
High ESD-Protected, Fail-Safe, Slew-Rate-Limited

RS-485 Transceivers

General Description

The BL3085B is a half-duplex RS-485 transceiver with $\pm 18 \text{kV}$ IEC 61000-4-2 contact discharge protection. The BL3085B contains one driver and one receiver. The device features fail-safe circuitry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted. This means that the receiver output will be logic high even if all transmitters on a terminated bus are disabled. The BL3085B features reduced slew-rate driver that minimizes EMI and reduces reflections caused by improperly terminated cables, allowing error-free data transmission up to 250kbps. The BL3085B has a 1/8 unit load receiver input impedance that allows up to 256 transceivers on the bus.

Configuration

Functional Block of BL3085B

Applications

- RS-485 Communications
- Level Translators
- Transceivers for EMI-Sensitive Applications
- Industrial Control Local Area Networks
- Energy Meter Networks
- Lighting Systems

Pin Function Description

Pin Number	Name	Function
1	RO	Receiver Output.
2	/RE	Receiver Output Enable. /RE is low to enable the Receiver; /RE is high to disable the Receiver.
3	DE	Driver Output Enable: DE is high to enable the Driver; DE is low to disable the Driver.
4	DI	Driver Input
5	GND	Ground.
6	Α	Non-inverting Receiver Input and Non-inverting Driver Output.
7	В	Inverting Receiver Input and Inverting Driver Output.
8	V_{CC}	Power Supply.

Function Table

Transmitting							
	Inputs	Outputs					
/RE	DE	DI	В А				
Х	1	1	0	1			
Х	1	0	1	0			
0	0	Х	High-Z	High-Z			
1	0	Х	Shutdown				

	Receiving							
Inp	outs	Outputs						
/RE	DE	A-B	RO					
0	Х	≥-0.05V	1					
0	Х	≤-0.2V	0					
0	Х	Open/shorted	1					
1	1	X	High-Z					
1	0	X	Shutdown					

Absolute Maximum Ratings

Parameter	Symbol	Rating	Units
Power Supply	V _{CC}	+7	V
Control Input Voltage	/RE, DE	-0.3 to V _{CC} +0.3	V
Transmitter Input Voltage	DI	-0.3 to V _{CC} +0.3	V
Transmitter Output Voltage	A, B	-8 to +13	V
Receiver Input Voltage	A, B	-8 to +13	V
Receiver Output Voltage	RO	-0.3 to V _{CC} +0.3	V
Operating Temperature		-40 to +85	$^{\circ}$

DC Electrical Characteristics

 $(V_{CC}=+5V\pm5\%,TA=-40\%$ $\sim+85\%$, Typical Values are $V_{CC}=+5V$ and TA=25%) (Note 1)

Parameter	Symbol	Conditions	MIN	TYP	MAX	UNITS
Power Supply	Vcc		4.5		5.5	V
Driver						
Differential Driver	V_{OD1}	Figure 1			5	\ \
Output(no load)						
Differential Driver Output	V_{OD2}	Figure 1, $R=27\Omega$	1.5			V
Change in Magnitude of Differential Output Voltage (Note 2)	ΔV_{OD}	Figure 1,R=27Ω			0.2	V
Driver Common-mode Output Voltage	V _{oc}	Figure 1, R=27Ω			3	V
Change in Magnitude of Common-Mode Voltage (Note 2)	ΔV_{OC}	Figure 1,R=27Ω			0.2	V
Input High Voltage	V _{IH1}	DE,DI,/RE	2.0			V
Input Low Voltage	V_{IL1}	DE,DI,/RE			0.8	V

