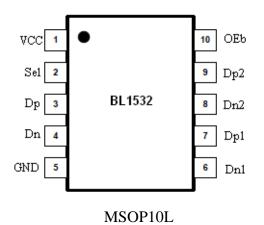
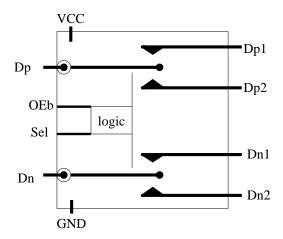

Low-Power, Two-Port, High-Speed, USB2.0 (480Mbps) DPDT Analog Switch BL1532


Description

The BL1532 is a Low-Power, Two-Port, High-Speed, USB2.0 (480Mbps) double –pole double-throw (DPDT) Analog Switch featuring an On-Resistance of 4.5 ohm at VCC=3V and a Low On Capacitance 3.7pf Typical.

The BL1532 is compatible with the requirements of USB2.0 and the wide bandwidth needed to pass the third harmonic, resulting in signals with minimum edge and phase distortion. Superior channel-to channel crosstalk also minimizes interference. Break-before-make function for both parts eliminates signal disruption during switching from preventing both switches being enabled simultaneously. The BL1532 contains special circuitry on the switch I/O pins for applications where the VCC supply is powered-off (VCC=0), which allows the device to withstand an over-voltage condition. This device is designed to minimize current consumption even when the control voltage applied to the Sel pin is lower than the supply voltage (VCC). This feature is especially valuable to ultra-portable applications, such as cell phones, allowing for direct interface with the general purpose I/Os of the baseband processor. Other applications include switching and connector sharing in portable cell phones, PDAs, digital cameras, printers, and notebook computers.

Pin Configuration


Features

- Wide Power Supply Range: 2.3V to 5V
- Low On Capacitance 3.7pf Typical
- Low On Resistance 4.5 Ω (typ) at 3V VDD when V_{SW} =0.4V
- High Bandwidth (-3db): >720MHz without C_L and >550MHz with $C_L=5$ pF
- Low Power Consumption: 1uA Maximum
- ESD: pass 8kV HBM test
- Over voltage tolerance (OVT) on all USB ports up to 5.25V without external components
- TTL/CMOS Compatible
- Break-Before-Make Switching
- Operation Temperature Range: -40°C to 85°C
- UTQFN1.8×1.4-10L and MSOP10L Package

Applications

Cell phone, PDAs, Digital camera, Notebook, LCD Monitor, TV, SET-TOP BOX

Block Diagram

Function Table

OEb	Sel	Function
1	X	Disconnect
0	0	Dp, Dn=Dp1, Dn1
0	1	Dp, Dn=Dp2, Dn2

Pin Description

PIN num		Pin Name	Туре	Description	
UTQFN10L	MSOP10L	i iii i taine	Турс	Description	
1	3	Dp	Input/Output	USB Data BUS	
2	4	Dn	Input/Output	USB Data BUS	
3	5	GND	Ground	Ground	
4	6	Dn1	Input/Output	Data Port	
5	7	Dp1	Input/Output	Data Port	
6	8	Dn2	Input/Output	Data Port	
7	9	Dp2	Input/Output	Data Port	
8	10	OEb	Input	Switch enable	
9	1	VCC	PWR	Power Supply	
10	2	Sel	Input	Switch select	

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min	Max	Units
DC Supply Voltage	VCC	-0.5	5.5	V
DC Switch Voltage	Dpn / Dnn / Dp / Dn	-0.5	VCC+ 0.3	V
DC Input Voltage	V_{Oeb}/V_{Sel}	-0.5	VCC	V
Continuous Current	$I_{(Dpn/Dnn/Dp/Dn)}$	-50	+50	mA
Peak Current ⁽¹⁾	I _{PEAK(Dpn/Dnn/Dp/Dn)}	-100	+100	mA
Operating Temperature Range	T_{A}	-40	85	${\mathbb C}$

