_{\text {i max }}, I_{\text {onom }}$		80	35			480		120	250	mV
ΔV_{01}	Static load regulation		$V_{\text {inom }}, I_{\text {o }}=0-I_{\text {o nom }}$		50	25			240		60	200	
$V_{\text {od }}$	Dynamic load regulation	Voltage deviation	$\begin{aligned} & \hline V_{\text {inom }} \\ & I_{\text {o nom }} \leftrightarrow 1 / 3 I_{\text {o nom }} \\ & \text { IEC/EN } 61204 \end{aligned}$	180			700			200			
$t_{\text {d }}$		Recovery time		60				60			70		$\mu \mathrm{s}$
a_{vo}	Temperature coefficient $\Delta V_{0} / \Delta T_{\mathrm{C}}\left(T_{\mathrm{C} \text { min }}\right.$ to $\left.T_{\mathrm{C} \text { max }}\right)$		$\begin{aligned} & V_{\mathrm{i} \text { min }}-V_{\mathrm{i} \max } \\ & I_{\mathrm{o}}=0-I_{\mathrm{onom}} \end{aligned}$			± 5			± 5			± 8	mV / K
					± 0.02			± 0.02			± 0.02	\％／K	

Table 3c：Output data of PSS models．General conditions as per table 3a

Output				PSS129			PSS129 ${ }^{1}$			PSS249			Unit
Characteristics			Conditions	min	typ	max	min	typ	max	min	typ	max	
V 。	Output voltage		$V_{\text {inom }}, I_{\text {o nom }}$	11.93		12.07	14.91		15.09	23.86		24.14	V
1 。	Output current		$\begin{aligned} & V_{\mathrm{i} \text { min }}-V_{\mathrm{i} \text { max }} \\ & T_{\mathrm{C}_{\text {min }}}-T_{\mathrm{C}_{\text {max }}} \end{aligned}$	0		9	0		9	0		9	
$I_{\text {oL }}$	Output current limitation			9		11.25	19		11.25	9		11.25	
V_{0}	Output voltage noise	Switching freq．	$\begin{aligned} & V_{\text {inom }}, I_{\text {o nom }} \\ & \text { IEC/EN } 61204 \\ & \text { BW }=20 \mathrm{MHz} \end{aligned}$		25	50		20	45		30	50	
		Total incl．spikes			29	54		34	64		39	65	
$\Delta V_{\text {ov }}$	Static line regulation		$V_{\mathrm{imin}}-V_{\mathrm{imax}}, I_{\text {onom }}$		40	70		50	80		80	170	mV
ΔV_{01}	Static load regulation		$V_{\text {inom }}, I_{\text {o }}=0-I_{\text {onom }}$		30	50		40	60		50	120	
$V_{\text {od }}$	Dynamic load regulation	Voltage deviation	$\begin{aligned} & V_{\text {inom }} \\ & I_{\text {o nom }} \leftrightarrow 1 / 3 I_{\text {o nom }} \\ & \text { IEC/EN } 61204 \end{aligned}$	140			140			180			
$t_{\text {d }}$		Recovery time		60				60			60		$\mu \mathrm{s}$
a_{vo}	Temperature coefficient $\Delta V_{\mathrm{o}} / \Delta T_{\mathrm{C}}\left(T_{\mathrm{C} \text { min }}\right.$ to $\left.T_{\mathrm{C} \text { max }}\right)$		$\begin{aligned} & V_{\mathrm{i} \min }-V_{\mathrm{i} \text { max }} \\ & I_{\mathrm{o}}=0-I_{\text {onom }} \end{aligned}$			± 3			± 4			± 5	mV／K
					± 0.02			± 0.02			± 0.02	\％／K	

${ }^{1}$ Output set to 15 V with R－input．

Table 3d：Output data of PSS models．General conditions as per table 3a

Output				PSS369			PSS489			Unit
Characteristics			Conditions	min	typ	max	min	typ	max	
V 。	Output voltage		$V_{\text {inom }}, l_{\text {onom }}$	35.78		36.22	47.71		48.29	V
1 。	Output current		$\begin{aligned} & V_{\mathrm{i} \text { min }}-V_{\mathrm{i} \text { max }} \\ & T_{\mathrm{C}_{\text {min }}}-T_{\mathrm{C}_{\text {max }}} \end{aligned}$	0		9	0		9	A
$I_{\text {oL }}$	Output current limitation			9		11.25	9		11.25	
V 。	Output voltage noise	Switching freq．	$\begin{aligned} & V_{\text {inom }}, I_{\text {o nom }} \\ & \text { IEC/EN } 61204 \\ & B W=20 \mathrm{MHz} \end{aligned}$		35	60		35	60	mV pp
		Total incl．spikes			39	64		39	64	
$\Delta V_{o v}$	Static line regulation		$V_{\text {imin }}-V_{\text {i max }}, I_{\text {onom }}$		120	250		150	350	mV
$\Delta V_{\text {ol }}$	Static load regulation		$V_{\text {inom }}, I_{\mathrm{o}}=0-I_{\text {onom }}$		60	120		70	150	
$V_{\text {od }}$	Dynamic load regulation	Voltage deviation	$\begin{aligned} & V_{\text {inom }} \\ & I_{\text {o nom }} \leftrightarrow 1 / 3 I_{\text {onom }} \\ & \text { IEC/EN } 61204 \end{aligned}$	200			200			
$t_{\text {d }}$		Recovery time			70			70		$\mu \mathrm{s}$
a_{vo}	Temperature coefficient $\Delta V_{\mathrm{o}} / \Delta T_{\mathrm{C}}\left(T_{\mathrm{C} \text { min }}\right.$ to $\left.T_{\mathrm{C} \text { max }}\right)$		$\begin{aligned} & V_{\mathrm{i} \text { min }}-V_{\mathrm{i} \max } \\ & I_{\mathrm{o}}=0-I_{\mathrm{onom}} \end{aligned}$			± 5			± 4	mV／K
					± 0.02			± 0.02	\％／K	

