

BL8023H

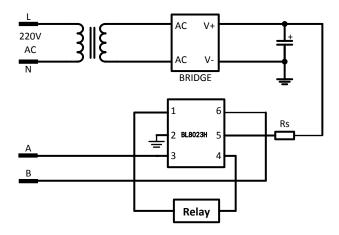
400mA Bi-Direction Relay Driver

DESCRIPTION

BL8023H is a bi-direction relay driver circuit, used to control the magnetic latching relay, with large output capability, ultra-low power consumption. It can be widely used in smart meters and other pulses, level control applications.

BL8023H can provide 400mA typical driving current, which will different according to the relay coil resistance. The input High Level Threshold of BL8023H is 2V; it can compatible with most single chip microcontroller.

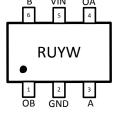
BL8023H is available in SOT-23-6 package.


FEATURES

- 5 to 40V input voltage range
- Low Power Consumption (IQ<1uA)
- Input High Level Threshold: 2V, compatible with most single chip microcontroller
- Typical Driving Current: 400mA Rds(on)=7ohm(Vin=12V, PMOSFET+NMOSFET) Rds(on)=6.5ohm(Vin=30V, PMOSFET+NMOSFET)
- Peak Driving Current: 500mA@Vin=24V
- Environment Temperature: -40°C~85°C
- SOT-23-6 package

APPLICATIONS

Smart Meter


TYPICAL APPLICATION

ORDERING INFORMATION

Part No.	Package	Tape & Reel		
BL8023HCB6TR	SOT-23-6	3000/Reel		

PIN OUT & MARKING

RU: Product Code YW: Date code

SOT23-6

ABSOLUTE MAXIMUM RATING

Parameter			Value	
Max Input Voltage			40V	
Max Operating Junction Temperature(Tj)			150°C	
Ambient Temperature(Ta)			-40°C – 125°C	
Package Thermal Resistance	SOT23-6	θ_{ja}	190°C / W	
		θ_{jc}	110°C / W	
Storage Temperature(Ts)			-40°C - 150°C	
Lead Temperature & Time			260°C, 10S	

Note: Exceed these limits to damage to the device. Exposure to absolute maximum rating conditions may affect device reliability.

RECOMMENDED WORK CONDITIONS

Parameter	Value	
Input Voltage Range	Max.40V	
Operating Junction Temperature(Tj)	-40°C –85°C	

ELECTRICAL CHARACTERISTICS

(VIN=5V, T_A =25°C)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VIN	Input Voltage Range		5		40	V
Iq	Quiescent Current				1	uA
		Vin=12V, R _L =75ohm		7	10	ohm
Rdson	Switch Rdson	Vin=30V, R _L =75ohm		6.5	10	ohm
		Vin=12V, R _L =40ohm		7	10	ohm
V _{TH}	ON Input High Voltage	Vin=12V		2		V
R _{IN}	Equivalent Input Resistor			500		Kohm
V_{SD}	Fly-Wheel Diode Forward Voltage	Is=1A		0.8	1.5	V
T _R	Rise Time	VIN=12V, R _L =75ohm		40		ns
T _{D(ON)}	Turn ON Delay Time	VIN=12V, R _L =75ohm		60		ns
T _F	Fall Time	VIN=12V, R _L =75ohm		30		ns
T _{DIOFF)}	Turn OFF Delay Time	VIN=12V, R _L =75ohm		70		ns

LOGIC FUNCTION TABLE

Input A	Input B	Output OA	Output OB	RELAY RESPONSE
1	0	1	0	ON
0	1	0	1	OFF
0	0	High-impedance	High-impedance	Hold
1	1	High-impedance	High-impedance	Hold

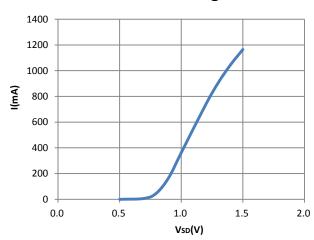
PIN DESCRIPTION

NAME	PIN#	DESCRIPTION
ОВ	1	Output B
GND	2	Ground.
Α	3	Input A
OA	4	Output A
VIN	5	Supply input voltage
В	6	Input B

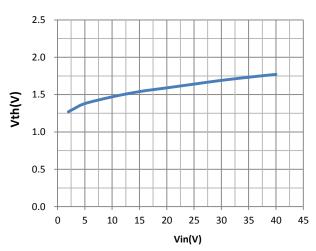
ELECTRICAL PERFORMANCE

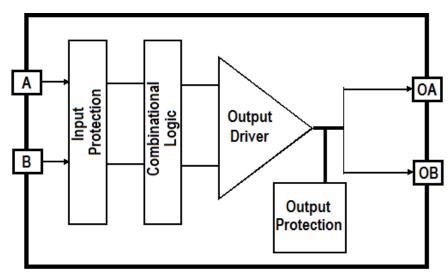
Tested under TA=25°C, unless otherwise specified

