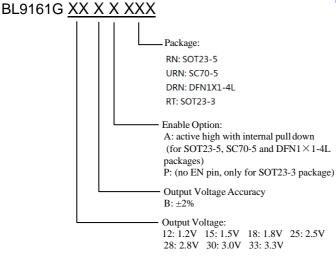


300mA Ultra-low Noise, Ultra-Fast CMOS LDO Regulator

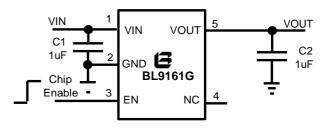
FEATURES

- Ultra-low Noise
- Ultra-Fast Response in Line/Load Transient
- 0.01µA Standby Current When Shutdown
- Low Dropout: 205mV@300mA
- Wide Operating Voltage Ranges: 2.2V to 6V
- Low Temperature Coefficient
- Current Limiting Protection
- Thermal Shutdown Protection
- Only 1μF Output Capacitor Required for Stability
- High Power Supply Rejection Ratio
- Fast output discharge
- Available in SOT23-5, SOT23-3, SC70-5 and DFN1×1-4L Package

APPLICATIONS


- Cellular and Smart Phones
- Cordless Telephones
- Battery-Powered Equipment
- Laptop, Palmtops, Notebook Computers

- Hand-Held Instruments
- PCMCIA Cards
- MP3/MP4/MP5 Players
- Portable Information Appliances


DESCRIPTION

The BL9161G is designed for portable applications with demanding performance and space requirements. The BL9161G performance is optimized for battery-powered systems to deliver ultra low noise and low quiescent current. Regulator ground current increases only slightly in dropout, further prolonging the battery life. The BL9161G also works with low-ESR ceramic capacitors, reducing the amount of board necessary for power applications, critical in hand-held wireless devices. The BL9161G consumes only 0.01µA current in shutdown mode and has fast turn-on time (Typical 50µs). The other features include ultra low dropout voltage, high output accuracy, current limiting protection, and high ripple rejection ratio.

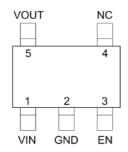
ORDERING INFORMATION

TYPICAL APPLICATION

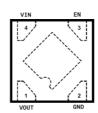
Application hints:

Output capacitor (C2 \geqslant 2.2uF) is recommended in BL9161G-1.2V, BL9161G-1.5V and BL9161G-1.8V application to assure the stability of circuit.

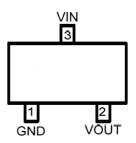
300mA Ultra-low Noise, Ultra-Fast CMOS LDO Regulator


Absolute Maximum Rating (Note 1)

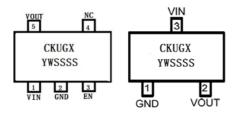
Input Supply Voltage (VIN) EN Pin Input Voltage Output Voltages Output Current


-0.3V to +6V -0.3V to VIN -0.3V to VIN+0.3V 300mA Maximum Junction Temperature 150°C
Operating Temperature Range (Note2) -40°C to 85°C
Storage Temperature Range -65°C to 125°C
Lead Temperature (Soldering, 10s) 300°C

PIN CONFIGURATIONS


SOT23-5 &SC70-5(TOP VIEW)

DFN1X1-4L(TOP VIEW)



SOT23-3(TOP VIEW)

Package Marking

SOT23-5 & SC70-5 SOT23-3

DFN1×1-4L

Thermal Resistance (Note 3):

Package	Θ_{JA}	Θ^{C}
SOT23-5	250℃/W	130℃/W
SC70-5	333℃/W	170°C/W

CKUG: Chip ID
X: Output voltage
Y: Data code—Year
W: Data code—Week

G: Chip ID

X: Output voltageW: Data code—Week

Output voltage	1.2V	1.5V	1.8V	2.5V	2.8V	3.0V	3.3V
X(SOT23-5, SOT23-3& SC70-5)	В	С	D	E	G	I	К
X(DFN1×1-4L)	В	С	D	E	G	1	K

\/ 0011 0015 0010 0000 0001	Y	4	5	6	 0	1	
Year 2014 2015 2016 2020 2021	Year	2014	2015	2016	 2020	2021	

W	Α	 Υ	Z	а	 У	Z
Week	1	 25	26	27	 51	52

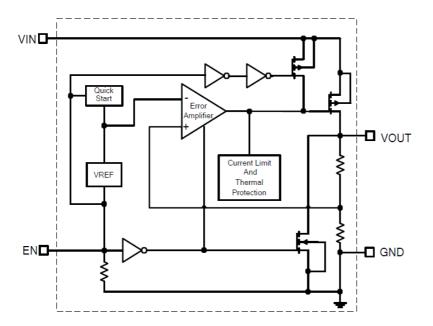
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: The BL9161G is guaranteed to meet performance specifications from 0°C to 70°C. Specifications over the – 40°C to 85°C operating temperature range are assured by design, characterization and correlation withstatistical process controls.

