

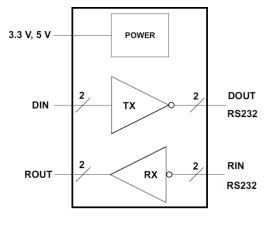
3V to 5.5V, 250kbps RS-232 Transceivers

Description

The BL13232E consists of two drivers, two receivers, and a dual charge-pump circuit with ± 12 kV IEC 61000-4-2 Contact Discharge ESD protection.

The BL13232E meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 3V to 5.5V supply. The device operates at data signaling rates up to 250 kbps.

The BL13232E is available in SOP16 and TSSOP16 package.

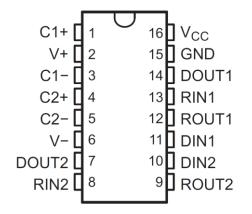

Features

- ► ESD protection for RS-232 Bus Pins
 - ±12kV (IEC61000-4-2, Contact Discharge)
 - ±15kV (IEC61000-4-2, Air-Gap Discharge)
- Meets the Requirements of TIA/EIA-232-F standard
- ▶ Wide Power Supply Range: Single +3V to +5.5V
- ➢ Operates up to 250kbps
- Two Drivers and Two Receivers
- External Capacitors: $4 \times 0.1 \,\mu\text{F}$
- Accepts 5V Logic Input With 3.3V Supply

Applications

- Battery-Powered Equipment
- Industry Human Machine Interface
- Notebook, Computers
- Printers

Function Block



Ordering Information

Part Number	Package	Operation Temp.
BL13232ESO	SOP16	-40∼ + 125°C
BL13232ETS	TSSOP16	-40∼ + 125°C

Pin Configuration and Functions

PIN NO.	NAME	I/O	DESCRIPTION	
1	C1+	—	Positive lead of C1 capacitor	
2	V+	0	Positive charge pump output for storage capacitor only	
3	C1-	—	Negative lead of C1 capacitor	
4	C2+	—	Positive lead of C2 capacitor	
5	C2-	—	Negative lead of C2 capacitor	
6	V-	0	Negative charge pump output for storage capacitor only	
7	DOUT2	0	RS232 Driver Output	
8	RIN2	Ι	RS232 Receiver Input	
9	ROUT2	0	TTL/CMOS Receiver Output	
10	DIN2	Ι	TTL/CMOS Driver Input	
11	DIN1	Ι	TTL/CMOS Driver Input	
12	ROUT1	0	TTL/CMOS Receiver Output	
13	RIN1	Ι	RS232 Receiver Input	
14	DOUT1	0	RS232 Driver Output	
15	GND	_	Ground	
16	VCC		Supply Voltage	

Absolute Maximum Ratings

			MIN	MAX	UNIT
V _{CC}	Supply voltage		-0.3	6	v
V+	Positive output supply voltage		-0.3	7	v
V–	Negative output supply voltage		0.3	-7	v
V+-V-	Supply voltage difference			13	v
		Drivers	-0.3	6	v
VI	Input voltage	Receivers	-25	25	v
		Drivers	-13.2	13.2	v
Vo	Output voltage	Receivers	-0.3	VCC + 0.3	v
TJ	Operating virtual junction temperature			150	°C
T _{stg}	Storage temperature		-65	150	°C

Note 1 : Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Recommended Operating Conditions

(Test conditions: $C1-C4 = 0.1\mu F$ at $V_{CC} = 3.3V \pm 0.3V$; $C1 = 0.047\mu F$, $C2-C4 = 0.33\mu F$ at $V_{CC} = 5V \pm 0.5V$)

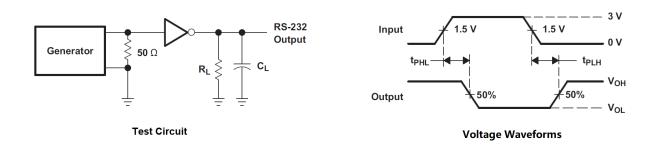
				MIN	NOM	MAX	UNIT
Supply voltage		$V_{CC} = 3.3 V$	3	3.3	3.6	V	
			$V_{CC} = 5 V$	4.5	5	5.5	
* 7	Driver high-level input	DBI	V _{CC} = 3.3 V	2		5.5	
V _{IH} voltage	DIN	$V_{CC} = 5 V$	2.4		5.5	V	
V_{IL}	Driver low-level input	DIN		0		0.8	V
VI	Receiver input voltage	RIN		-25		25	V
T _A	Operating free-air tempera	ture		-40		125	°C