Table 4a：Output data of PSK models．General conditions as per table 3a

Output				PSK5A16			PSK5A20			PSK5A25			Unit
Characteristics			Conditions	min	typ	max	min	typ	max	min	typ	max	
V 。	Output voltage		$V_{\text {inom }},{ }_{\text {o }}$ nom	5.07		5.13	5.07		5.13	5.07		5.13	V
1 。	Output current		$\begin{aligned} & V_{\mathrm{i} \text { min }}-V_{\mathrm{i} \text { max }} \\ & T_{\mathrm{C}_{\text {min }}}-T_{\mathrm{C}_{\text {max }}} \end{aligned}$	0		16	0		20	0		25	
$l_{\text {OL }}$	Output current limitation			16		20	20		25	25		31.5	
V 。	Output voltage noise	Switching freq．	$\begin{aligned} & \hline V_{\text {inom }}, I_{\text {onom }} \\ & \text { IEC/EN } 61204 \\ & \text { BW }=20 \mathrm{MHz} \end{aligned}$		20	40		20	40			40	
		Total incl．spikes			24	44		24	44		24	44	
$\Delta V_{o v}$	Static line regulation		$V_{\text {imin }}-V_{\text {i max }}, l_{\text {onom }}$		15	35		15	35		15	35	mV
ΔV_{01}	Static load regulation		$V_{\text {inom，}}, I_{0}=0-I_{\text {onom }}$		10	25		10	25		10	25	
$V_{\text {od }}$	Dynamic load regulation	Voltage deviation	$\begin{aligned} & V_{\text {inom }} \\ & I_{\text {onom }} \leftrightarrow 1 / 3 I_{\text {onom }} \\ & \text { IEC/EN } 61204 \end{aligned}$	70			70			70			
$t_{\text {d }}$		Recovery time		40				40			40		$\mu \mathrm{s}$
$\alpha_{\text {vo }}$	Temperature coefficient $\Delta V_{0} / \Delta T_{\mathrm{C}}\left(T_{\mathrm{C} \text { min }}\right.$ to $\left.T_{\mathrm{C} \text { max }}\right)$		$\begin{aligned} & V_{i \min }-V_{i \max } \\ & I_{\mathrm{o}}=0-I_{\mathrm{onom}} \end{aligned}$			± 1			± 1			± 1	mV／K
					± 0.02			± 0.02			± 0.02	\％／K	

Table 4b：Output data of PSK models．General conditions as per table 3a

Outp					SK121			SK122			SK121			SK121		Unit
Characteristics			Conditions	min	typ	max										
V 。	Output voltage		$V_{\text {inom，}},{ }_{\text {onom }}$	11.93		12.07	11.93		12.07	14.91		15.09	14.91		15.09	V
1 。	Output current		$\begin{aligned} & V_{\mathrm{i} \text { min }}-V_{\mathrm{i} \text { max }} \\ & T_{\mathrm{C}_{\text {min }}}-T_{\mathrm{C}_{\text {max }}} \end{aligned}$	0		16	0		20	0		16	0		20	A
$I_{\text {oL }}$	Output current limitation			16		20	20		25	16		20	20		25	
V 。	Output voltage noise	Switching freq．	$\begin{aligned} & V_{\text {inom }} I_{\text {o nom }} \\ & \text { IEC/EN } 61204 \\ & \text { BW }=20 \mathrm{MHz} \end{aligned}$		25	45		25	45		30	50		30	50	$\mathrm{mV}_{\mathrm{pp}}$
		Total incl．spikes			29	49		29	49		34	54		34	54	
ΔV_{ov}	Static line regulation		$V_{\text {imin }}-V_{\text {imax }}, I_{\text {onom }}$		40	70		40	70		50	80		50	80	mV
ΔV_{01}	Static load regulation		$V_{\text {inom }}, I_{\mathrm{o}}=0-I_{\text {onom }}$		30	50		30	50		35	55		35	55	
$V_{\text {od }}$	Dynamic load regulation	Voltage deviation	$\begin{aligned} & V_{\text {inom }} \\ & I_{\text {onom }} \leftrightarrow 1 / 3 I_{\text {onom }} \\ & \text { IEC/EN } 61204 \end{aligned}$	140			140			150			150			
$t_{\text {d }}$		Recovery time		60			60			60			60			$\mu \mathrm{s}$
$\mathrm{a}_{\text {vo }}$	Temperature coefficient $\Delta V_{\mathrm{o}} / \Delta T_{\mathrm{C}}\left(T_{\mathrm{C} \text { min }}\right.$ to $\left.T_{\mathrm{C} \text { max }}\right)$		$\begin{aligned} & V_{\mathrm{i} \min }-V_{\mathrm{i} \max } \\ & I_{\mathrm{o}}=0-I_{\text {onom }} \end{aligned}$			± 3			± 3			± 4			± 4	mV／K
					± 0.02	\％／K										

