

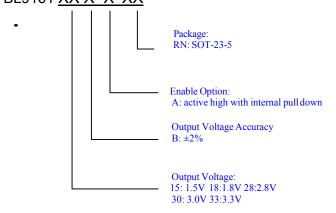
300mA Ultra-low Noise, Ultra-Fast CMOS LDO Regulator

FEATURES

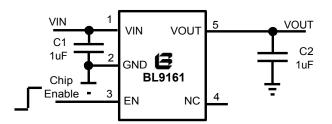
- Ultra-low Noise
- Ultra-Fast Response in Line/Load
 Transient
- <0.1µA Standby Current When Shutdown
- Low Dropout: 230mV@300mA
- Wide Operating Voltage Ranges: 2V to 5.5V
- Low Temperature Coefficient
- Current Limiting Protection
- Thermal Shutdown Protection
- Only 1µF Output Capacitor Required for Stability
- High Power Supply Rejection Ratio
- Fast output discharge
- Available in SOT23-5 Package

APPLICATIONS

- Cellular and Smart Phones
- Cordless Telephones
- Battery-Powered Equipment
- Laptop, Palmtops, Notebook Computers


Hand-Held Instruments

- PCMCIA Cards
- MP3/MP4/MP5 Players
- Portable Information Appliances


DESCRIPTION

The BL9161 is designed for portable applications with demanding performance and space requirements. The BL9161 performance is optimized for battery-powered systems to deliver ultra low noise and low quiescent current. Regulator ground current increases only slightly in dropout, further prolonging the battery life. The BL9161 also works with low-ESR ceramic capacitors, reducing the amount of board space necessary for power applications, critical in hand-held wireless devices. The BL9161 consumes less than 0.1µA in shutdown mode and has fast turn-on time (Typical 50µs). The other features include ultra low dropout voltage, high output accuracy, current limiting protection, and high ripple rejection ratio. Available in SOT23-5 package.

ORDERING INFORMATION BL9161 XX X X XX

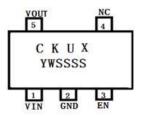
TYPICAL APPLICATION

Application hints:

Output capacitor ($C2 \ge 2.2uF$) is recommended in BL9161-1.5V and BL9161-1.8V application to assure the stability of circuit.

300mA Ultra-low Noise, Ultra-Fast CMOS LDO Regulator

Absolute Maximum Rating (Note 1)


Input Supply Voltage (VIN) EN Pin Input Voltage Output Voltages Output Current -0.3V to +6V -0.3V to VIN -0.3V to VIN+0.3V 300mA

Maximum Junction Temperature150°COperating Temperature Range-40°C to 85°CStorage Temperature Range-65°C to 125°CLead Temperature (Soldering, 10s)300°C

Package Information

Therma	I Resistance	(Note 3)
--------	--------------	----------

Package	Θ_{JA}	θ _{JC}
SOT23-5	250℃/W	130℃/W

CKU: Chip ID X: Output voltage Y: Data code--Year

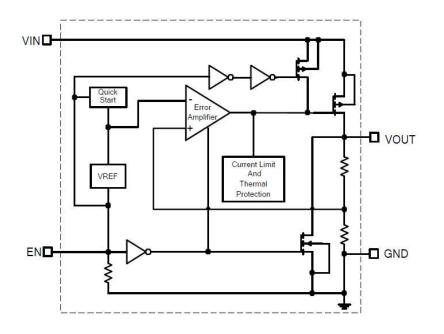
W: Data code—Week

Х		С	D	G	I	K			
Output v	oltage	1.5V	1.8V	2.8V	3.0V	3.3V			
Y	4		5	6		0	1		
Year	2014	2	015	2016		202	0 2021		
									_
W	А			Y	Z	а		у	Z
Week	1			25	26	27		51	52

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: The BL9161 is guaranteed to meet performance specifications from 0°C to 70°C. Specifications over the -40°C to 85°C operating temperature range are assured by design, characterization and correlation withstatistical process controls.

Note 3: Thermal Resistance is specified with approximately 1 square of 1 ozcopper.



300mA Ultra-low Noise, Ultra-Fast CMOS LDO Regulator

Pin Description

PIN	NAME	FUNCTION				
1	VIN	Power Input Voltage.				
2	GND	Ground.				
3	EN	Chip Enable Pin, This pin has an internal pull-down resistor				
4	NC	No Connection.				
5	VOUT	Output Voltage.				

Block Diagram

300mA Ultra-low Noise, Ultra-Fast **CMOS LDO Regulator**

Electrical Characteristics (Note 4)

(V_{IN}=Vout +1V, EN=V_{IN}, C_{IN}=C_{OUT}=1 μ F, T_A=25 $^{\circ}$ C, unless otherwise noted.)

