Low－Power，Two－Port，High－Speed，USB2．0（480Mbps）
 DPDT Analog Switch BL1530

Description

The BL1530 is a Low－Power，Two－Port，High－Speed，USB2．0（480Mbps）double－pole double－throw （DPDT）Analog Switch featuring an On－Resistance of 4.5 ohm at $\mathrm{VCC}=3 \mathrm{~V}$ and a Low On Capacitance 3．7pf Typical．

The BL1530 is compatible with the requirements of USB2．0 and the wide bandwidth needed to pass the third harmonic，resulting in signals with minimum edge and phase distortion．Superior channel－to channel crosstalk also minimizes interference．Break－before－make function for both parts eliminates signal disruption during switching from preventing both switches being enabled simultaneously．

The BL1530 contains special circuitry on the switch I／O pins for applications where the VCC supply is powered－off（ $\mathrm{VCC}=0$ ），which allows the device to withstand an over－voltage condition．This device is designed to minimize current consumption even when the control voltage applied to the Sel pin is lower than the supply voltage（VCC）．This feature is especially valuable to ultra－portable applications，such as cell phones，allowing for direct interface with the general purpose I／Os of the baseband processor．Other applications include switching and connector sharing in portable cell phones，PDAs，digital cameras， printers，and notebook computers．

Pin Configuration

UTQFN1．8×1．4－10L

MSOP10L

Features

－Wide Power Supply Range： 2.3 V to 5 V
－Low On Capacitance 3．7pf Typical
－Low On Resistance 4.5Ω（typ）at 3 V VDD when $\mathrm{V}_{\text {SW }}=0.4 \mathrm{~V}$
－High Bandwidth（ -3 db ）：$>720 \mathrm{MHz}$ without C_{L} and $>550 \mathrm{MHz}$ with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$
－Low Power Consumption：1uA Maximum
－ESD：pass 8 kV HBM test
－Over voltage tolerance（OVT）on all USB ports up to 5.25 V without external components
－TTL／CMOS Compatible
－Break－Before－Make Switching
－Operation Temperature Range：$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
－UTQFN1．8×1．4－10L and MSOP10L Package

Applications

Cell phone，PDAs，Digital camera，Notebook，LCD Monitor，TV，SET－TOP BOX

Block Diagram

Function Table

OEb	Sel	Function
$\mathbf{1}$	\mathbf{X}	Disconnect
$\mathbf{0}$	$\mathbf{0}$	Dp，Dn＝Dp1，Dn1
$\mathbf{0}$	$\mathbf{1}$	Dp，Dn＝Dp2，Dn2

BL1530—DPDT USB2．0 Analog Switch

Pin Description

PIN num		Pin Name	Type	Description
UTQFN10L	MSOP10L			
1	2	Dp1	Input／Output	Data Port
2	3	Dp2	Input／Output	Data Port
3	4	Dp	Input／Output	USB Data BUS
4	5	GND	Ground	Ground
5	6	Dn	Input／Output	USB Data BUS
6	7	Dn2	Input／Output	Data Port
7	8	Dn1	Input／Output	Data Port
8	9	OEb	Input	Switch enable
9	10	VCC	PWR	Power Supply
10	1	Sel	Input	Switch select

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min	Max	Units
DC Supply Voltage	VCC	-0.5	5.5	V
DC Switch Voltage	$\mathrm{Dpn} / \mathrm{Dnn} / \mathrm{Dp} / \mathrm{Dn}$	-0.5	$\mathrm{VCC}+0.3$	V
DC Input Voltage	$\mathrm{V}_{\mathrm{Oeb}} / \mathrm{V}_{\text {Sel }}$	-0.5	VCC	V
Continuous Current	$\mathrm{I}_{(\mathrm{Dpn} / \mathrm{Dnn} / \mathrm{Dp/Dn})}$	-50	+50	mA
Peak Current ${ }^{(1)}$	$\mathrm{I}_{\text {PEAKK（Dpn／Dnn／Dp／Dn）}}$	-100	+100	mA
Operating Temperature Range	T_{A}	-40	85	${ }^{\circ} \mathrm{C}$

Notes：

（1）Pulsed at $1 \mathrm{~ms}, 50 \%$ duty circle
（2）Stress beyond above listed＂Absolute Maximum Ratings＂may lead permanent damage to the device． These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied．Exposure to absolute maximum rating conditions for extended periods may affect device reliability．

ORDERING INFORMATION

MODEL	PIN- PACKAGE	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ACKAGE OPTION
BL1530TQFN	UTQFN1.8 $\times 1.4-$ 10 L	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{IYW}^{(1)}$	Tape and Reel, 3000
BL1530MSOP	MSOP10L	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	I1G YWW	Tape and Reel, 3000

WHERE(1):
"IYW" IS 3 DIGITS PRODUCTION ID COLOUR: LASER MARKING
"I" stands for the product BL1530.
" Y "stands for the product year, for example, " 1 " stands for the year 2011.
"W" stands for the product week, for example, "a" stands for the first week, "A" stands for the 27th week.