Note 3: Thermal Resistance is specified with approximately 1 square of 1 ozcopper.

300mA Ultra-low Noise, Ultra-Fast CMOS LDO Regulator

Pin Description


SOT23-5, SC70-5 & SOT23-3

P	IN		
SOT23-5 &SC70-5	SOT23-3	NAME	FUNCTION
1	3	VIN	Power Input Voltage.
2	1	GND	Ground.
3		EN	Chip Enable Pin, This pin has an internal pull-down resistor
4		NC	No Connection.
5	2	VOUT	Output Voltage.

DFN1X1-4L

PIN	NAME	FUNCTION
1	VOUT	Output Voltage.
2	GND	Ground.
3	EN	Chip Enable Pin, This pin has an internal pull-down resistor
4	VIN	Power Input Voltage.
Exposed		The exposed pad should be connected to a large ground plane to
Pad		maximize thermal performance.

Block Diagram

300mA Ultra-low Noise, Ultra-Fast **CMOS LDO Regulator**

Electrical Characteristics (Note 4)

(V_{IN} =Vout +1V, EN= V_{IN} , C_{IN} = C_{OUT} =1 μ F, T_A =25 $^{\circ}$ C, unless otherwise noted.)

	rameter	Symbol	Conditions	MIN	TYP	MAX	unit
Inpu	it Voltage	V _{IN}		2.2		6	V
Output Vo	oltage Accuracy	ΔV_{OUT}	V _{IN=} Vout+1V, I _{OUT} =1mA	-2		+2	%
Cur	rent Limit	I _{LIM}	R _{LOAD} =1Ω	360	450		mA
Quieso	ent Current	ΙQ	V _{EN} >1.2V, I _{OUT} =0mA		70	110	μΑ
Dropo	out Voltage	V_{DROP}	I _{OUT} =200mA, V _{OUT} =3.3V		135	200	mV
Бюрс	out voltage	▼ DROP	I_{OUT} =300mA, V_{OUT} =3.3V		205	300	IIIV
Line Reg	gulation ^(Note 5)	ΔV_{LINE}	V _{IN} =Vout+1V to 5.5V I _{OUT} =1mA		0.02	0.17	%/V
Load Re	egulation(Note6)	ΔV_{LOAD}	1mA <i<sub>OUT<300mA</i<sub>		20		mV
•	/oltage(Note 7) re Coefficient	TC _{VOUT}	I _{OUT} =1mA		±60		ppm/°C
Stand	lby Current	I _{STBY}	V _{EN} =GND, Shutdown		0.01	1	μΑ
EN Input	t Bias Current	I _{IBSD}	V _{EN} =GND or V _{IN}			2	μΑ
EN Input	Logic Low	V _{IL}	V _{IN} =3V to 5.5V, Shutdown			0.4	V
Threshold	Logic High	V _{IH}	V _{IN} =3V to 5.5V, Start up	1.2			V
	out Noise ′oltage	e _{NO}	10Hz to100KHz, I _{OUT} =100mA		180		μV_{RMS}
Power	f=217Hz				-75		
Supply	f=1KHz	PSRR	I _{OUT} =10mA		-71		dB
Rejection Ratio	f=10KHz				-55		1
Therma Ten	al Shutdown nperature	T _{SD}	Shutdown, Temp increasing		170		$^{\circ}$
Ну	al Shutdown steresis	T _{SDHY}	over the temperature range		30		$^{\circ}$ C

Note 4: Production test at +25°C. Specifications over the temperature range are guaranteed by design and characterization. Note 5: Line regulation is calculated by
$$\Delta V_{LINE} = \left(\frac{V_{OUT1} - V_{OUT2}}{\Delta V_{IN} \times V_{OUT (normal)}}\right)^{\times 100}$$

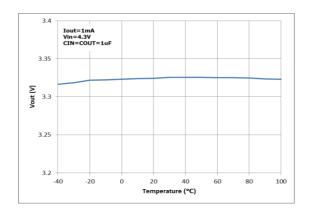
Where V_{OUT1} is the output voltage when V_{IN} =5.5V, and V_{OUT2} is the output voltage when V_{IN} =4.3V,

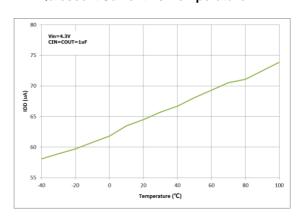
 ΔV_{IN} =1.2V. V_{OUT} (normal) =3.3V.