[^0]Table 4c：Output data of PSK models．General conditions as per table 3a

Output				PSK2416			PPSK2420			PSK3616			PSK3620			Unit
Characteristics			Conditions	min	typ	max										
V 。	Output voltage		$V_{\text {inom，}}{ }^{\text {onom }}$	23.86		24.14	23.86		24.14	35.78		36.22	35.78		36.22	V
1 。	Output current		$\begin{aligned} & V_{\mathrm{i} \text { min }}-V_{\mathrm{i} \text { max }} \\ & T_{\mathrm{C} \text { min }}-T_{\mathrm{C}_{\text {max }}} \end{aligned}$	0		16	0		20	0		16	0		20	
$I_{\text {oL }}$	Output current limitation			16		20	20		25	16		20	20		25	
V 。	Output voltage noise	Switching freq．	$\begin{aligned} & V_{\text {inom }}, I_{\text {onom }} \\ & \text { IEC/EN } 61204 \\ & B W=20 \mathrm{MHz} \end{aligned}$		30	60		30	60		35	60		35	60	
		Total incl．spikes			34	64		34	64		39	64		39	64	pp
$\Delta V_{\text {oV }}$	Static line regulation		$V_{\text {imin }}-V_{\text {imax }}, I_{\text {onom }}$		80	170		80	170		120	250		120	250	mV
$\Delta V_{\text {ol }}$	Static load regulation		$V_{\text {inom }}, I_{\text {o }}=0-I_{\text {onom }}$		50	120		50	120		60	120		60	120	
$V_{\text {od }}$	Dynamic load regulation	Voltage deviation	$\begin{aligned} & V_{\text {inom }} \\ & I_{\text {onom }} \leftrightarrow 1 / 3 I_{\text {onom }} \\ & \text { IEC/EN } 61204 \end{aligned}$	180			500			200			200			
$t_{\text {d }}$		Recovery time		60			2000				70			70		$\mu \mathrm{s}$
a_{vo}	Temperature coefficient $\Delta V_{\mathrm{o}} / \Delta T_{\mathrm{C}}\left(T_{\mathrm{C} \text { min }}\right.$ to $\left.T_{\mathrm{C} \text { max }}\right)$		$\begin{aligned} & V_{\mathrm{i} \min }-V_{\mathrm{i} \max } \\ & I_{\mathrm{o}}=0-I_{\text {onom }} \end{aligned}$			± 5			± 5			± 8			± 8	mV／K
					± 0.02	\％／K										

Table 4d：Output data of PSK models．General conditions as per table 3a

[^1]Table 4e：Output data of PSK models．General conditions as per table 3a

Output				PSK3612			PSK4812			Unit
Characteristics			Conditions	min	typ	max	min	typ	max	
V 。	Output voltage		$V_{\text {inom }},{ }^{\text {o }}$ nom	35.78		36.22	47.71		48.29	V
1 。	Output current		$\begin{aligned} & V_{\mathrm{i} \text { min }}-V_{\mathrm{i} \text { max }} \\ & T_{\mathrm{C} \text { min }}-T_{\mathrm{C} \text { max }} \\ & \hline \end{aligned}$	0		12	0		12	A
$I_{\text {oL }}$	Output current limitation			12		15	12		15	
V 。	Output voltage noise	Switching freq．	$V_{\text {inom }}, I_{\text {onom }}$ IEC／EN 61204 $B W=20 \mathrm{MHz}$		35	60		35	60	
		Total incl．spikes			39	64		39	64	
$\Delta V_{o v}$	Static line regulation		$V_{\text {imin }}-V_{\text {imax }}, I_{\text {onom }}$		120	250		150	350	mV
ΔV_{01}	Static load regulation		$V_{\text {inom }}, I_{\text {o }}=0-I_{\text {onom }}$		60	120		70	150	
$V_{\text {od }}$	Dynamic load regulation	Voltage deviation	$\begin{aligned} & V_{\text {inom }} \\ & I_{\text {onom }} \leftrightarrow 1 / 3 I_{\text {onom }} \\ & \text { IEC/EN } 61204 \end{aligned}$	200			200			
$t_{\text {d }}$		Recovery time		70				70		$\mu \mathrm{s}$
$\alpha_{\text {vo }}$	Temperature coefficient $\Delta V_{\mathrm{o}} / \Delta T_{\mathrm{C}}\left(T_{\mathrm{C} \min }\right.$ to $\left.T_{\mathrm{C} \max }\right)$		$\begin{aligned} & V_{\mathrm{i} \min }-V_{\mathrm{i} \max } \\ & I_{\mathrm{o}}=0-I_{\text {onom }} \end{aligned}$			± 5			± 4	mV / K
					± 0.02			± 0.02	\％／K	

Output Voltage Regulation

The dynamic load regulation is shown in fig．3：

Fig． 3
Dynamic load regulation．

Current Limitation

A constant current limitation circuit holds the output current $I_{\text {o }}$ almost constant in the area of 100 to 120% of $I_{\text {onom }}$ ，when an overload or a short－circuit is applied to the output．It acts self－protecting and recovers－in contrary to the fold back method－automatically after removal of the overload or short－circuit condition．

Fig． 4
Overload，short－circuit behavior V_{0} versus I_{0} ．

Output Protection

A voltage suppressor diode, which in worst case conditions fails into a short-circuit, protects the output against an internally generated overvoltage. Such an overvoltage could occur due to a failure of either the control circuit or the switching transistor. The output protection is not designed to withstand externally applied overvoltages.

Parallel and Series Connection

Outputs of equal nominal voltage may be parallel-connected. Interconnect the current sharing pins T (pin 22) for even distribution of the output current; see Auxiliary Functions.

Outputs can be series-connected with any other regulator, provided that the regulators are powered by electrically isolated source voltages. In series connection the maximum output current is limited by the lowest current limitation.

Thermal Considerations and Protection

When a switching regulator is located in free, quasi-stationary air (convection cooling) at a temperature $T_{\text {A max }}$ and is operated at its nominal output current $I_{\text {onom }}$, the case temperature T_{C} can rise over $T_{\mathrm{C} \text { max }}$ after the warm-up phase. T_{C} is measured at the measuring point of case temperature; see Mechanical Data.
Under practical operating conditions, the ambient temperature T_{A} may exceed $T_{\text {A } \max }$, provided that additional measures (heat sink, forced cooling, etc.) are taken to ensure that the case temperature T_{c} does not exceed its maximum value.
The regulator is protected by an internal temperature sensor, which inhibits the output above $T_{\mathrm{c} \text { max }}$. The output automatically recovers, when the temperature drops below $T_{\mathrm{C}_{\text {max }}}$.