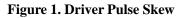
Electrical Characteristics

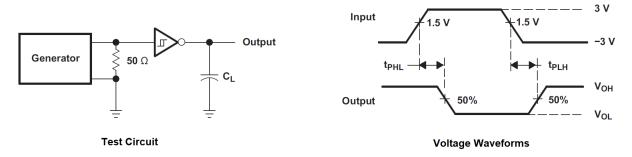
(Test conditions: C1–C4 = 0.1μ F at V_{CC} = $3.3V\pm0.3V$; C1 = 0.047μ F, C2–C4 = 0.33μ F at V_{CC} = $5V\pm0.5V$, T_A = $-40\sim125^{\circ}$ C, unless otherwise noted. Typical values are at T_A = $+25^{\circ}$ C.)

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Icc	Supply current	No load, $V_{CC} = 3.3$ V or 5 V		1.5		mA
Drive	r					
Voh	High-level output voltage	DOUT at $R_L = 3 \text{ k}\Omega$ to GND, DIN = GND	5	5.4		V
V _{OL}	Low-level output voltage	DOUT at $R_L = 3 \text{ k}\Omega$ to GND, DIN = V_{CC}	-5	-5.4		v
I _{IH}	High-level input current	$V_{I} = V_{CC}$		±0.01	±1	μΑ
IIL	Low-level input current	V ₁ at GND		±0.01	±1	μΑ
Ŧ	a t	$V_{CC} = 3.6 \text{ V}, V_0 = 0 \text{ V}$		±30	±60	mA
Ios	Short-circuit output current	$V_{CC} = 5.5 \text{ V}, V_O = 0 \text{ V}$				
ro	Output resistance	V _{CC} , V+, and V– = 0 V, V _O = ± 2 V	300	10M		Ω
Rece	eiver					
Voh	High-level output voltage	$I_{OH} = -1 \text{ mA}$	$V_{CC} - 0.6$	Vcc - 0.1		V
V _{OL}	Low-level output voltage	$I_{OL} = 1.6 \text{ mA}$			0.4	V
V_{IT+}	Positive-going input	VCC = 3.3 V		1.5	2.4	17
	threshold voltage	VCC = 5 V		2.0	2.4	- V
V _{IT-}	Negative-going input	VCC = 3.3 V	0.6	1.1		
	threshold voltage	VCC = 5 V	0.8	1.5		- V
V_{hys}	Input hysteresis (V _{IT+} – V _{IT-})			0.4		v
ri	Input resistance	$VI = \pm 3 V \text{ to } \pm 25 V$	3	5	7	kΩ

Note 2: Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time.




Switching Characteristics


(Test conditions: C1–C4=0.1 μ F at V_{CC}=3.3V±0.3V; C1=0.047 μ F, C2–C4=0.33 μ F at V_{CC}=5V±0.5V, T_A = -40~125°C, unless otherwise noted. Typical values are at TA = +25°C.)

	PARAMETER	TEST (CONDITIONS	MIN	ТҮР	MAX	UNIT
	Maximum data rate	$R_L = 3 k\Omega$, $C_L = 1000 pF$, One DOUT switching		250			kbps
t _{sk(p)}	Driver pulse skew	$R_L=3~k\Omega$ to $7~k\Omega,~C_L=150~pF$ to 2500 pF, see Figure 1			100		ns
	Driver slew rate, transition	$R_L = 3 \ k\Omega$ to $7 \ k\Omega$,	$C_{\rm L}\!=150~pF$ to $1000~pF$	6		30	N 7/
SR(tr)	region	$V_{CC} = 3.3 V$	$C_L = 150 \text{ pF}$ to 2500 pF	4		30	V/µs
t _{PLH}	Receiver propagation delay time, low- to high-level output	$C_L = 150 \text{ pF}$			150		ns
t _{PHL}	Receiver propagation delay time, high- to low-level output	see Figure 2			150		ns
tsk(p)	Receiver pulse skew				60		ns

Note 3: Pulse skew is defined as |tPLH - tPHL| of each channel of the same device.