Note 6: Load regulation is calculated by V_{load}=Vout1-Vout2

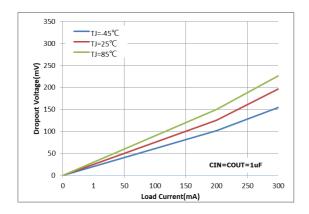
Where V_{OUT1} is the output voltage when I_{OUT}=1mA, and V_{OUT2} is the output voltage when I_{OUT}=300mA.

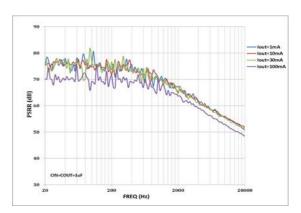
Note 7: The temperature coefficient is calculated by $TC_{T_{OUT}} = \frac{\Delta V_{OUT}}{\Delta T \times V_{OUT}}$

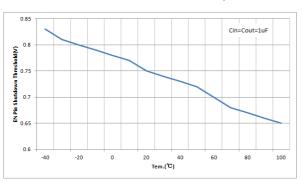

www.belling.com.cn 4 V1.4


300mA Ultra-low Noise, Ultra-Fast CMOS LDO Regulator

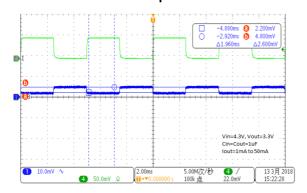
Typical Performance Characteristics

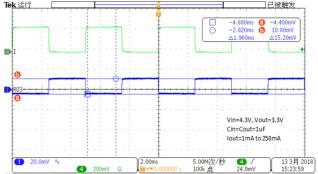

Output Voltage Vs. Temperature


Quiescent Current Vs. Temperature

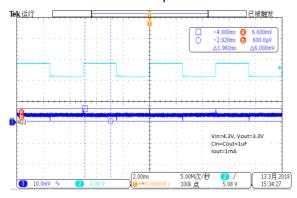

Dropout Voltage Vs. Load Current

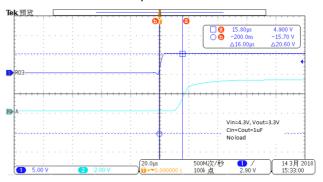
PSRR

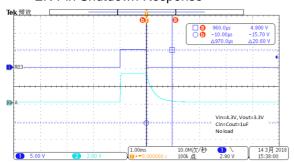

EN Pin Shutdown Threshold Vs. Temperature



300mA Ultra-low Noise, Ultra-Fast CMOS LDO Regulator


Load Transient Response


Load Transient Response


Line transient Response

Start up

EN Pin Shutdown Response

300mA Ultra-low Noise, Ultra-Fast CMOS LDO Regulator

Applications Information

Like any low-dropout regulator, the external capacitors used with the BL9161G must be carefully selected for regulator stability and performance. Using a capacitor whose value is $> 1\mu$ F on the BL9161G input and the amount of capacitance can be increased without limit. The input capacitor must be located a distance of not more than 0.5 inch from the input pin of the IC and returned to a clean analog ground. Any good quality ceramic or tantalum can be used for this capacitor. The capacitor with larger value and lower ESR (equivalent series resistance) provides better PSRR and line-transient response. The output capacitor must meet both requirements for minimum amount of capacitance and ESR in all LDOs application. The BL9161G is designed specifically to work with low ESR ceramic output capacitor in space-saving and performance consideration. Using a ceramic capacitor whose value is at least 1µF with ESR is > $25m\Omega$ on the BL9161G output ensures stability. The BL9161G still works well with output capacitor of other types due to the wide stable ESR range. Output capacitor of larger capacitance can reduce noise and improve load transient response, stability, and PSRR. The output capacitor should be located not more than 0.5 inch from the Vout pin of the BL9161G and returned to a clean analog ground.

