

2.6 Watt Mono Filter-Free Class-D Audio Power Amplifier

Features

 \Box Efficiency With an 8- Ω Speaker:

88% at 400 mW 80% at 100 mW

80% at 100

- □ 3.8mA Quiescent Current
- $\square \quad 0.4 \mu A \text{ Shutdown Current}$
- □ Optimized PWM Output Stage Eliminates LC Output Filter
- □ Internally Generated 250-kHz Switching Frequency Eliminates Capacitor and Resistor
- □ Improved PSRR (-75 dB) and Wide Supply Voltage (2.5 V to 5.5 V) Eliminates Need for a Voltage Regulator
- □ Fully Differential Design Reduces RF Rectification and Eliminates Bypass Capacitor
- □ Improved CMRR Eliminates Two Input Coupling Capacitors
- □ MSOP8 and SOP8 package

General Description

The BL6306 is a 2.6W high efficiency filter-free class-D audio power amplifier that requires only three external components.

Features like 88% efficiency, -75dB PSRR, and improved RF-rectification immunity make the BL6306 ideal for cellular handsets. In cellular handsets, the earpiece, speaker phone, and melody ringer can each be driven by the BL6306.

Applications

- □ Mobile phone、PDA、MID
- □ MP3/4、PMP
- Portable electronic devices

Order Information

Part Number	Package	Shipping
BL6306MM	MSOP8	3000 pcs / Tape & Reel
BL6306SO	SOP8	2500 pcs / Tape & Reel

BL6306

<u>Pin Diagrams</u>

<u>Pin Description</u>

Pin #	Name	Description	
1	SDB	Shutdown terminal (low active)	
2	NC	C (No internal connection)	
3	IN+	Positive differential input	
4	IN-	Negative differential input	
5	VO+	Positive BTL output	
6	VDD	Power Supply	
7	PGND	Power Ground	
8	VO-	Negative BTL output	

Function Block Diagram

Notes: Total Voltage Gain = $Av1 \times Av2 = 2 \times \frac{150k}{R_1}$

Figure 1. Function Block Diagram

Application Circuit

Figure 2. BL6306 Application Schematic With Differential Input

Figure 3. BL6306 Application Schematic With Differential Input and Input Capacitors

Figure 4. BL6306 Application Schematic With Single-Ended Input

Absolute Maximum Ratings

Supply Voltage	-0.3V to 6V
Input Voltage	-0.3V to VDD+0.3V
Storage Temperature	-65℃ to +150℃
Operating Temperature Rang	ge -40° C to $+85^{\circ}$ C

NOTE: <u>Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating</u> <u>Rating indicate conditions for which the device is functional, but do not guarantee specific performance limits.</u>

Electrical Characteristics

The following specifications apply for the circuit shown in Figure 5.

 $T_A = 25$ °C, unless otherwise specified.

	Donomotor	Conditions		Unita		
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
I _{SD}	Shutdown Current	V _{IN} =0V, V _{SDB} =0V, No Load		0.4	2	uA
		$V_{DD} = 2.5 V, V_{IN} = 0 V, No Load$		2.2	3.2	
I_Q	Quiescent Current	$V_{DD} = 3.6V, V_{IN} = 0V, No Load$		2.6		mA
		V_{DD} = 5.5V, V_{IN} = 0V, No Load		3.8	8	
	O to t Offici Values	$V_{IN} = 0V, A_V = 2V/V,$		2	25	mV
V OS	Output Offset Voltage	$V_{DD} = 2.5 V$ to 5.5 V		2		
PSRR	Power Supply Rejection Ratio	$V_{DD} = 2.5 V$ to 5.5 V		-75		dB
		$V_{DD} = 2.5 V$ to 5.5 V,				
CMRR	Common Mode Rejection Ratio	$V_{\rm IC} = V_{\rm DD}/2$ to 0.5V,		-68		dB
		$V_{\rm IC} = V_{\rm DD}/2$ to $V_{\rm DD}$ - 0.8V				
F _{SW}	Modulation frequency	$V_{DD} = 2.5 V$ to 5.5 V	200	250	300	kHz
	x7.1.		270k	300k	330k	17/17
$A_{\rm V}$	voltage gain	$v_{DD} = 2.5 v$ to 5.5 v	R _I	R _I	R _I	V/V
R _{SDB}	Resistance from SDB to GND			300		kΩ
ZI	Input impedance		135	150	165	kΩ
T _{WU}	Wake-up time from shutdown	$V_{DD} = 3.6V$		32		mS
		$V_{DD} = 2.5 V$		700		
r _{DS(on)}	Drain-Source resistance (on-state)	$V_{DD} = 3.6V$		500		mΩ
		$V_{DD} = 5.5 V$		400		
V _{SDIH}	Shutdown Voltage Input High		1.3			V
V _{SDIL}	Shutdown Voltage Input Low				0.4	V