Turn on delay and rise time


Ch1---Input Ch2---Output

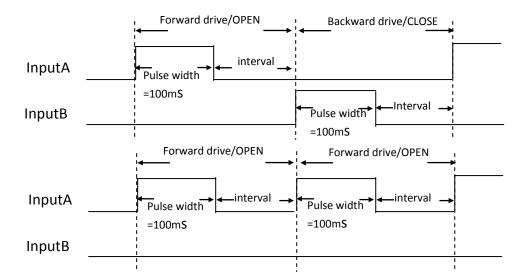
Turn off delay and fall time

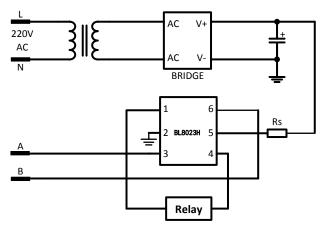

Ch1---Input Ch2---Output


Forward Voltage

Vth VS. Vin

BLOCK DIAGRAM

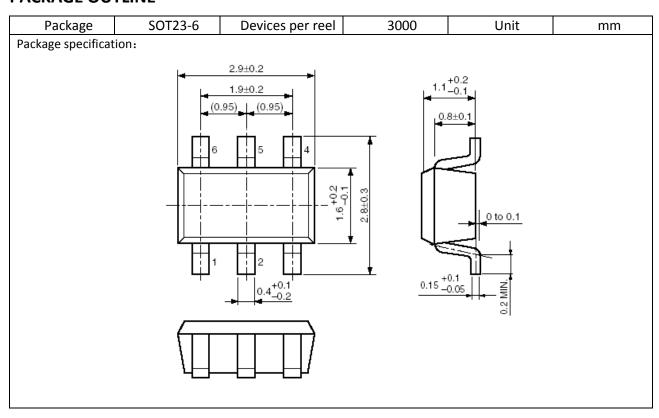



DETAILED DESCRIPTION

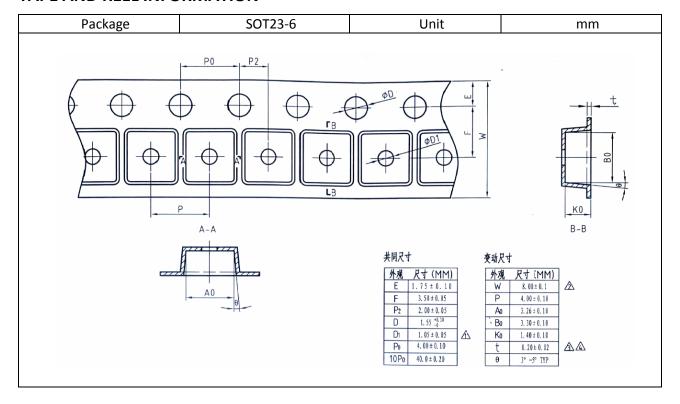
Pulse Triggering

If input is driven by square pulse, connect the inputs to the pulse source directly. Relay will operate as logic table stated (Vin should be less than the power supply voltage, Rs is current-limiting resistor, it can be ignored in the voltage is below 20V, i.e. Rs=0).

The recommended pulse width=100ms. The length of the intervals should be longer than 100ms. These intervals include: intervals between forward drive pulse and next backward drive pulse, intervals between forward drive pulse and next forward drive pulse, intervals between backward drive pulse and next forward drive pulse, intervals between backward drive pulse and next backward drive pulse.



Pulse triggering application diagram


Relay free-wheel

Relay from ON to OFF, the energy stored in the relay inductor released by the chip's internal body diode and the relay inductor. Until the end of the release of this energy, relay proceeding to the next operation.

PACKAGE OUTLINE

TAPE AND REEL INFORMATION

6

www.belling.com.cn

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Display Drivers & Controllers category:

Click to view products by Belling manufacturer:

Other Similar products are found below:

 ICB2FL01G
 LC74761M-9006-E
 MP3360DG-LF-P
 HV5812PJ-G-M904
 TW8813-LB2-GR
 TW8819AT-NA2-GR
 TW8811-PC2-GR

 MAX1839EEP+
 TW9907-TA1-GR
 S1D13503F00A200
 MAX7370ETG+T
 LX27901IDW
 STVM100DC6F
 DS3994Z+T&R

 S1D13515F00A100
 LX1686EIPW
 AM26C32IDR
 MAX7370ETG+
 LX1688IPW
 MAX1739EEP+
 MAX17126BETM+

 MAX14515AEWA+T
 DS3992Z-18P
 BTM7710GXUMA1
 DS3881E+C
 S1D13742F01A200
 LX1688CPW
 MAX17126AETM+

 MAX8729EEI+
 MAX7370ETG
 TIOS1013DMWR
 TLD5097EL
 HV857LK7-G
 TLD5097ELXUMA1
 AAT2823IBK-1-T1
 DLPA1000YFFT

 ICB2FL01GXUMA2
 DLP2000FQC
 SC401U
 IR2117PBF
 PAD1000YFFR
 S1D13746F01A600
 S1D13748B00B100
 FIN324CMLX

 STVM100DS6F
 HV850MG-G
 AD8138ARZ-R7
 AD8387JSVZ
 ADD19023BBCZ
 ADM3202ARUZ-REEL7