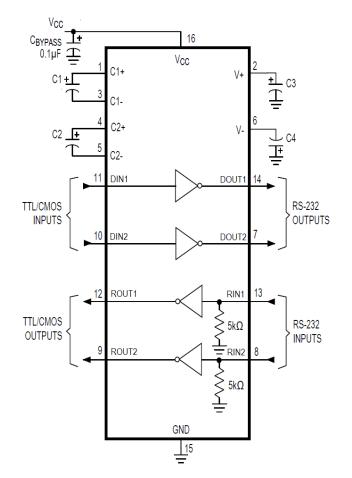
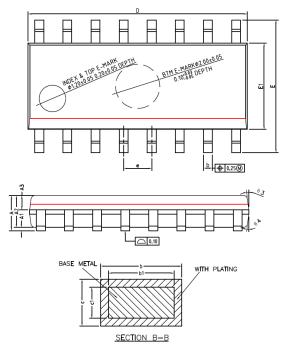


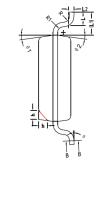
Figure 2. Receiver Propagation Delay Times

Typical Application

Nonpolorized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown.

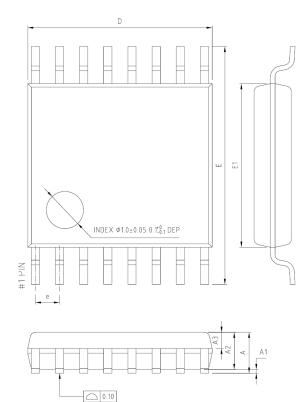
Figure 3. Typical Operating Circuit

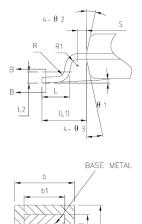

VCC	C1	C2, C3, C4
$3.3~V\pm0.3~V$	0.1 µF	0.1 µF
$5 \text{ V} \pm 0.5 \text{ V}$	0.047 µF	0.33 μF
3 V to 5.5 V	0.1 µF	0.47 μF


Table 1.	VCC vs	Capacitor	Values
Table L.		Capacitor	values

Package Outline Dimensions

SOP16





COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX
Α	-	-	1.75
A1	0.10	0.15	0.25
A2	1.35	1.45	1.55
A3	0.55	0.65	0.75
b	0.36	-	0.51
b1	0.35	0.40	0.45
с	0.18	-	0.25
c1	0.17	0.20	0.23
D	9.80	9.90	10.00
E	5.80	6.00	6.20
E1	3.80	3.90	4.00
е	1.22	1.27	1.32
L L1 L2 R	0.45	0.60	0.80
L1		1.04REF	
L2		0.25BSC	
	0.07	-	-
R1	0.07	-	-
h	0.30	0.40	0.50
θ	0*	-	8*
θ1	6'	8*	10°
θ2	6*	8°	10°
θ3	5'	7*	9*
θ4	5'	7°	9*

TSSOP16

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX
A	-	-	1.20
A1	0.05	—	0.15
A2	0.90	1.00	1.05
A3	0.34	0.44	0.54
b	0.20	-	0.28
b1	0.20	0.22	0.24
С	0.10	-	0.19
c1	0.10	0.13	0.15
DE	4.86	4.96	5.06
E	6.20	6.40	6.60
E1	4.30	4.40	4.50
е		0.65BSC	
L	0.45	0.60	0.75
L1		1.00REF	
L2		0.25BSC	
R	0.09	-	-
R1	0.09	-	-
S	0.20	-	-
θ 1	0°	-	8°
θ2	10°	12°	14°
θ3	10°	12°	14°

SECTION B-B

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RS-232 Interface IC category:

Click to view products by Belling manufacturer:

Other Similar products are found below :

062191EB XR32330EBERTR-F CH438L WS3232ECN MAX3232ESE MAX232ESE SP3232EEN SP232EEN ST232BDR UM3232EEUE UM3232EEAE HT232ARZ WS3243FCY BL13232ETS GM3232ETA BL13232ESO WS3223ECY GM3232ESA HD3221ECA WS3222ECY WS3243FCA WS3221ECY WS3232ECA WS213EA MAX3386ECPWR ICL3232IVZ-T7A ICL3226ECA AZ75232GTR-G1 TRS222IDWR MAX232INE4 MAX3232CPW TRS3232EIDWR TRS3222EIPWR TRS3222ECPWR ISL4245EIRZ-T SN65C3232EDWR LT1039CN16#PBF LT1039ISW#PBF LT1281AISW#PBF LTC1337CSW#PBF LT1130ACSW#PBF LTC1349ISW#PBF 744224X LT1131ACNW LT1131ACSW LT1342CG SN65C3232DWR SN75188DE4 601096C AD7306JNZ