Fig. 5a
Output current derating versus temperature (models -2)

Fig. 5b
Output current derating versus temp. (models -7 or -9)

Auxiliary Functions

Inhibit (Remote On / Off)

The inhibit input allows to enable or disable the output with a control signal. In systems with several regulations, this feature can be used to control the activation sequence of the regulators by a logic signal (TTL, C-MOS, etc.). An output voltage overshoot will not occur, when switching on or off.
The inhibit signal is referenced to the S_{-}(pin 18). The signal i and the switching times are specified in table 5 , fig. 6 to 8 .
Note: With open i input, the output is enabled.
Table 5: Inhibit characteristics

Characteristics			Conditions	min	typ	max	Unit
$V_{\text {inh }}$	Inhibit input voltage	$V_{0}=$ on	$\begin{aligned} & V_{\mathrm{i} \text { min }}-V_{\mathrm{i} \text { max }} \\ & T_{\mathrm{C} \text { min }}-T_{\mathrm{C} \text { max }} \end{aligned}$	-50		+0.8	V
		$V_{0}=$ off		+2.4		+50	
t_{r}	Switch-on time		$\begin{aligned} & V_{\mathrm{i}}=V_{\text {inom }} \\ & R_{\mathrm{L}}=V_{\text {o nom }} / I_{\text {onom }} \end{aligned}$		130		
$t_{\text {f }}$	Switch-off time				25		s
$I_{\text {inh }}$	Input current when inhibited		$V_{\mathrm{i}}=V_{\text {inom }}$		25		mA

Fig. 6
Specification of the inhibit signal (typical)

Fig. 8
Output response as a function of the inhibit signal

Fig. 7
Specification of the inhibit signal (typical)

Sense Lines

This feature enables compensation of the voltage drop across the connector contacts and the load lines. If the sense lines are connected at the load rather than directly at the connector, the user must ensure that $V_{\text {omax }}$ (between Vo+ and Go-) is not exceeded. Applying generously dimensioned cross-section load leads reduces the voltage drop. To minimize noise pick-up, the sense lines should be wired in parallel or twisted.
To ensure correct operation, both sense lines must be connected to their respective power output. The voltage difference between any sense line and its respective power output pin (as measured on the connector) should not exceed the values given in table 6.
Note: Sense lines should always be connected! It is recommended to connect the sense lines directly at the female connector.
Table 6: Allowed voltage compensation using sense lines

Nominal output voltage	Total voltage difference between both sense lines and their respective output	Voltage difference between Go- and S-
$3.3 \mathrm{~V}, 5.1 \mathrm{~V}$	$\leq 0.5 \mathrm{~V}$	$\leq 0.25 \mathrm{~V}$
$12-48 \mathrm{~V}$	$\leq 1.0 \mathrm{~V}$	$\leq 0.25 \mathrm{~V}$

Fig. 9
Sense lines connection

Current Sharing

For parallel operation of several regulators, interconnect all T-pins to ensure that the output currents are evenly distributed. This feature improves transient load performance and increases system reliability. All paralleled regulators should be supplied by equal input voltage $\left(V_{\mathrm{i}}\right)$. The output lines should exhibit equal length and cross section to provide equal voltage drop.

R Control (Output Voltage Adjust)

Note: With open R input, $V_{o} \approx V_{\text {onom }}$.
The output voltage V_{0} can either be adjusted with an external voltage source $\left(V_{\text {ext }}\right)$ or with an external resistor $\left(R_{\text {ext1 }}\right.$ or $\left.R_{\text {ext2 }}\right)$. The adjustment range is approx. $0-V_{\text {omax }}$. The minimum differential voltage $\Delta V_{\text {io min }}$ between input and output (see Electrical Input Data) should be maintained.
a) $V_{o}=0-V_{o m a x}$, using $V_{\text {ext }}$ between R and $S-$:

$$
V_{\text {ext }} \approx 2.5 \mathrm{~V} \cdot \frac{V_{\mathrm{o}}}{V_{\text {o nom }}} \quad V_{\mathrm{o}} \approx V_{\text {o nom }} \cdot \frac{V_{\text {ext }}}{2.5 \mathrm{~V}}
$$

Caution: To prevent damage $V_{\text {ext }}$ should not exceed 20 V , nor be negative.
b) $V_{o}=0$ to $V_{o n o m}$, using $R_{\text {ext1 }}$ between R and S-:

$$
R_{\mathrm{ext1}} \approx \frac{4000 \Omega \cdot V_{\mathrm{o}}}{V_{\mathrm{onom}}-V_{\mathrm{o}}} \quad V_{\mathrm{o}} \approx \frac{V_{\mathrm{onom}} \cdot R_{\mathrm{ext1}}}{R_{1}+4000 \Omega}
$$

c) $V_{o}=V_{\text {onom }}$ to $V_{o m a x}$, using $R_{\text {ext2 }}$ between R and $\mathrm{S}+$:

$$
\begin{aligned}
& R_{\mathrm{ext2}} \approx \frac{4000 \Omega \cdot V_{\mathrm{o}} \cdot\left(V_{\mathrm{onom}}-2.5 \mathrm{~V}\right)}{2.5 \mathrm{~V} \cdot\left(\mathrm{Vo}-V_{\mathrm{o}} \mathrm{nom}\right)} \\
& V_{\mathrm{o}} \approx \frac{V_{\mathrm{onom}} \cdot 2.5 \mathrm{~V} \cdot R_{\mathrm{ext2}}}{2.5 \mathrm{~V} \cdot\left(R_{2}+4000 \Omega\right)-V_{\mathrm{onom}} \cdot 4000 \Omega}
\end{aligned}
$$

Fig. 10
Voltage adjustment via R-input

Caution: $R_{\text {ext }}$ should never be less than $47 \mathrm{k} \Omega$.