Notes:

- (1) Pulsed at 1ms, 50% duty circle
- (2) Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ORDERING INFORMATION

MODEL	PIN- PACKAGE	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	CKAGE OPTION
BL1532TQFN	UTQFN1.8×1.4- 10L	- 40 ℃ to +85 ℃	HYW ⁽¹⁾	Tape and Reel, 3000
BL1532MSOP	MSOP10L	- 40 ℃ to +85 ℃	H1G YWW	Tape and Reel, 3000

WHERE(1):

"HYW" IS 3 DIGITS PRODUCTION ID COLOUR: LASER MARKING

[&]quot;H" stands for the product BL1532.

[&]quot;Y" stands for the product year, for example, "1" stands for the year 2011.

[&]quot;W" stands for the product week, for example, "a" stands for the first week, "A" stands for the 27th week.

DC ELECTRICAL CHARACTERISTICS

Symbol	Conditions	Guaranteed Limit			Unit		
Symbol	Conditions	Min. Typ. (1)		Max.	Omt		
Analog Switch							
$V_{Pn}/V_{Nn}/V_{p}/V_{n}$		0		VCC	V		
R _{ON}	$VCC = 3V, V_{SW} = 0.4V,$ $I_{ON} = -8mA$		4.5		Ω		
Δ R _{ON}	$VCC = 3V,V_{SW}=0.4V,$ $I_{ON}=-8mA$		0.1		Ω		
I _{Pn / Nn (OFF)}	$VCC=3.6V, V_p/V_n=3.6/0.3V,$ $V_{Pn}/V_{Nn}=0.3/3.6V$	-1		1	uA		
$I_{Pn/Nn\;(ON)}$	VCC= $3.6V$, V_p/V_n = $3.6/0.3V$, V_{Pn}/V_{Nn} = $3.6/0.3V$	-1		1	uA		
$I_{ m OFF}$	$VCC = 0V, V_{SW} = 0V \text{ to } 3.6V,$ Vcontrol = 0 or VCC	-1		1	uA		
I_{CC}	VCC=3V, Vcontrol=0 or VCC, Iout=0			1	uA		
I_{CCT}	VCC=3.6V, Vcontrol=2.6V			4	uA		
I _{OEb /Sel}	$V_{OEb / Sel} = 0$ or VCC			1	uA		
Digital I/O							
V_{IH}	VCC = 3.0-3.6V	1.6			V		
$V_{ m IL}$	VCC = 3.0-3.6V			0.5	V		
	R _{ON} A R _{ON} I _{Pn / Nn (OFF)} I _{Pn / Nn (ON)} I _{OFF} I _{CC} I _{CCT} I _{OEb /Sel}	$\begin{array}{ c c c c }\hline V_{Pn}/V_{Nn}/V_{p}/V_{n} \\ \hline R_{ON} & VCC = 3V, V_{SW} = 0.4V, \\ I_{ON} = -8mA \\ \hline & VCC = 3V, V_{SW} = 0.4V, \\ I_{ON} = -8mA \\ \hline \\ I_{Pn}/N_{n} (OFF) & VCC = 3.6V, V_{p}/V_{n} = 3.6/0.3V, \\ V_{Pn}/V_{Nn} = 0.3/3.6V \\ \hline & VCC = 3.6V, V_{p}/V_{n} = 3.6/0.3V, \\ V_{Pn}/V_{Nn} = 3.6/0.3V, \\ V_{Pn}/V_{Nn} = 3.6/0.3V \\ \hline & VCC = 0V, V_{SW} = 0V \ to \ 3.6V, \\ V_{COntrol} = 0 \ or \ VCC \\ \hline & VCC = 3V, \\ V_{COntrol} = 0 \ or \ VCC, \ I_{OEb}/Sel} & V_{OEb/Sel} = 0 \ or \ VCC \\ \hline & V_{IH} & VCC = 3.0-3.6V \\ \hline \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c } \hline \textbf{Symbol} & \textbf{Conditions} & \hline \textbf{Min.} \ \textbf{Typ.