Operating Characteristics

 \Box V_{DD} = 5V, R_I = 150k Ω , T_A = 25°C, unless otherwise specified.

Symbol	Parameter	Conditions	Spec			Unita
Symbol			Min.	Тур.	Max.	Units
	THD+N=10%, f=1KHz, $R_L = 4\Omega$		2.60			
	Output Power	THD+N=1%, f=1KHz, $R_L = 4\Omega$		2.10		W
P ₀		THD+N=10%, f=1KHz, $R_L = 8\Omega$		1.60		
	THD+N=1%, f=1KHz, $R_L = 8\Omega$		1.30			
THD+N	Total Harmonic			0.21		0/
	Distortion + Noise	$PO=1.0$ wrms, $I=1$ kHz, $K_L = 802$		0.21		%
SNR	Signal-to-Noise ratio	$V_{DD}=5V$, Po=1.0Wrms, $R_L = 8\Omega$		91		dB

\Box V_{DD} = 3.6V, R_I = 150k Ω , T_A = 25°C, unless otherwise specified.

Symbol Parameter Conditions		Conditions		Spec			Unita	
		•	Min.	Тур.	Max.	Units		
		THD+N=10%, f=1KHz, $R_L = 4$	Ω		1.35			
р	Output Douvor	THD+N=1%, f=1KHz, $R_L = 4\Omega$			1.08		** 7	
P ₀	Output Power	THD+N=10%, f=1KHz, $R_L = 8$	Ω		0.85		vv	
		THD+N=1%, f=1KHz, $R_L = 8\Omega$	2		0.69			
THD+N	Total Harmonic Distortion + Noise	Po=0.5Wrms, f=1kHz, $R_L = 8\Omega$	1		0.21		%	
K _{SVR}	Supply ripple rejection ratio	V_{DD} = 3.6V, input ac-grounded f=217Hz, V(Ripple)=200mV _{PP}	with $C_I = 2uF$		-65		dB	
V	Output voltaga naiga	$V_{DD} = 3.6V$, input ac-grounded	No weighting		100		υV	
v _n	Output voltage noise	with $C_I = 2uF$, f=20~20kHz	A weighting		75		u v _{RMS}	
CMRR	Common Mode	V = 3.6V V = 1 V = 1217	V = 2 (V V = 1 V = 217 U		-70		dB	
CIVIKK	Rejection Ratio	$v_{\rm DD} = 5.0 v, v_{\rm IC} = 1 v_{\rm PP}, 1 = 21/1$	112		-70		uБ	

\Box V_{DD} = 2.5V, R_I = 150k Ω , T_A = 25°C, unless otherwise specified.

