

BL8072

2A Low Consumption Linear Regulator

DESCRIPTION

BL8072 is a series of low power consumption, low dropout voltage regulator with a typical dropout voltage of 1.0V at 2A load current.

BL8072 can provide output value in the range of $1.2V^{5.0V}$ in 0.1V steps. It also can customized on command.

Other than every voltage version can be used as an adjustable voltage version, with which desired voltage can be achieved by setting the values of two external resistors of the application circuitry.

BL8072 has well load transient response and good temperature characteristic, And it uses trimming technique to guarantee output voltage accuracy within \pm 2%.

BL8072 series is available in standard packages of SOT-223 and TO-252.

FEATURES

- Low Power Consumption:3.0uA (Typ.)
- Maximum output current : 2A
- Maximum input voltage: 18V
- Line regulation: 0.2% (Typical)
- Output Voltage Range:1.2V~5.0V (customized on command in 0.1V steps)
- Highly Accurate:±2%(±1% customized)
- Typical Dropout Voltage: 850mV@1.5A (Vout=3.3V)
- Operation environment Temperature: -40°C~85°C

APPLICATIONS

- Battery Charger
- Battery Powered equipment
- Post Regulators for Switching Supplies
- Reference Voltage Source Regulation after Switching Power

TYPICAL APPLICATION

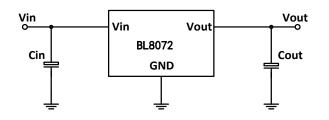
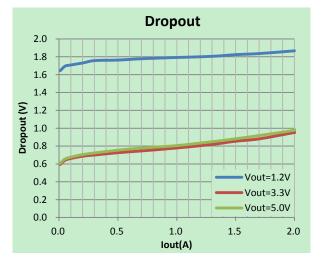



Fig1. BL8072 fixed voltage application circuit

Note: Input capacitor (Cin=1uF) and Output capacitor (Cout=1uF) are recommended in all application circuit. ceramic capacitor is recommended.

ELECTRICAL CHARACTERISTICS

ORDERING INFORMATION

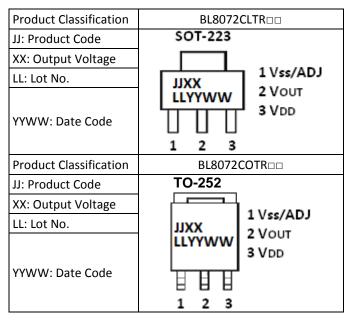
BL8072 12345

Code	Description		
1	Temperature&Rohs:		
	C: -40~85°C, Pb Free Rohs Std.		
2	Package type:		
	L: SOT-223		
	O:TO-252		
3	Packing type:		
	TR: Tape&Reel (Standard)		
4	Output voltage:		
	e.g. 18=1.8V		
	33=3.3V		
	50=5.0V		
5	Voltage accuracy:		
	Blank(default):±2%		
	1: ±1%		

ABSOLUTE MAXIMUM RATING

Parameter Value				
Par	Value			
Max Input Volta	20V			
Operating Juncti	125°C			
Ambient Temperature(Ta)		-40°C –85°C		
Package	SOT-223	20°C / W		
Thermal	TO-252	12% ().		
Resistance	10-252	12°C/W		
Storage Temperature(Ts)		-40°C -150°C		
Lead Temperature & Time		260°C,10S		

Note:


Exceed these limits to damage to the device.

Exposure to absolute maximum rating conditions may affect device reliability.