}^{(1)} \\ \hline \textbf{V}_{Pn}/\textbf{V}_{Nn}/\textbf{V}_{p}/\textbf{V}_{n} & \textbf{0} \\ \hline \textbf{R}_{ON} & \textbf{VCC} = 3\textbf{V}, \textbf{V}_{SW} = 0.4\textbf{V}, \\ \hline \textbf{I}_{ON} = -8m\textbf{A} & \textbf{0}.1 \\ \hline \textbf{J}_{Pn}/\textbf{N}_{n} \text{ (OFF)} & \textbf{VCC} = 3\textbf{V}, \textbf{V}_{p}/\textbf{V}_{n} = 3.6/0.3\textbf{V}, \\ \hline \textbf{J}_{Pn}/\textbf{N}_{n} \text{ (OFF)} & \textbf{VCC} = 3.6\textbf{V}, \textbf{V}_{p}/\textbf{V}_{n} = 3.6/0.3\textbf{V}, \\ \hline \textbf{V}_{Pn}/\textbf{V}_{Nn} = 0.3/3.6\textbf{V} & -1 \\ \hline \textbf{J}_{OFF} & \textbf{VCC} = 3.6\textbf{V}, \textbf{V}_{p}/\textbf{V}_{n} = 3.6/0.3\textbf{V}, \\ \hline \textbf{V}_{Pn}/\textbf{V}_{Nn} = 3.6/0.3\textbf{V} & -1 \\ \hline \textbf{J}_{OFF} & \textbf{VCC} = 0\textbf{V}, \textbf{V}_{SW} = 0\textbf{V} \text{ to } 3.6\textbf{V}, \\ \hline \textbf{V}_{COntrol} = 0 \text{ or } \textbf{VCC} \\ \hline \textbf{J}_{CC} & \textbf{VCC} = 3.6\textbf{V}, \textbf{V}_{control} = 2.6\textbf{V} \\ \hline \textbf{J}_{OEb/Sel} & \textbf{V}_{OEb/Sel} = 0 \text{ or } \textbf{VCC} \\ \hline \textbf{V}_{IH} & \textbf{VCC} = 3.0-3.6\textbf{V} & 1.6 \\ \hline \end{array}$	$ \begin{array}{ c c c c c c } \hline \textbf{Symbol} & \textbf{Conditions} & \hline \textbf{Min.} & \textbf{Typ.}^{(1)} & \textbf{Max.} \\ \hline \hline \textbf{V}_{Pn}/\textbf{V}_{Nn}/\textbf{V}_{p}/\textbf{V}_{n} & 0 & \textbf{VCC} \\ \hline \textbf{R}_{ON} & \textbf{VCC} = 3\textbf{V}, \textbf{V}_{SW} = 0.4\textbf{V}, \\ \hline \textbf{I}_{ON} = -8m\textbf{A} & 0.1 \\ \hline \hline \textbf{I}_{Pn}/\textbf{N}_{n} & \textbf{OFF} & \textbf{VCC} = 3.6\textbf{V}, \textbf{V}_{p}/\textbf{V}_{n} = 3.6/0.3\textbf{V}, \\ \hline \textbf{V}_{Pn}/\textbf{V}_{Nn} = 0.3/3.6\textbf{V} & -1 & 1 \\ \hline \textbf{I}_{Pn}/\textbf{N}_{n} & \textbf{ON} & \textbf{VCC} = 3.6\textbf{V}, \textbf{V}_{p}/\textbf{V}_{n} = 3.6/0.3\textbf{V}, \\ \hline \textbf{V}_{Pn}/\textbf{V}_{Nn} = 3.6/0.3\textbf{V} & -1 & 1 \\ \hline \textbf{I}_{OFF} & \textbf{VCC} = 3\textbf{V}, \textbf{V}_{SW} = 0\textbf{V} \text{ to } 3.6\textbf{V}, \\ \hline \textbf{V}_{COntrol} = 0 \text{ or } \textbf{VCC} & -1 & 1 \\ \hline \textbf{I}_{CC} & \textbf{VCC} = 3\textbf{V}, \textbf{V}_{control} = 0 \text{ or } \textbf{VCC} & 1 \\ \hline \textbf{I}_{OEb/Sel} & \textbf{V}_{OEb/Sel} = 0 \text{ or } \textbf{VCC} & 1 \\ \hline \textbf{V}_{IH} & \textbf{VCC} = 3.0-3.6\textbf{V} & 1.6 \\ \hline \end{array}$		