Sympol	Parameter	Conditions	Spec			I.I
Symbol			Min.	Тур.	Max.	Units
		THD+N=10%, f=1KHz, $R_L = 4\Omega$		0.60		
P _O Output Power	THD+N=1%, f=1KHz, $R_L = 4\Omega$		0.51		W	
	THD+N=10%, f=1KHz, $R_L = 8\Omega$		0.40			
		THD+N=1%, f=1KHz, $R_L = 8\Omega$		0.33		
THD+N To Di	Total Harmonic			0.21		0/
	Distortion + Noise	$PO=0.2$ wrms, $I=1$ kHz, $K_L = 8\Omega$		0.21		70

Test Circuit

Figure 5. BL6306 test set up circuit

- Notes: 1>. C_S should be placed as close as possible to VDD/GND pad of the device
 - 2>. Ci should be shorted for any Common-Mode input voltage measurement
 - 3>. A 33uH inductor should be used in series with R_L for efficiency measurement
 - 4>. The 30 kHz LPF (shown in figure 5) is required even if the analyzer has an internal LPF

Component Recommended

Due to the weak noise immunity of the single-ended input application, the differential input application should be used whenever possible. The typical component values are listed in the table:

R _I	CI	C _S
150 k	3.3 nF	2 uF

http://www.belling.com.cn

- (1) C_1 should have a tolerance of $\pm 10\%$ or better to reduce impedance mismatch.
- (2) Use 1% tolerance resistors or better to keep the performance optimized, and place the R_I close to the device to limit noise injection on the high-impedance nodes.

Input Resistors (R_I) & Capacitors (C_I)

The input resistors (R_I) set the total voltage gain of the amplifier according to Eq1

$$Gain = \frac{2 \times 150k\Omega}{R_I} \quad \left(\frac{V}{V}\right) \qquad Eq1$$

The input resistor matching directly affects the CMRR, PSRR, and the second harmonic distortion cancellation.

If a differential signal source is used, and the signal is biased from $0.5V \sim V_{DD}$ -0.8V (shown in Figure2), the input capacitor (C₁) is not required.

If the input signal is not biased within the recommended common-mode input range in differential input application (shown in Figure3), or in a single-ended input application (shown in Figure4), the input coupling capacitors are required.

If the input coupling capacitors are used, the R_1 and C_1 form a high-pass filter (HPF). The corner frequency (f_C) of the HPF can be calculated by *Eq2*

$$f_C = \frac{1}{2\pi \cdot R_I \cdot C_I} \quad (Hz) \qquad \qquad Eq2$$

Decoupling Capacitor (Cs)

A good low equivalent-series-resistance (ESR) ceramic capacitor (C_S), used as power supply decoupling capacitor (C_S), is required for high power supply rejection (PSRR), high efficiency and low total harmonic distortion (THD). C_S is 2µF, placed as close as possible to the device VDD pin.

Package Dimensions

SOP8

MSOP8

3.000±0.1

RO. 127

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Audio Amplifiers category:

Click to view products by Belling manufacturer:

Other Similar products are found below :

LV3313PM-TLM-E LV47002P-E LV4924VH-MPB-H LV4924VH-TLM-H AZ386MTR-E1 NCP2811AFCT1G NCP2890AFCT2G NCP2993FCT2G LA4631VC-XE IS31AP4915A-QFLS2-TR TDA1591T AS3561-BWLT-500 TDA7563AH TDA7850H TS2012EIJT NCP2809BMUTXG NJW1157BFC2 TPA6201A1ZQVR IS31AP4996-GRLS2-TR NCP2823BFCT1G LA4450L-E IS31AP2036A-CLS2-TR TDA7563ASMTR STPA001AH MP1720DH-12-LF-P SABRE9601K THAT1646W16-U PAM8965ZLA40-13 TSDP10XX1NLGXZBX TSDP11XX1NBGIZBX TSDP10XX1NBGIZBX NJM4580CV-TE1 BD5638NUX-TR BD37543FS-E2 BD3814FV-E2 TPA3110LD2PWPR AS3435-EQFP VA2218TSG28 AW88194ACSR NS4150C NS4158 HT4580ARZ PAM8403 AD4150B SL8002A AD8302 BL6306SO VA2221LTSG28 AiP8002SA.TR 8002