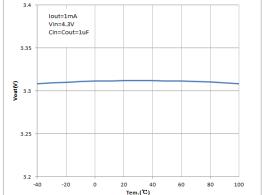
Pa	rameter	Symbol	Conditions	MIN	TYP	MAX	unit
Input Voltage		V _{IN}		2		5.5	V
Output Voltage Accuracy		ΔV_{OUT}	V _{IN=} Vout+1V, I _{OUT} =1mA	-2		+2	%
	rent Limit	I _{LIM}	$R_{LOAD}=1\Omega$	360	450		mA
Quieso	cent Current	l _Q	V _{EN} >1.2V, I _{OUT} =0mA		70	110	μA
Dropo	Propout Voltage		I _{OUT} =200mA, V _{OUT} =3.3V		150	200	m\/
Бторс	our voltage	V _{DROP}	I _{OUT} =300mA, V _{OUT} =3.3V		230	300	mV
Line Reg	gulation ^(Note 5)	ΔV_{LINE}	V _{IN} =Vout+1V to 5.5V I _{OUT} =1mA		0.02	0.17	%/V
Load Re	egulation(Note6)	ΔV_{LOAD}	1mA <i<sub>OUT<300mA</i<sub>		20		mV
Output Voltage(Note 7) Temperature Coefficient		TC _{VOUT}	I _{OUT} =1mA		±60		ppm/° C
Stand	Standby Current		V _{EN} =GND, Shutdown		0.01	1	μA
EN Input	t Bias Current	I _{IBSD}	V_{EN} =GND or V_{IN}			2	μA
EN Input	0		V _{IN} =3V to 5.5V, Shutdown			0.4	V
Threshold	Logic High	V _{IH}	V _{IN} =3V to 5.5V, Start up	1.2			V
Output Noise Voltage		e _{NO}	10Hz to100KHz, I _{OUT} =100mA		150		μV_{RMS}
Power Supply Rejection Ratio	f=217Hz				-78		
	f=1KHz	PSRR	R I _{OUT} =10mA		-71		dB
	f=10KHz	1			-53		
Thermal Shutdown Temperature		T _{SD}	Shutdown, Temp increasing		170		°C
Thermal Shutdown Hysteresis		T _{SDHY}			30		°C

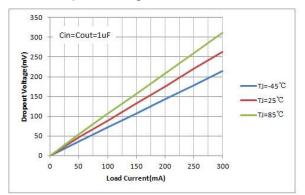
Note 4: Production test at +25°C. Specifications over the temperature range are guaranteed by design and characterization. **Note 5:** Line regulation is calculated by $\Delta V_{LINE} = \left[\left(\frac{V_{OUT1} - V_{OUT2}}{\Delta V_{IN} \times V_{OUT(normal)}} \right)^{\times 100} \right]^{\times 100}$

Where V_{OUT1} is the output voltage when V_{IN} =5.5V, and V_{OUT2} is the output voltage when V_{IN} =4.3V,

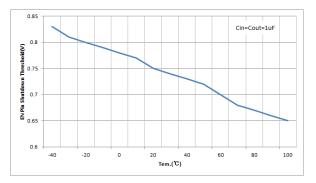
 ΔV_{IN} =1.2V. V_{OUT} (normal) =3.3V.

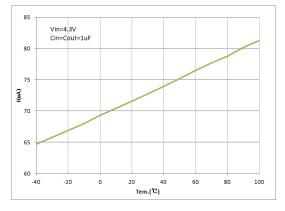
Note 6: Load regulation is calculated by V_{load}=Vout1-Vout2 Where V_{OUT1} is the output voltage when I_{OUT}=1mA, and V_{OUT2} is the output voltage when I_{OUT}=300mA.

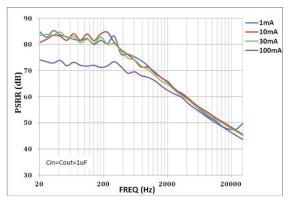

Note 7: The temperature coefficient is calculated by $TC_{T_{OUT}} = \frac{\Delta V_{OUT}}{\Delta T \times V_{OUT}}$