Table 7: Maximum adjustable output voltage

$V_{\text {o nom }}$	Nominal Output	Conditions	3.3 V	5.1 V	12/15 V	24 V	36 V	48 V	Unit
			min typ						
$V_{\text {o max }}$	Max. adjustable output voltage with R-input	$V_{\text {i nom }}, l_{\text {o nom }}$		5.5	16	26	42.5	52.8	V

Test Sockets

Test sockets (pin $\varnothing=2 \mathrm{~mm}$) for measuring the output voltage V_{0} at the sense lines, are located at the front side of the regulator. The test sockets are protected by a series resistor.

LED Output Voltage Indicator

A green LED indicator shines when the output voltage is present.

Electromagnetic Compatibility (EMC)

Electromagnetic Immunity

General condition: Case earthed.
Table 8: Immunity type tests

Phenomenon	Standard	Level	Coupling mode	Value applied	Waveform	Source imped.	Test procedure	In oper.	Perf. crit. ${ }^{2}$
Direct transients ${ }^{2}$	IEC 60571-1	2	i/c, $+\mathrm{i} /-\mathrm{i}$	$800 \mathrm{~V}_{\mathrm{p}}$	$100 \mu \mathrm{~s}$	100Ω	1 positive and 1 negative surge per coupling mode	yes	B
				$1500 \mathrm{~V}_{\mathrm{p}}$	$50 \mu \mathrm{~s}$				
				$3000 \mathrm{~V}_{\mathrm{p}}$	$5 \mu \mathrm{~s}$				
				$4000 \mathrm{~V}_{\mathrm{p}}$	$1 \mu \mathrm{~s}$				
				$7000 \mathrm{~V}_{\mathrm{p}}$	100 ns				
Electrostatic discharge (to case)	$\begin{aligned} & \text { IEC/EN } \\ & 61000-4-2 \end{aligned}$	4^{2}	contact discharge	$6000 \mathrm{~V}_{\mathrm{p}}$	1/50 ns	330Ω	10 pos. \& 10 neg. discharges	yes	A
			air discharge	$8000 \mathrm{~V}_{\mathrm{p}}$					
Electromagnetic field	$\begin{aligned} & \text { IEC/EN } \\ & 61000-4-3 \end{aligned}$	$\begin{aligned} & 3^{2} \\ & 2^{3} \end{aligned}$	antenna	$\begin{aligned} & 10 \mathrm{~V} / \mathrm{m}^{2} \\ & 3 \mathrm{~V} / \mathrm{m}^{3} \end{aligned}$	AM 80\% / 1 kHz	N/A	$80-1000 \mathrm{MHz}$	yes	A
		3^{2}	antenna	$10 \mathrm{~V} / \mathrm{m}$	50\% duty cycle, 200 Hz rep. rate	N/A	$900 \pm 5 \mathrm{MHz}$		A
Electrical fast transients / burst	$\begin{aligned} & \text { IEC/EN } \\ & 61000-4-4 \end{aligned}$	$\begin{aligned} & 3^{2} \\ & 2^{3} \end{aligned}$	i/c, +i/-i	$\begin{aligned} & 2000 \mathrm{~V}_{\mathrm{p}}{ }^{2} \\ & 1000 \mathrm{~V}_{\mathrm{p}}{ }^{3} \\ & \hline \end{aligned}$	bursts of $5 / 50 \mathrm{~ns}$; 5 kHz repet. rate; transients with 15 ms burst duration; 300 ms period	50Ω	60 s positive 60 s negative transients per coupling mode	yes	A
		$\begin{aligned} & 4^{2} \\ & 3^{3} \end{aligned}$		$\begin{aligned} & 4000 V_{p}{ }^{2} \\ & 2000 V_{p}{ }^{3} \end{aligned}$					B^{5}
Surges	$\begin{aligned} & \text { IEC/EN } \\ & 61000-4-5 \end{aligned}$	$\begin{aligned} & 3^{2} \\ & 2^{3} \end{aligned}$	i/c	$\begin{aligned} & 2000 \mathrm{~V}_{\mathrm{p}}{ }^{2} \\ & 1000 \mathrm{~V}_{\mathrm{p}}{ }^{2} \end{aligned}$	$1.2 / 50 \mu \mathrm{~s}$	12Ω	5 pos. \& 5 neg. surges per coupling mode	yes	A
		$\begin{aligned} & 3^{2} \\ & 1^{3} \end{aligned}$	+i/-i	$\begin{aligned} & 1000 \mathrm{~V}_{\mathrm{p}}{ }^{2} \\ & 500 \mathrm{~V}_{\mathrm{p}} \end{aligned}$		2Ω			
Conducted disturbances	$\begin{aligned} & \text { IEC/EN } \\ & 61000-4-6 \end{aligned}$	$\begin{aligned} & 3^{2} \\ & 2^{3} \end{aligned}$	i, o, signal wires	$\begin{aligned} & 10 \text { VAC }^{2} \\ & 3 \mathrm{VAC}^{3} \end{aligned}$	AM 80\% / 1 kHz	150Ω	$0.15-80 \mathrm{MHz}$	yes	A

1 i = input, o = output, c = case
2 Not applicable for -2 models
3 Valid for -2 models
${ }^{4} A=$ Normal operation, no deviation from specifications, $B=$ Normal operation, temporary loss of function or deviation from specs possible
5 With option C, manual reset might be necessary.

Electromagnetic Emission

Fig. 11
Typical conducted disturbance voltage (quasi-peak \& average) according to EN 55011 Group 1, Class A,
measured at $V_{\text {inom }}=110 \mathrm{~V}$ and $I_{0}=10 \mathrm{~A}($ PSK2412-9).

Fig. 12
Typ. radiated disturbance voltage (quasi-peak) in 10 m distance according to EN 55011 Group 1, Class A, measured at $V_{\text {inom }}=110 \mathrm{~V}$ and $I_{0}=10 \mathrm{~A}(P S K 2412-9)$.