RECOMMENDED WORK CONDITIONS

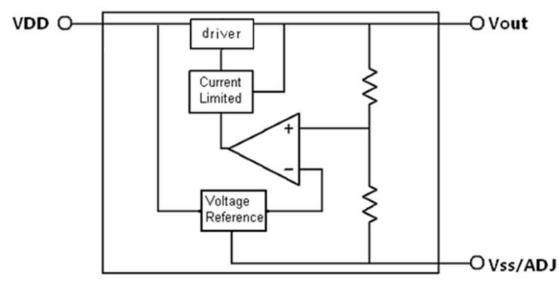
Parameter	Value		
Input Voltage Range	Max.18V		
Ambient Temperature	-40°C –85°C		

PIN CONFIGURATION

XX: Output voltage code, e.g. 12=1.2V, 25=2.5V, 33=3.3V; YY: The Year of manufacturing, "11" stands for year 2011, "12" stands for year 2012, and "28" stands for year2028. WW: The week of manufacturing. "01" stands for week 1, "02" stands for week 02, "52" stands for week 52.

ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Vin	Input Voltage					18	V
Vout	Output Voltage			Vout x0.98		Vout X1.02	V
lout(Max.)	Maximum Output Current	Vin-Vout=1.9V	Vout <1.5V	2			
		Vin-Vout=1.5V	1.5V≤Vout<2.0V			А	
		Vin-Vout=1V	Vout \geq 2.0V				
Dropout Voltage	Input-Output Voltage Differential (note 3)	lout≤1.5A	Vout <1.5V		1600	1800	mV
			1.5V≤Vout<2.0V		1200	1400	
			Vout \geq 2.0V		850	950	
$\frac{\Delta Vout}{\Delta Vin \cdot Vout}$	Line Regulation (note 1)	lout=10mA Set Vout+1V≤Vins		0.1	0.3	%/V	
	Load Regulation (note 1,2)	1mA≤lout≤1.5A	Vout <1.5V		40	60	mV
$\Delta Vout$			1.5V≤Vout<2.0V		20	40	
			Vout \geq 2.0V		10	30	
lq	Quiescent Current	Vin=Set Vout+1V			3.0	5.0	uA
$\frac{\Delta Vout}{\Delta T \cdot Vout}$	Output Voltage Temperature Coefficient	lout=100mA			200		ppm/°C
$ heta_{_{JC}}$	Thermal Resistance junction to case	SOT-223 TO-252			20 12		°C/W


(Test Conditions: Cin=1uF, Cout=1uF, TA=25 °C, Unless Otherwise Specified)

Note1: Line Regulation and Load Regulation in Table1 are tested under constant junction temperature.

Note2: When load current varies between 0~2A and Vin-Vout ranges from 1V~18V at constant junction temperature, the parameter is satisfied the criterion in table.

Note3: Dropout Voltage is the voltage difference between the input and output pin when the input voltage is minimum to maintain the lowest spec output voltage.

BLOCK DIAGRAM

DETAILED DESCRIPTION

BL8072 is a series of low dropout voltage and low power consumption regulator. Its application circuitry requires minimum number of external components. Both fixed voltage and adjustable voltage application circuits need input and output capacitors to assure output voltage stability. Any desired output voltage from fixed voltage to 18V can be achieved by assigning proper values to two external resistors in its application circuitry (as shown in Fig.3, as R1, R2 are the two external resistors.).

BL8072 uses trimming technique to assure the accuracy of output value within ±2%, at the same time, temperature compensation is elaborately considered in this chip, which makes BL8072's temperature coefficient within 100ppm/°C $_{\circ}$

TYPICAL APPLICATION

BL8072 has fixed voltage and adjustable voltage application mode, Fig.4 shows their typical application circuitry.

A 1uF ceramic capacitor connected between input and GND as bypass capacitor and a 1uF ceramic capacitor between output and GND are recommended for all application.

Using a bypass capacitor (C_{Adj}) between the adjust terminal and ground can improve ripple rejection. The bypass capacitor prevents ripple from being amplified in case the output voltage is increased. The impedance of C_{Adj} should be less than the resistance of R_1 to prevent ripple from being amplified at any frequency. As R1 is normally in the range of $1K\Omega^{\sim}10K\Omega$, the value of C_{Adj} should satisfy the following condition:

 $1/(2\pi^* \text{ Frequency}_{Ripple} *C_{adj}) < R_1$

A $0.1\mu F$ ceramic capacitor is recommended.