DI Input Hysteresis	V_{HYS}				100		mV
Input Current(A and	rent(A and	DE=GND	V _{IN} =12V			125	
B)	I _{IN4}	V _{CC} =GND or 5.25V	V _{IN} =-7V			-75	μΑ
Driver Short-Circuit		-7V≦V _{OUT} ≦V _{CC}		-100			
Output Current	I _{OSD}	0V≦V _{OUT} ≦12V	0V ≦ V _{OUT} ≦ 12V			100	mA
Receiver		1		•	l.	•	
Receiver Differential Threshold Voltage	V_{TH}	-7V≦V _{CM} ≦12V		-200	-125	-50	mV
Receiver Input Hysteresis	ΔVτΗ				40		mV
Receiver Output High Voltage	V _{OH}	I _O =-4mA,V _{ID} =-50m\	/	V _{CC} -1.5			V
Receiver Output Low Voltage	V _{OL}	I _O =4mA,V _{ID} =-200m	V			0.4	V
Three-State Output Current at Receiver	I _{OZR}	0.4V ≦ V _O ≦ 2.4V				±1	μΑ
Receiver Input Resistance	R _{IN}	-7V≦V _{CM} ≦12V		96			ΚΩ
Receiver Output Short-Circuit Current	I _{OSR}	$0V \le V_{RO} \le V_{CC}$		±7		±95	mA
Supply Current	Supply Current						
Supply Current	I _{cc}	No load ,/RE=DI=	DE=V _{CC}		150	600	μΑ
Supply Suiteful	ICC	GND or V _{CC}	DE=GND		185	600	μΑ
Supply Current in Shutdown Mode	I _{SHDN}	DE=GND, /RE=VC	C, DI=V _{CC}			10	μΑ

Note 1: All currents into the device are positive. All currents out of the device are negative. All voltages are referred to device ground unless otherwise noted.

Note 2: $\triangle V_{OD}$ and $\triangle V_{OC}$ are the changes in V_{OD} and V_{OC} , respectively, when the DI input changes state.

Switching Characteristics

(V_{CC}=+5V±5%,TA=-40°C \sim +85°C , Typical values are at V_{CC}=+5V , TA=25°C)

Parameter	Symbol	Conditions	MIN	TYP	MAX	UNITS
Driver Input to Output	T _{DPLH}	Figure 3 and 5, R_{DIFF} =54 Ω		450	800	nc
	T _{DPHL}	C _{L1} =C _{L2} =100pF		450	800	ns

Driver Output Skew $ T_{DPLH} - T_{DPHL} $	T _{DSKEW}	Figure 3 and 5, R_{DIFF} =54 Ω C_{L1} = C_{L2} =100pF			100	ns
Driver Rise or Fall Time	T_{DR}, T_{DF}	Figure 3 and 5, R_{DIFF} =54 Ω C_{L1} = C_{L2} =100pF		150	500	ns
Maximum Data Rate	F _{MAX}		250			kbps
Driver Enable to Output High	T _{DZH}	Figure 4 and 6, C _L =100pF S2 Closed			200	ns
Driver Enable to Output Low	T _{DZL}	Figure 4 and 6, C _L =100pF S1 Closed			200	ns
Driver Disable Time from Low	T _{DLZ}	Figure 4 and 6, C _L =15pF S1 Closed			300	ns
Driver Disable Time from High	T _{DHZ}	Figure 4 and 6, C _L =15pF S2 Closed			300	ns
Receiver Input to Output	T _{RPLH} T _{RPHL}	Figure 7 and 9, V _{ID} ≥ 2.0V _i ; rise and fall time of VID ≦ 15ns		450	800	ns
$\begin{array}{ccc} T_{RPLH} & - & T_{RPHL} \\ \text{Differential} & \text{Receiver} \\ \text{Skew} \end{array}$	T _{RSKD}	Figure 7 and 9, $ V_{ID} \ge 2.0V_{\odot}$; rise and fall time of VID ≤ 15 ns		30		ns
Receiver Enable to Output Low	T _{RZL}	Figure 2 and 8, C _L =100pF S1 Closed		20	50	ns
Receiver Enable to Output High	T _{RZH}	Figure 2 and 8, C _L =100pF S2 Closed		20	50	ns
Receiver Disable Time from Low	T _{RLZ}	Figure 2 and 8, C _L =100pF S1 Closed		80	150	ns
Receiver Disable Time from High	T _{RHZ}	Figure 2 and 8, C _L =100pF S2 Closed		80	150	ns
Time to Shutdown	T _{SHDN}			50	300	ns
Driver Enable from Shutdown to Output High	T _{DZH(SHDN)}	Figure 4 and 6, C _L =15pF S2 Closed			200	ns
Driver Enable from Shutdown to Output Low	T _{DZL(SHDN)}	Figure 4 and 6, C _L =15pF S1 Closed			200	ns
Receiver Enable from Shutdown to Output High	T _{RZH(SHDN)}	Figure 2 and 8, C _L =100pF S2 Closed			300	ns
Receiver Enable from Shutdown to Output Low	T _{RZL(SHDN)}	Figure 2 and 8, C _L =100pF S1 Closed			300	ns