Immunity to Environmental Conditions

Table 9: Mechanical and climatic stress

Test method		Standard	Test Conditions		Status
Cab	Damp heat steady state	IEC/EN 60068-2-78 MIL-STD-810D section 507.2	Temperature: Relative humidity: Duration:	$\begin{aligned} & 40^{ \pm 2}{ }^{\circ} \mathrm{C} \\ & 93^{+2 /-3} \% \\ & 56 \text { days } \end{aligned}$	Regulator not operating
Db	Damp heat test, cyclic ${ }^{2}$	EN 50155:2007, clause 12.2.5 IEC/EN 60068-2-30	Temperature: Cycles (respiration effect): Duration:	$\begin{aligned} & 55^{\circ} \mathrm{C} \text { and } 25^{\circ} \mathrm{C} \\ & 2 \\ & 2 \times 24 \mathrm{~h} \end{aligned}$	Regulator not operating
Ka	Salt mist test (sodium chloride NaCl solution)	EN 50155:2007, clause 12.2.10 IEC/EN 60068-2-11, class ST2	Temperature: Duration:	$35^{ \pm 2}{ }^{\circ} \mathrm{C}$ 16 h	Regulator not operating
Ea	Shock (half-sinusoidal)	IEC/EN 60068-2-27 MIL-STD-810D section 516.3	Acceleration amplitude: Bump duration: Number of bumps:	$\begin{aligned} & \hline 50 \mathrm{~g}_{\mathrm{n}}=490 \mathrm{~m} / \mathrm{s}^{2} \\ & 11 \mathrm{~ms} \\ & 18 \text { (3 in each direction) } \end{aligned}$	Regulator operating
Eb	Bump (half-sinusoidal)	IEC/EN 60068-2-29 MIL-STD-810D section 516.3	Acceleration amplitude: Bump duration: Number of bumps:	$\begin{aligned} & 25 \mathrm{~g}_{\mathrm{n}}=245 \mathrm{~m} / \mathrm{s}^{2} \\ & 11 \mathrm{~ms} \\ & 6000 \text { (1000 in each direction) } \end{aligned}$	Regulator operating
Fda	Random vibration wide band Reproducibility high	IEC/EN 60068-2-35 DIN 40046 part 23	Acceleration spectral density: Frequency band: Acceleration magnitude: Test duration:	$\begin{aligned} & 0.05 \mathrm{~g}_{\mathrm{n}}^{2} / \mathrm{Hz} \\ & 20 \text { to } 500 \mathrm{~Hz} \\ & 4.9 \mathrm{~g}_{\mathrm{n} \text { rms }} \\ & 3 \mathrm{~h} \mathrm{(1} \mathrm{~h} \mathrm{in} \mathrm{each} \mathrm{axis)} \end{aligned}$	Regulator operating
-	Shock	EN 50155:2007 clause 12.2.11 EN 61373 sect. 10, class B, body mounted ${ }^{1}$	Acceleration amplitude: Bump duration: Number of bumps:	$\begin{aligned} & \hline 5.1 \mathrm{~g}_{\mathrm{n}} \\ & 30 \mathrm{~ms} \\ & 18 \text { (3 in each direction) } \end{aligned}$	Regulator operating
-	Simulated long life testing at increased random vibration levels	EN 50155:2007 clause 12.2.11 EN 61373 sect. and 9 , class B, body mounted ${ }^{1}$	Acceleration spectral density: Frequency band: Acceleration magnitude: Test duration:	$\begin{aligned} & 0.02 \mathrm{~g}_{\mathrm{n}}{ }^{2} / \mathrm{Hz} \\ & 5 \text { to } 150 \mathrm{~Hz} \\ & 0.8 \mathrm{~g}_{\mathrm{n} \text { rms }} \\ & 15 \mathrm{~h} \mathrm{(5} \mathrm{in} \mathrm{each} \mathrm{axis)} \end{aligned}$	Regulator operating

1 Body mounted = chassis of a railway coach
2 Models with version V104 or later

Temperatures

Table 10: Temperature specifications, valid for air pressure of 800 to 1200 hPa (800 to 1200 mbar)

Temperature			-2			-7			-9 (Option)			Unit
Characteristics		Conditions	min	typ	max	min	typ	max	min	typ	max	
$T_{\text {A }}$	Ambient temperature ${ }^{1}$	Regulator operating ${ }^{1}$	-10		50	-25		71	-40		71	
$T_{\text {c }}$	Case temperature		-10		85	-25		95	-40		95	${ }^{\circ} \mathrm{C}$
$T_{\text {s }}$	Storage temperature ${ }^{1}$	Not operational	-25		85	-40		85	- 55		85	

1 See Thermal Considerations and Overtemperature Protection.

Reliability

Table 11: Typical MTBF and device hours

MTBF	Ground benign	Ground fixed		Ground mobile	Device hours ${ }^{1}$
Case temperature	$\boldsymbol{T}_{\mathrm{C}}=\mathbf{4 0}{ }^{\circ} \mathbf{C}$	$\boldsymbol{T}_{\mathrm{C}}=\mathbf{4 0}{ }^{\circ} \mathbf{C}$	$\boldsymbol{T}_{\mathrm{C}}=\mathbf{7 0}{ }^{\circ} \mathbf{C}$	$\boldsymbol{T}_{\mathrm{C}}=\mathbf{5 0}{ }^{\circ} \mathbf{C}$	
MTBF accord. to MIL-HDBK-217F	335000 h	138000 h	35000 h	33000 h	2100000 h

[^2]POWER SOLUTIONS \& PROTECTION

MELCHER ${ }^{\text {m }}$
The Power Partners.

Positive Switching Regulators

Mechanical Data

PSS Models

The regulators are designed to be inserted into a rack according to IEC 60297-3. Dimensions in mm .

Fig. 13
Case S01 for PSS models; weight 1.3 kg
Aluminum, fully enclosed, black finish EP power-coated, and self cooling.

Notes:

- d $\geq 15 \mathrm{~mm}$, recommended minimum distance to next part to ensure proper air circulation at full output power.
- Free air locations: the regulator should be mounted with its fins in vertical position to achieve a maximum air flow through heat sink.