Note:

- (1) Typical characteristics are at $+25 \, \text{C}$
- (2) Measured by the voltage drop between Dpn/Dnn and Dp/Dn pins at the indicated current through the switch. On resistance is determined by the lower of the voltage on the two (Dpn/Dnn and Dp/Dn ports).
- (3) Δ $R_{ON}\!\!=R_{ON(MAX)}\!-\!R_{ON(MIN)},$ between Dp and Dn .

DYNAMIC CHARACTERISTICS

Parameter	Cymbol	Conditions	Guaranteed Limit			Unit
rarameter	Symbol	Conditions	Min.	Typ. (1)	Max.	
DRIVER CHARACTER	ISTICS					
Turn-On Time	tour	VCC=3.3V, R _L =50omh,		10	30	ns
Turn-On Time	t_{ON}	$C_L=5pF$, $V_{SW}=0.8V$				
Turn-Off Time	t _{OFF}	VCC=3.3V, R _L =50omh,		20	25	40.0
Turn-On Time	UFF	$C_L=5pF, V_{SW}=0.8V$				ns
Break-Before-Make Time	tone	VCC=3.3V, R _L =50omh,	2.0	3	6.5	ns
Break-Berore-Wake Time	$t_{ m BBM}$	$C_L = 5pF, V_{SW1,2} = 0.8V$	2.0	3		
Propagation Dalay	t	VCC=3.3V, R _L =50omh,		0.2		ns
i Topagation Datay	t_{PD}	$C_L=5pF$		0.2		
CAPACITANCE						1
Control Capacitance	C_{IN}	VCC=0V		1.5		pF
ON Capacitance	C _{ON}	VCC = 3.3V,OE=0V,		3.7		pF
от сиристинес		f=240MHz				
OFF Capacitance	C_{OFF}	VCC = 3.3V, OE = 3.3V,		2.0		рF
-		f=240MHz				1
APPLICATION CHARA	ACTERIS	STICS				
3dB Bandwidth	$ m f_{3dB}$	$VCC = 3.3V, R_L = 50 \text{omh}, C_L = 0 \text{pF}$		720		MHz
Sab Banawidan		$VCC = 3.3V, R_L = 50 \text{omh}, C_L = 5 \text{pF}$		550		MHz
Off Isolation ⁽²⁾	$V_{\rm Iso}$	VCC = 3.3V,	-30			dB
		R _L =50omh,f=250MHz				uD
Channel crosstalk	XTALK	VCC = 3.3V,	-35			dB
		R_L =50omh,f=250MHz				

Note:

- (2) Off Channel Isolation = $20log_{10}$ [(V_{P1\backslash P2})/V_P] or $20log_{10}$ [(V_{N1\backslash N2})/V_N]