SHANGHAI BELLING
DC ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Conditions	Guaranteed Limit			Unit
			Min．	Typ．${ }^{(1)}$	Max．	
Analog Switch						
Analog Signal Range	$\mathrm{V}_{\mathrm{Pr}} / \mathrm{V}_{\mathrm{Nn}} / \mathrm{V}_{\mathrm{p}} / \mathrm{V}_{\mathrm{n}}$		0		VCC	V
On－Resistance ${ }^{(2)}$	$\mathrm{R}_{\text {ON }}$	$\begin{gathered} \mathrm{VCC}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SW}}=0.4 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{ON}}=-8 \mathrm{~mA} \end{gathered}$		4.5		Ω
On－Resistance Match Between Channels ${ }^{(3)}$	$\Delta \mathrm{R}_{\text {ON }}$	$\begin{gathered} \mathrm{VCC}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SW}}=0.4 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{ON}}=-8 \mathrm{~mA} \end{gathered}$		0.1		Ω
Current						
Source Off Leakage Current	$\mathrm{I}_{\mathrm{Pn} / \mathrm{Nn} \text {（OFF）}}$	$\begin{aligned} & \mathrm{VCC}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{p}} / \mathrm{V}_{\mathrm{n}}=3.6 / 0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{Pn}} / \mathrm{V}_{\mathrm{Nn}}=0.3 / 3.6 \mathrm{~V} \end{aligned}$	－1		1	uA
Channel on Leakage Current	$\mathrm{I}_{\mathrm{Pn} / \mathrm{Nn}(\mathrm{ON})}$	$\begin{gathered} \mathrm{VCC}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{p}} / \mathrm{V}_{\mathrm{n}}=3.6 / 0.3 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{P}_{\mathrm{n}}} / \mathrm{V}_{\mathrm{Nn}}=3.6 / 0.3 \mathrm{~V} \end{gathered}$	－1		1	uA
POWER OFF leakage current	$\mathrm{I}_{\text {OFF }}$	$\begin{gathered} \mathrm{VCC}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SW}}=0 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \\ \text { Vcontrol }=0 \text { or } \mathrm{VCC} \end{gathered}$	－1		1	uA
Quiescent supply current	$\mathrm{I}_{\text {CC }}$	$\begin{gathered} \mathrm{VCC}=3 \mathrm{~V}, \\ \text { Vcontrol=0 or VCC, Iout=0 } \end{gathered}$			1	uA
Increase in I_{CC} current per control voltage and VCC	$\mathrm{I}_{\text {CCT }}$	VCC＝$=3.6 \mathrm{~V}$ ，Vcontrol＝ 2.6 V			4	uA
Input Leakage Current	$\mathrm{I}_{\text {OEb／Sel }}$	$\mathrm{V}_{\text {OEb } / \mathrm{Sel}}=0$ or VCC			1	uA
Digital I／O						
Input Voltage High	$\mathrm{V}_{\text {IH }}$	$\mathrm{VCC}=3.0-3.6 \mathrm{~V}$	1.6			V
Input Voltage Low	$\mathrm{V}_{\text {IL }}$	$\mathrm{VCC}=3.0-3.6 \mathrm{~V}$			0.5	V

Note：

（1）Typical characteristics are at $+25^{\circ} \mathrm{C}$
（2）Measured by the voltage drop between Dpn／Dnn and Dp／Dn pins at the indicated current through the switch．On resistance is determined by the lower of the voltage on the two（ $\mathrm{Dpn} / \mathrm{Dnn}$ and $\mathrm{Dp} / \mathrm{Dn}$ ports）．
（3）$\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}(\mathrm{MAX})}-\mathrm{R}_{\mathrm{ON}(\mathrm{MIN})}$ ，between Dp and Dn ．