MELCHER ${ }^{\text {m }}$
The Power Partners.
Positive Switching Regulators

PSK Models

The regulators are designed to be inserted into a DIN-rack according to IEC 60297-3. Dimensions in mm.

Fig. 14
Case K01 for PSK models, weight 1.6 kg
Aluminum, fully enclosed, black finish EP powder-coated, and self cooling.

Notes:

- $\mathrm{d} \geq 15 \mathrm{~mm}$, recommended minimum distance to next part to ensure proper air circulation at full output power
- Free air locations: the regulator should be mounted with its fins in vertical position to achieve a maximum air flow through heat sink.

PSK / PSS Series

Positive Switching Regulators

MELCHER ${ }^{\text {m }}$
The Power Partners.

Option B, B1

Fig. 15
Option B, large cooling plate Weight: 1.3 kg

Fig. 16
Option B1, small cooling plate
Weight: 1.2 kg

Safety and Installation Instructions

Connector Pin Allocation

The connector pin allocation table defines the electrical potentials and the physical pin positions on the H 15 or H 15 S 4 connector. Pin 24 (protective earth) is a leading pin, which provides electrical contact first. The regulators should only be wired via the female connector H15 (according to DIN 41612) to ensure requested safety!

Table 12: H15 and H15S4 connector pin allocation

Electrical Determination	Type H15		Type H15S4	
	Pin no.	Ident.	Pin no.	Ident.
Output voltage (positive Output voltage (positive) Output voltage (negative) Output voltage (negative)		Vo+ Vo+ Go- Go-	$\begin{gathered} 4 / 6 \\ 8 / 10 \end{gathered}$	Vo+ Go-
Crowbar trigger input (option C) Inhibit input R-input (output voltage programming) Sense line (negative) Sense line (positive) Current sharing control input	$\begin{aligned} & 12 \\ & 14 \\ & 16 \\ & 18 \\ & 20 \\ & 22 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ \mathrm{i} \\ \mathrm{R} \\ \mathrm{~S}- \\ \mathrm{S}+ \\ \mathrm{T} \end{gathered}$	$\begin{aligned} & 12 \\ & 14 \\ & 16 \\ & 18 \\ & 20 \\ & 22 \end{aligned}$	C i R S- S+ T
Protective ground (leading pin) Input voltage (negative) Input voltage (negative) Input voltage (positive) Input voltage (positive)	$\begin{aligned} & 24 \\ & 26 \\ & 28 \\ & 30 \\ & 32 \end{aligned}$	$\left(\frac{1}{\square}\right)$ Gi- Gi- Vi+ Vi+	$\begin{gathered} \hline 24 \\ 26 / 28 \\ 30 / 32 \end{gathered}$	$\stackrel{1}{\square}$ Gi- Vi+

Fig. 17
View of H15 and H15S4 male connector

Installation Instruction

Installation of the regulators must strictly follow the national safety regulations in compliance with the enclosure, mounting, creepage, clearance, casualty, markings, and segregation requirements of the end-use application.

The input and the output circuit are not separated. The negative path is internally interconnected.
The regulators should be connected to a secondary circuit. Make sure that a regulator failure (e.g. by an internal short-circuit) does not result in a hazardous condition.

Do not open the regulator!

Standards and Approvals

The regulators are safety-approved to UL/CSA 60950-1 $2^{\text {nd }}$ Ed. and IEC/EN 60950-1 $2^{\text {nd }}$ Ed. They correspond to Class I equipment (with case connected to ground).
The regulators have been evaluated for:

- Building in
- No insulation from input to output.
- The use in a pollution degree 2 environment
- Connecting the input to a secondary circuit, which is subject to a maximum transient rating of 1500 V .

The switching regulators are subject to manufacturing surveillance in accordance with the above mentioned standards and with ISO 9001:2015.

Cleaning Liquids

In order to avoid possible damage, any penetration of cleaning fluids must be prevented, since the regulators are not hermetically sealed.

MELCHER ${ }^{m}$
Positive Switching Regulators
The Power Partners.

Protection Degree

The protection degree is IP 30. It applies only, if the regulator is plugged-in or the matching female connector is properly attached.

Isolation and Protective Earth

The resistance of the protective earth connection (max. 0.1Ω) is tested. The electric strength between input interconnected with output and case is tested with $1500 \mathrm{VDC} \geq 1 \mathrm{~s}$ (all models with version V103 or later). Models with $V_{\mathrm{i} \max }=144 \mathrm{~V}$ and V 104 or later are tested with 2200 VDC $\geq 1 \mathrm{~s}$.

These tests are performed in the factory as routine test in accordance with EN 50116 and IEC/EN 60950. The electric strength test should not be repeated by the customer. BeIPS Company does not honor warranty claims resulting from incorrect executed electric strength tests.

Railway Application

The regulators have been developed observing the railway standards EN 50155 and EN 50121. All boards are coated with a protective lacquer.

Description of Options

-7 Temperature Range

This option defines a restricted temperature range as specified in table 10 (not for new designs).

E Inrush Current Limitation

Note: This option requires an increased minimum input voltage V_{imax} of up to 1 V , dependent upon input range.
In regulators without option E, after application of the input supply the inrush current is limited by parasitic components of the voltage source and the regulator input only. The regulator input exhibits a very low impedance, and when driven from a low impedance source, for example a battery, the inrush current can peak at several orders of magnitude above the continuous input current.
Option E dramatically reduces this peak current and is recommended for any application to protect series elements such as fuses, switches, or circuit breakers. The start-up circuit is bypassed during normal operation.