TEST SETUP CIRCUITS

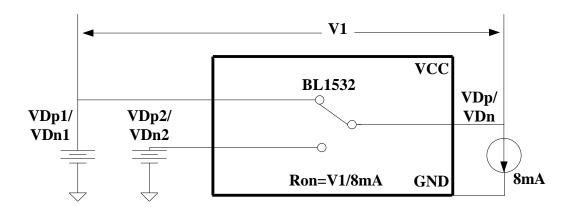


Figure 1. Test Circuit for On Resister

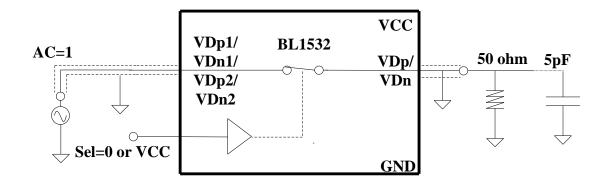


Figure 2. Test Circuit for Bandwidth

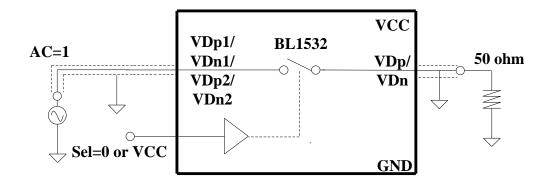
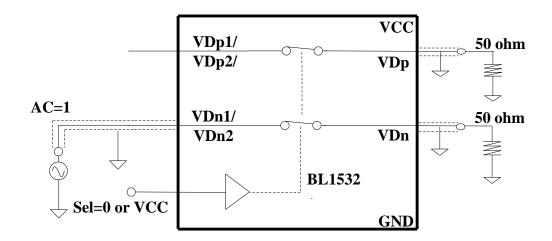
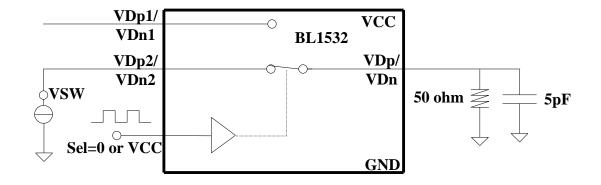
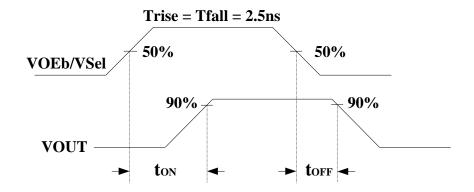
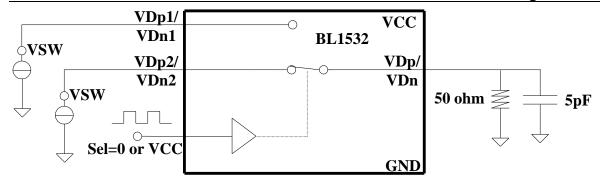
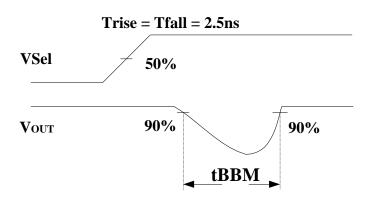
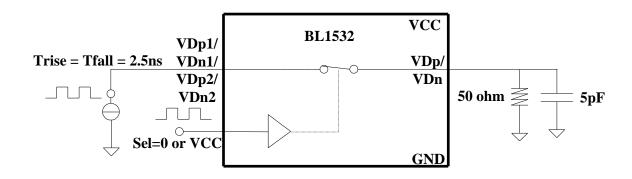


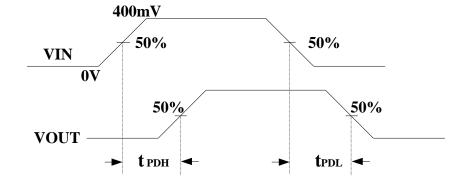
Figure 3. Test Circuit for Off Isolation


Figure 4. Test Circuit for Crosstalk




Test Circuit 5. Test Circuit for Switch Times



Test Circuit 5. Test Circuit for Break-Before-Make Time Delay, t_{BBM}

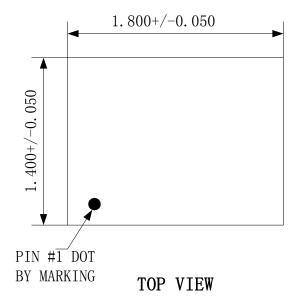
Test Circuit 6. Test Circuit for Propagation Delay, tPD