Parameter	Symbol	Conditions	Guaranteed Limit			Unit
			Min．	Typ．${ }^{(1)}$	Max．	
DRIVER CHARACTERISTICS						
Turn－On Time	$\mathrm{tan}^{\text {a }}$	$\begin{gathered} \mathrm{VCC}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \mathrm{omh}, \\ \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{~V}_{\mathrm{SW}}=0.8 \mathrm{~V} \end{gathered}$		10	30	ns
Turn－Off Time	$\mathrm{t}_{\text {OFF }}$	$\begin{gathered} \mathrm{VCC}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \mathrm{omh}, \\ \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{~V}_{\mathrm{SW}}=0.8 \mathrm{~V} \end{gathered}$		20	25	ns
Break－Before－Make Time	$\mathrm{t}_{\text {BBM }}$	$\begin{gathered} \mathrm{VCC}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \mathrm{omh}, \\ \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{~V}_{\mathrm{SW} 1,2}=0.8 \mathrm{~V} \end{gathered}$	2.0	3	6.5	ns
Propagation Dalay	$\mathrm{t}_{\text {PD }}$	$\begin{gathered} \mathrm{VCC}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \mathrm{omh}, \\ \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \end{gathered}$		0.2		ns
CAPACITANCE						
Control Capacitance	$\mathrm{C}_{\text {IN }}$	VCC＝0V		1.5		pF
ON Capacitance	$\mathrm{Con}^{\text {a }}$	$\begin{gathered} \mathrm{VCC}=3.3 \mathrm{~V}, \mathrm{OE}=0 \mathrm{~V}, \\ \mathrm{f}=240 \mathrm{MHz} \end{gathered}$		3.7		pF
OFF Capacitance	$\mathrm{C}_{\text {OFF }}$	$\begin{gathered} \mathrm{VCC}=3.3 \mathrm{~V}, \mathrm{OE}=3.3 \mathrm{~V}, \\ \mathrm{f}=240 \mathrm{MHz} \end{gathered}$		2.0		pF
APPLICATION CHARACTERISTICS						
3 dB Bandwidth	$\mathrm{f}_{3 \mathrm{~dB}}$	$\mathrm{VCC}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \mathrm{omh}, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$		720		MHz
		$\mathrm{VCC}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \mathrm{mmh}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		550		MHz
Off Isolation ${ }^{(2)}$	$\mathrm{V}_{\text {Iso }}$	$\begin{gathered} \mathrm{VCC}=3.3 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{L}}=50 \mathrm{omh}, \mathrm{f}=250 \mathrm{MHz} \end{gathered}$		－30		dB
Channel crosstalk	XTALK	$\begin{gathered} \mathrm{VCC}=3.3 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{L}}=50 \mathrm{omh}, \mathrm{f}=250 \mathrm{MHz} \end{gathered}$		－35		dB

Note：

（1）Typical characteristics are at $25^{\circ} \mathrm{C}$
（2）Off Channel Isolation $=20 \log _{10}\left[\left(\mathrm{~V}_{\mathrm{P} 1 \mathrm{P} 2}\right) / \mathrm{V}_{\mathrm{P}}\right]$ or $20 \log _{10}\left[\left(\mathrm{~V}_{\mathrm{N} 1 \mathrm{~N} 2}\right) / \mathrm{V}_{\mathrm{N}}\right]$

TEST SETUP CIRCUITS

Figure1．Test Circuit for On Resister

Figure2．Test Circuit for Bandwidth

Figure3．Test Circuit for Off Isolation

Figure4．Test Circuit for Crosstalk

Test Circuit 5．Test Circuit for Switch Times

Test Circuit 5．Test Circuit for Break－Before－Make Time Delay， $\mathbf{t}_{\text {ввм }}$

Test Circuit 6．Test Circuit for Propagation Delay，Tpd

APPLICATION NOTE

Meeting USB 2．0 V ${ }_{\text {bus }}$ Short Requirements

（1）Power－Off Protection
For a $V_{\text {BUS }}$ short circuit the switch is expected to withstand such a condition for at least 24 hours．The BL1530 has the specially designed circuit which prevents unintended signal bleed through as well as guaranteed system reliability during a power－down，over－voltage condition．The protection has been added to the common pins（Dp，Dn）．

（2）Power－On Protection

The USB 2.0 specification also notes that the USB device should be capable of withstanding a $V_{\text {BUS }}$ short during transmission of data．This modification works by limiting current flow back into the VCC rail during the over－voltage event so current remains within the safe operating range．

PACKAGE OUTLINE DIMENSIONS（UTQFN1．8×1．4－10L）

UTQFN1．8×1．4－10L

NOTE：All linear dimensions are in millimeters．

MSOP10L

BASE METAL

SECTION B－B

SYMBOL	MILlimeter		
	MIN	NOM	max
A	－	－	1.10
A1	0.05	－	0.15
A2	0.75	0.85	0.95
A3	0.30	0.35	0.40
b	0.19	－	0.28
bl	0.18	0.20	0.23
c	0.15	－	0.20
c1	0.14	0.152	0.16
D	2.90	3.00	3.10
E	4.70	4.90	5.10
E1	2.90	3.00	3.10
e	0.50 BSC		
L	0.40	－	0.70
L1	$0.95 B S C$		
θ	0	－	${ }^{\circ}$
	71＊96		

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Belling manufacturer:

Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG NS5A4684SMNTAG 425541DB 425528R 099044FB MAX4762ETB+ NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQEX PI5A392AQE FSA634UCX ADG714BCPZ-REEL7 HT4051ARZ TC4066BP(N,F) TMUX136RSER DG302BDJ-E3 ADG854BCPZ-REEL7 PI5A100WE PI5A100QEX HV2733FG-G HV2701FG-G HV2301FG-G HV2301FG-G-M931 RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4715EXK+T MAX391CPE+ MAX4744ELB+ MAX4730EXT+T MAX4730ELT+ MAX333AEWP+ BU4066BC MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NX3L4684TK,115 NX5L2750CGUX NLAS4157DFT2G NLAS4599DFT2G