Fig. 18
Option E: Inrush current versus time. R_{s} is the startup resistor $\left(R_{\mathrm{s}}=1 \Omega\right.$ for models with $V_{\mathrm{i} \max } \leq 80 \mathrm{~V}, R_{\mathrm{s}}=15 \Omega$ for models with $\left.V_{\mathrm{i} \max }>80 \mathrm{~V}\right)$

C Thyristor Crowbar

Note: The crowbar can be reset by removal of the input voltage only. The inhibit signal cannot deactivate the thyristor.
Option C protects the load against power supply malfunction. It is not designed to sink external currents.
As a central overvoltage protection device, the crowbar is usually connected to the external load via distributed inductance of the lines. For this reason, the overvoltage at the load can temporarily exceed the trigger voltage $V_{o c}$. Depending on the application, further decentralized overvoltage protection elements may have to be used additionally.
A fixed-value monitoring circuit checks the output voltage V_{0}, and when the trigger voltage $V_{o c}$ is reached, the thyristor crowbar triggers and disables the output.
An external connection C (crowbar trigger control) is provided. When crowbar option is used with two or more power supplies in parallel connection, all crowbar trigger terminals (C) should be interconnected. This ensures all crowbar circuits triggering simultaneously, in order to disable all outputs at once. The crowbar trigger voltage is maintained between Vo+ and Go-. To prevent false triggering, the user should ensure that V_{0} (between $V_{0}+$ and $G o-$) does not exceed $V_{\text {oc }}$.

Table 13: Crowbar trigger levels

Characteristics		Conditions	PSK5A20-9ECKG			PSK1212 PSK1216 PSK1220			$\begin{aligned} & \text { PSS249 } \\ & \text { PSK2412 } \\ & \text { PSK2416 } \\ & \text { PSK2420 } \end{aligned}$			PSK3612 PSK3616 PSK3620			PSK4812			Unit	
		min	typ	max															
$V_{\text {oc }}$	Trigger voltage		$\begin{aligned} & T_{\mathrm{c} \text { min }}-T_{\mathrm{c} \text { max }} \\ & V_{\mathrm{i} \text { min }}-V_{\mathrm{i} \text { max }} \\ & I_{\mathrm{o}}^{=}=0-I_{\mathrm{onom}} \\ & \hline \end{aligned}$		6.3	6.7		17.8	18.9		28.9	30.6		47	50		63	67	V
$t_{\text {s }}$	Delay time			1.5			1.5			1.5			1.5			1.5		$\mu \mathrm{s}$	

B, B1 Cooling Plate

Where a cooling surface is available, a cooling plate (option B or option B1) can be fitted instead of the standard heatsink. The mounting system must ensure sufficient cooling capacity to guarantee that the maximum case temperature $T_{\mathrm{C} \text { max }}$ is not exceeded. The required cooling capacity can be calculated by the following formula:

$$
P_{\text {Loss }}=\frac{100 \%-\eta}{\eta} \cdot\left(V_{0} \cdot I_{\mathrm{o}}\right)
$$

G RoHS Compliance

Models with G are RoHS-compliant for all six substances.

Accessories

A variety of electrical and mechanical accessories are available including:

- Various front panels for 19" DIN-racks with 3 U height, 12 or 16 TE, Schroff or Intermas
- DIN-rail mounting assembly HZZ0615-G; see fig. 20
- Various mating connectors H 15 and H 15 S 4 including fast-on, screw, solder, or press-fit terminals, code key system and coding wedges HZZ00202-G
- Pair of connector retention clips HZZ01209-G; see fig. 22
- Connector retention brackets HZZ01216-G; see fig. 23
- Different cable connector housings (cable hoods), including a metallic version for fire protection
- Cage clamp adapter HZZ00144-G; see fig. 24
- Wall-mounting plate K02 HZZ01213, only for models with option B1
- Brackets for DIN-rail and wall mounting HZZ00610
- Battery sensors S-KSMH... for using the converter as battery charger. Different cell characteristics can be selected; see Battery Charging/Temperature Sensor.

Fig. 19
Different front panels

Fig. 20
DIN-rail mounting assembly HZZ00615-G

PSK / PSS Series

Positive Switching Regulators

The Power Partners.

Fig. 21
H15 female connector with code key system

Fig. 23
Connector retention brackets HZZ01216-G

Fig. 22
Connector retention clips HZZ01209-G

Fig. 24
Cage clamp adapter HZZ00144-G

For additional accessory product information, see the accessory data sheets listed with each product series at our web site.

NUCLEAR AND MEDICAL APPLICATIONS - These products are not designed or intended for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems.

TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Non-Isolated DC/DC Converters category:

Click to view products by Bel Fuse manufacturer:

Other Similar products are found below :
BRFS50 APTH003A0X-SRZ SPM1004-3V3C R-785.0-05 BRFS30 PJT020A0X43-SRZ 10E24-P15-10PPM 1E24-P4-25PPM-SHV-5KV
CA-17205-L4 4D15-N1 MYGTM01210BZN APXW012A0X3-SRDZ 10C24-N250-I10-AQ-DA 4AA24-P20-M-H DX150N 3V12-N0.8 2HVA24-BP1-F-25PPM-SHV-5KV 5HVA24-BP1-F-25PPM-SHV-5KV 1/2AA24-P30-I10 1C24-P20-M-C VI-920194B T31SN24005NMFA 3V24-P1 3V24-N1 BMR4672010/001 BMR4652010/001 BMR4668004/001 T31SN12008NMFA 6AA24-P30-I5-M 6AA24-N30-I5-M PTV03020WAH PTV05020WAH PTV12010LAH PTV12020WAD IBF05012A006V-007-R IBF12012A007V-007-R V7806-1500 V7806W-500 PTV12020LAH PTN04050CAZT PTH12020WAD I6A24008A033V-N00-R R-625.0D R-7212D R-7212P R-745.0D R-78AA15-0.5SMD R-78AA5.0-1.0SMD 30A24-N15-E 10A12-P4-M

[^0]: ${ }^{1}$ Output set to 15 V with R－input．

[^1]: ${ }^{1}$ Output set to 15 V with R－input．

[^2]: 1 Statistical values, based on an average of 4300 working hours per year and in general field use