Test Circuits and Timing Diagrams

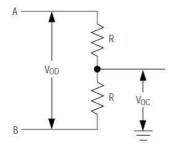


Figure 1: Driver DC Test Load

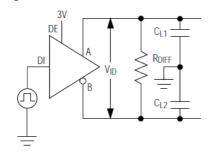


Figure 3: Driver Timing Test Circuit

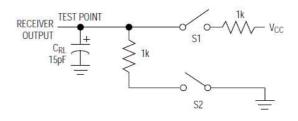


Figure 2: Receiver Enable/Disable Timing Test Load

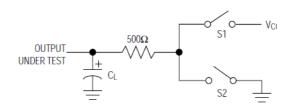


Figure 4: Driver Enable/Disable Timing test Load

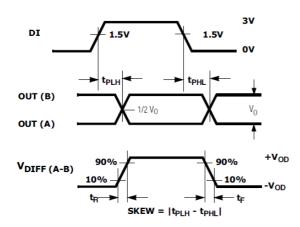


Figure 5: Driver Propagation Delays

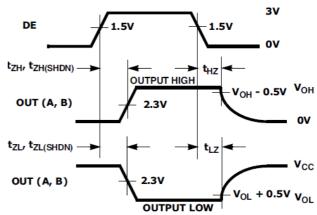


Figure 6: Driver Enable and Disable Times

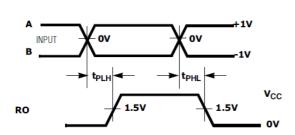


Figure 7: Receiver Propagation Delays

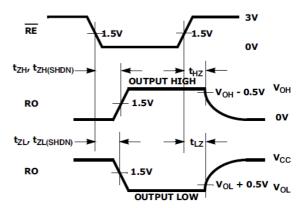


Figure 8: Receiver Enable and Disable Times

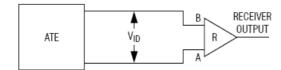
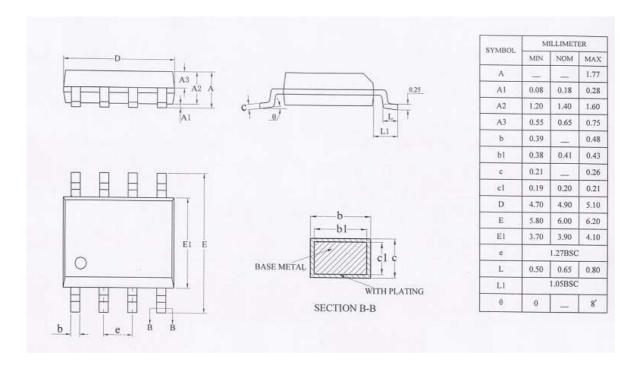



Figure 9: Receiver Propagation Delay Test Circuit

Package Information SOP8L

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RS-422/RS-485 Interface IC category:

Click to view products by Belling manufacturer:

Other Similar products are found below:

SP3494CN-L/TR CA-IS3082WX CA-IS3088WX CA-IS3092W XR33038IDTR-F SIT3485ISO XR3077XID-F ADM2687EBRIZ-RL7

SP483EEN-L/TR SN75LBC175ADR MAX489CPD+ MAX3080CPD+ MXL1535EEWI+ SP483EN-L/TR SP483CN-L/TR SP3483CN-L/TR XR3072XID-F DS16F95J/883 SP1485EEN-L/TR MAX490ESA+T ISL3179EIUZ-T7A ISL3179EIRZ-T7A ISL3179EFRZ-T7A

XR33194ESBTR XR3074XID-F XR3082XID-F SP1481EEN-L SP3490EN-L ADM485JN ADM1485JNZ ADM489ABRZ

ADM3073EARZ ADM4850ACPZ-REEL7 ADM4853ACPZ-REEL7 ADM485ANZ ADM3072EARZ-REEL7 ADM3075EARZ-REEL7

ADM3486EARZ-REEL7 ADM3493ARZ-REEL7 ADM487EARZ-REEL7 ADM1485JRZ-REEL ADM3485ARZ ADM3490ARZ-REEL7

ADM3490EARZ-REEL7 ADM4850ARZ-REEL7 ADM1485ARZ-REEL ADM3071EARZ ADM3483ARZ-REEL7 ADM3483EARZ-REEL7

ADM3485EARZ-REEL7