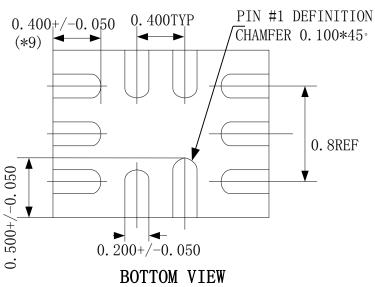
APPLICATION NOTE

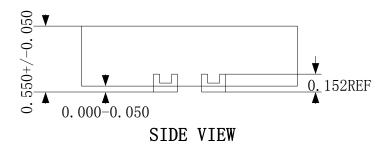
Meeting USB 2.0 V_{BUS} Short Requirements

(1) Power-Off Protection

For a V_{BUS} short circuit the switch is expected to withstand such a condition for at least 24 hours. The BL1532 has the specially designed circuit which prevents unintended signal bleed through as well as guaranteed system reliability during a power-down, over-voltage condition. The protection has been added to the common pins (Dp, Dn).

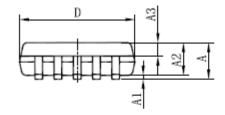

(2) Power-On Protection

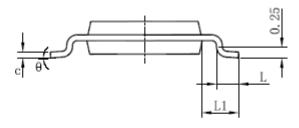

The USB 2.0 specification also notes that the USB device should be capable of withstanding a V_{BUS} short during transmission of data. This modification works by limiting current flow back into the VCC rail during the over-voltage event so current remains within the safe operating range.

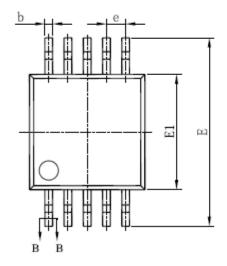


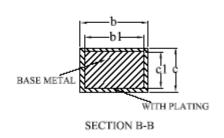
PACKAGE OUTLINE DIMENSIONS

UTQFN1.8×1.4-10L






NOTE: All linear dimensions are in millimeters.



MSOP10L

SYMBOL	MILLIMETER			
SIMBOL	MIN	NOM	MAX	
A	-		1.10	
A1	0.05		0.15	
A2	0.75	0.85	0.95	
A3	0.30	0.35	0.40	
ъ	0.19	-	0.28	
b 1	0.18	0.20	0.23	
c	0.15		0.20	
c 1	0.14	0.152	0.16	
D	2.90	3.00	3.10	
E	4.70	4.90	5.10	
E1	2.90	3.00	3.10	
e	0.50BSC			
L	0.40	ı	0.70	
L1	0.95BSC			
θ	0	_	8	
[./P穀体尺寸 (mil)	71*96			

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Analogue Switch ICs category:

Click to view products by Belling manufacturer:

Other Similar products are found below:

FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG NS5A4684SMNTAG 425541DB 425528R 099044FB MAX4762ETB+ NLAS5123MNR2G NLAS5213AMUTAG NLAS5213AUSG PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQEX PI5A392AQE FSA634UCX ADG714BCPZ-REEL7 HT4051ARZ TC4066BP(N,F) TMUX136RSER DG302BDJ-E3 ADG854BCPZ-REEL7 PI5A100WE PI5A100QEX HV2733FG-G HV2701FG-G HV2301FG-G-M931 RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4715EXK+T MAX391CPE+ MAX4744ELB+ MAX4730EXT+T MAX4730ELT+ MAX333AEWP+ BU4066BC MAX313CPE+ BU4S66G2-TR NLAS52231MUR2G NLASB3157MTR2G TS3A4751PWR NX3L4684TK,115