300mA Ultra-low Noise, Ultra-Fast CMOS LDO Regulator

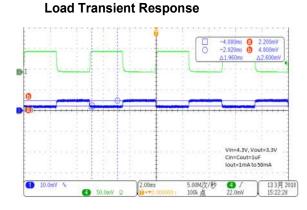
Typical Performance Characteristics


Output Voltage Vs. Temperature

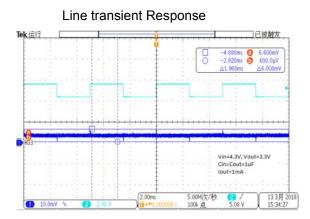

Dropout Voltage Vs. Load Current


EN Pin Shutdown Threshold Vs. Temperature

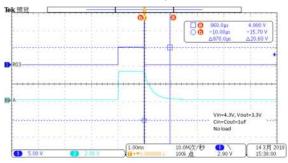
Quiescent Current Vs. Temperature

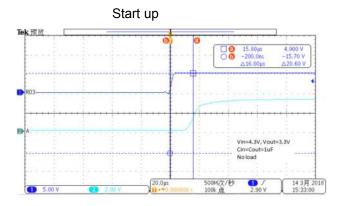


PSRR






300mA Ultra-low Noise, Ultra-Fast CMOS LDO Regulator



Load Transient Response Te<u>k</u>运行 已被触发 -4.880ms (1) -2.920ms (1) 10.80 △15.20m\ Δ1.96 -Vin=4.3V, Vout=3.3V Cin=Cout=1uF lout=1mA to 250mA 133月 2018 15:23:59 5.00M次/秒 100k点 4) 24.0m 1 20.0mV 2.00ms 4

Applications Information

Like any low-dropout regulator, the external capacitors used with the BL9161 must be carefully selected for regulator stability and performance. Using a capacitor whose value is > 1μ F on the BL9161 input and the amount of capacitance can be increased without limit. The input capacitor must be located a distance of not more than 0.5 inch from the input pin of the IC and returned to a clean analog ground. Any good quality ceramic or tantalum can be used for this capacitor. The capacitor with larger value and lower ESR (equivalent series resistance) provides better PSRR and line-transient response. The output capacitor must meet both requirements for minimum amount of capacitance and ESR in all LDOs application. The BL9161 is designed specifically to work with low ESR ceramic output capacitor in space-saving and performance consideration. Using a ceramic capacitor whose value is at least 1μ F with ESR is > $25m\Omega$ on the BL9161 output ensures stability. The BL9161 still works well with output capacitor of other types due to the wide stable ESR range. Output capacitor of larger capacitance can reduce noise and improve load transient response, stability, and PSRR. The output capacitor should be located not more than 0.5 inch from the Vout pin of the BL9161 and returned to a clean analog ground.

Enable Function

The BL9161 features an LDO regulator enable/disable function. To assure the LDO regulator will switch on; the EN turn on control level must be greater than 1.2 volts. The LDO regulator will go into the shut300mA Ultra-low Noise, Ultra-Fast CMOS LDO Regulator

down mode when the voltage on the EN pin falls below 0.4 volts. For to protect the system, the BL9161 have a quick discharge function. If the enable function is not needed in a specific application, it may be tied to V_{IN} to keep the LDO regulator in a continuously on state.

Thermal Considerations

Thermal protection limits power dissipation in BL9161. When the operation junction temperature exceeds 170°C, the OTP circuit starts the thermal shutdown function turn the pass element off. The pass element turns on again after the junction temperature cools by 30°C.

For continue operation, do not exceed absolute maximum operation junction temperature 125°C. The power dissipation definition in device is:

 $P_D(MAX) = (T_J(MAX) - T_A)/\theta_{JA}$

Where $T_J(MAX)$ is the maximum operation junction temperature 125°C, T_A is the ambient temperature and the θ_{JA} is the junction to ambient thermal resistance. For recommended operating conditions specification of BL9161, where T_J(MAX) is the maximum junction temperature of the die (125°C) and T_A is the maximum ambient temperature. The junction to ambient thermal resistance (θ_{JA} is layout dependent) for SOT-23-5 package is 250°C/W, on standard JEDEC 51-3 thermal test board. The maximum power dissipation at $T_A=$ can be calculated by following 25°C formula:

300mA Ultra-low Noise, Ultra-Fast CMOS LDO Regulator

 $P_D(MAX) = (125^{\circ}C-25^{\circ}C)/250 = 400 \text{mW}$ (SOT-23-5)

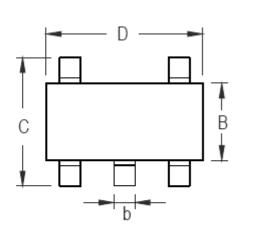
The maximum power dissipation depends on operating ambient temperature for fixed T_J (MAX) and thermal resistance θ_{JA} . It is also useful to calculate the junction of temperature of the BL9161 under a set of specific conditions. In this example let the Input voltage V_{IN} =3.3V, the output current Io=300mA and the case temperature T_A =40°C measured by a thermal couple during operation. The power dissipation for the V_{OUT}=2.8V version of the BL9161 can be calculated as:

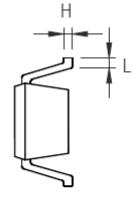
P_D = (3.3V-2.8V)×300mA+3.6V×100uA =150mW

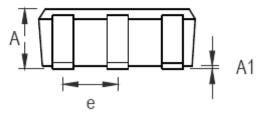
And the junction temperature, T_J , can be calculated as follows:

 $T_J = T_A + P_D \times \theta_{JA} = 40^{\circ}C + 0.15W \times 250^{\circ}C/W$ =40°C+37.5°C=77.5°C<T_J(MAX) =125°C

For this operating condition, T_J is lower than the absolute maximum operating junction temperature,125°C, so it is safe to use the BL9161 in this configuration.

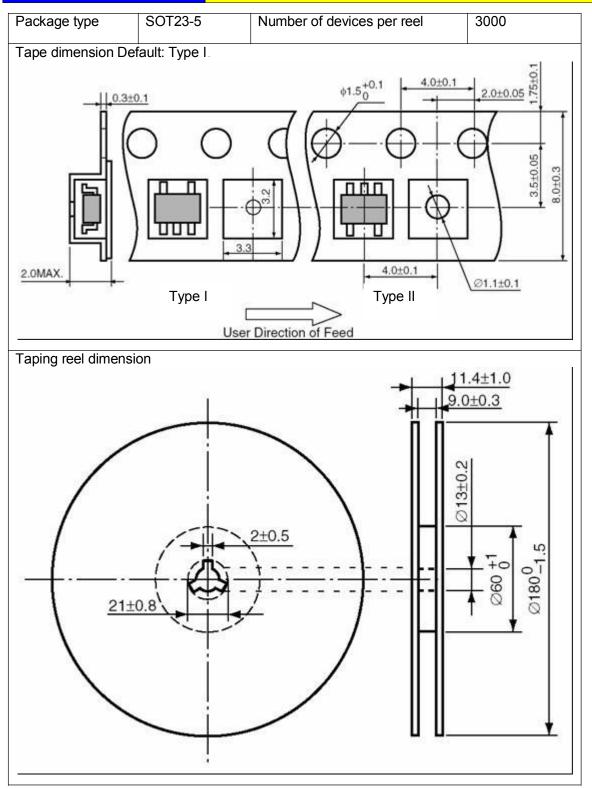

Layout considerations


To improve ac performance such as PSRR, output noise, and transient response, it is recommended that the PCB be designed with separate ground planes for V_{IN} and V_{OUT} , with each ground plane connected only at the GND pin of the device.



300mA Ultra-low Noise, Ultra-Fast CMOS LDO Regulator

Package Descripti



Symbol	Dimensions Ir	n Millimeters	Dimensions In Inches		
Symbol	Min Max		Min	Max	
А	0.889	1.295	0.035	0.051	
A1	0.000	0.152	0.000	0.006	
В	1.397	1.803	0.055	0.071	
b	0.356	0.559	0.014	0.022	
С	2.591	2.997	0.102	0.118	
D	2.692	3.099	0.106	0.122	
е	0.838	1.041	0.033	0.041	
Н	0.080	0.254	0.003	0.010	
L	0.300	0.610	0.012	0.024	

SOT-23-5 Surface Mount Package

300mA Ultra-low Noise, Ultra-Fast CMOS LDO Regulator

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Linear Voltage Regulators category:

Click to view products by Belling manufacturer:

Other Similar products are found below :

LV5684PVD-XH MCDTSA6-2R L7815ACV-DG LV56801P-E UA7805CKC 714954EB ZMR500QFTA BA033LBSG2-TR NCV78M05ABDTRKG LV5680P-E L79M05T-E L78LR05D-MA-E NCV317MBTG NTE7227 MP2018GZD-33-P MP2018GZD-5-P LV5680NPVC-XH ZTS6538SE UA78L09CLP UA78L09CLPR CAT6221-PPTD-GT3 MC78M09CDTRK NCV51190MNTAG BL1118CS8TR1833 BL8563CKETR18 BL8077CKETR33 BL9153-33CC3TR BL9161G-15BADRN BL9161G-28BADRN BRC07530MMC CJ7815B-TFN-ARG LM317C GM7333K GM7350K XC6206P332MR HT7533 LM7912S/TR LT1764S/TR LM7805T LM338T LM1117IMP-3.3/TR HT1117AM-3.3 HT7550S AMS1117-3.3 HT7150S 78L12 HT7550 HT7533-1 HXY6206I-2.5 HT7133