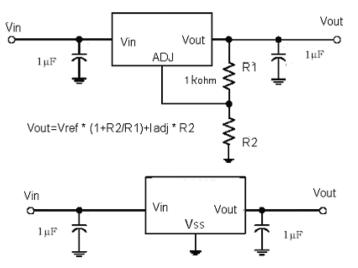
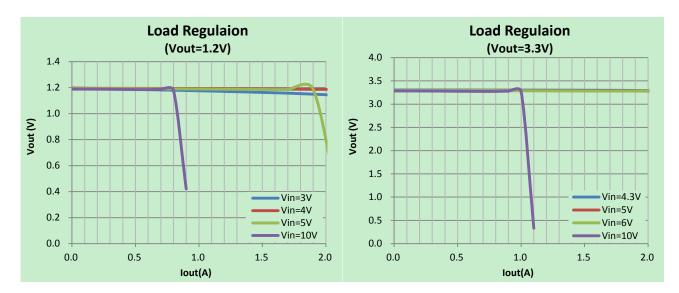
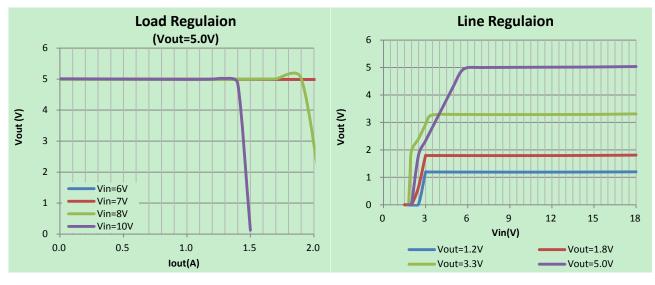
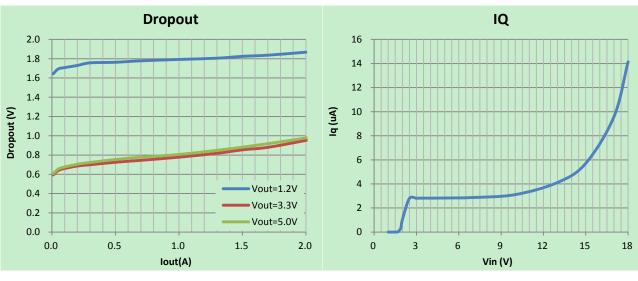


Fig 3. Typical Application of BL8072

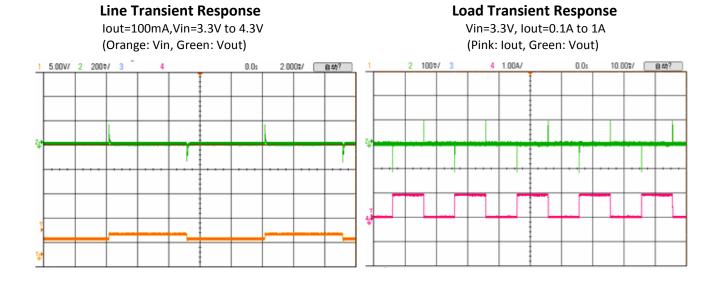
EXPLANATION

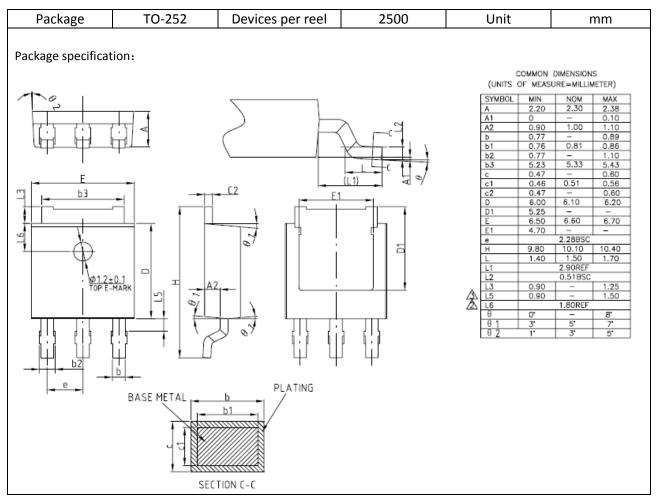

The output voltage of adjustable application satisfies this followed equation:

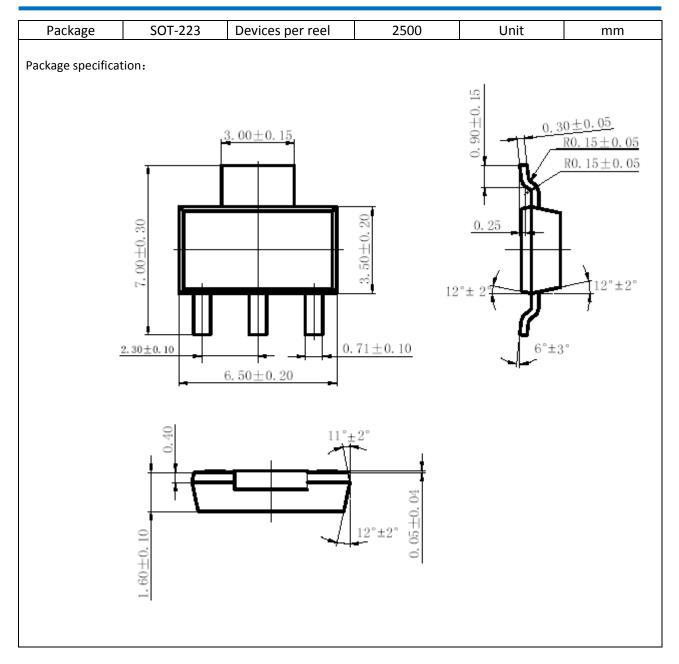

 $V_{out}=V_{Ref}\times (1+R_2/R_1)+I_{Adj}\times R_2.$


The second term $I_{Adj} \times R_2$ can be ignored since the adjustable pin current I_{Adj} (~ 2µA) is much less than the current through R_1 (~1mA).

The value of R₁ is preferred in the range of $1K\Omega \sim 10K\Omega$ and the value of V_{Ref} is the output voltage of typical fixed voltage application circuit.


TYPICAL PERFORMANCE CHARACTERISTICS




BL8072

PACKAGE LINE

BL8072

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Linear Voltage Regulators category:

Click to view products by Belling manufacturer:

Other Similar products are found below :

LV56831P-E LV5684PVD-XH MCDTSA6-2R L7815ACV-DG PQ3DZ53U LV56801P-E TLE42794G L78L05CZ/1SX L78LR05DL-MA-E 636416C 714954EB ZMR500QFTA LV5680P-E L78M15CV-DG L79M05T-E TLS202A1MBVHTSA1 L78LR05D-MA-E NCV317MBTG NTE7227 MP2018GZD-33-P MP2018GZD-5-P LV5680NPVC-XH LT1054CN8 MP2018GZD-5-Z MP2018GZD-33-Z AT55EL50ESE APL5934DKAI-TRG 78L05U 78L05 CL9193A15L5M CL9036A30F4M CL9036A18F4M CL9036A25F4M CL9036A28F4M CL9036A33F4M CL9906A18F4N CL9906A30F4N CL9908A30F4M CL9908A33F4M CL9908A18F4M CL9908A28F4M TL431ACM/TR TL431AIM/TR LM78L05ACM/TR HT7812ARMZ HT7805ARMZ HT317LRHZ HXY6206I-3.0 HXY6206I-3.3 XC6206P252MR XC6206P282MR