Enable Function

The BL9161G features an LDO regulator enable/disable function. To assure the LDO regulator will switch on; the EN turn on control level must be greater than 1.2 volts. The LDO regulator will go into the shut-

down mode when the voltage on the EN pin falls below 0.4 volts. For to protect the system, the BL9161G have a quick discharge function. If the enable function is not needed in a specific application, it may be tied to V_{IN} to keep the LDO regulator in a continuously on state.

Thermal Considerations

Thermal protection limits power dissipation in BL9161G. When the operation junction temperature exceeds 170°C, the OTP circuit starts the thermal shutdown function turn the pass element off. The pass element turns on again after the junction temperature cools by 30°C.

For continue operation, do not exceed absolute maximum operation junction temperature 125°C. The power dissipation definition in device is:

$$P_D(MAX) = (T_J(MAX) - T_A)/\theta_{JA}$$

Where T_J(MAX) is the maximum operation junction temperature 125°C, TA is the ambient temperature and the θ_{JA} is the junction to ambient thermal resistance. For recommended operating conditions specification of BL9161G, where T_J(MAX) is the maximum junction temperature of the die (125°C) and T_A is the maximum ambient temperature. The junction ambient thermal resistance (θ_{JA} is layout dependent) for SOT-23-5 package is 250°C/W. on standard JEDEC 51-3 thermal test board. The maximum power dissipation at T_A= 25°C can be calculated by following formula:

300mA Ultra-low Noise, Ultra-Fast CMOS LDO Regulator

 $P_D(MAX) = (125^{\circ}C-25^{\circ}C)/250 = 400$ mW (SOT-23-5)

The maximum power dissipation depends on operating ambient temperature for fixed $T_J(MAX)$ and thermal resistance θ_{JA} . It is also useful to calculate the junction of temperature of the BL9161G under a set of specific conditions. In this example let the Input voltage $V_{IN}=3.3V$, the output current Io=300mA and the case temperature $T_A=40^{\circ}C$ measured by a thermal couple during operation. The power dissipation for the $V_{OUT}=2.8V$ version of the BL9161G can be calculated as:

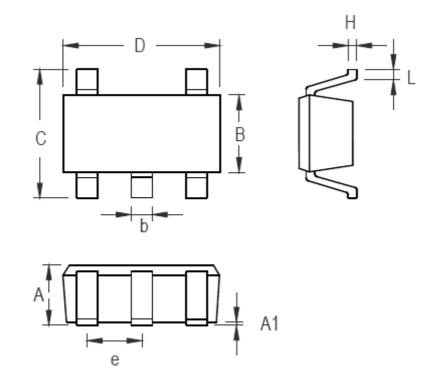
 $P_D = (3.3V-2.8V) \times 300mA + 3.6V \times 100uA$ =150mW

And the junction temperature, T_J, can be calculated as follows:

 $T_J=T_A+P_D\times\theta_{JA}=40^{\circ}C+0.15W\times250^{\circ}C/W$ =40°C+37.5°C=77.5°C< $T_J(MAX)$ =125°C

For this operating condition, T_J is lower than the absolute maximum operating junction temperature,125°C, so it is safe to use the BL9161G in this configuration.

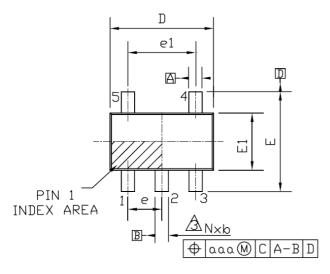
Layout considerations

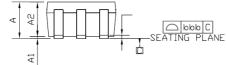

To improve ac performance such as PSRR, output noise, and transient response, it is recommended that the PCB be designed with separate ground planes for V_{IN} and V_{OUT} , with each ground plane connected only at the GND pin of the device.

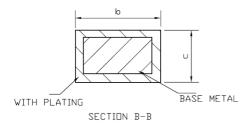
300mA Ultra-low Noise, Ultra-Fast CMOS LDO Regulator

Package Description

SOT23-5




Cumbal	Dimensions Ir	n Millimeters	Dimension	ns In Inches	
Symbol	Min	Max	Min	Max	
А	0.889	1.295	0.035	0.051	
A1	0.000	0.152	0.000	0.006	
В	1.397	1.803	0.055	0.071	
b	0.356	0.559	0.014	0.022	
С	2.591	2.997	0.102	0.118	
D	2.692	3.099	0.106	0.122	
е	0.838	1.041	0.033	0.041	
Н	0.080	0.254	0.003	0.010	
L	0.300	0.610	0.012	0.024	

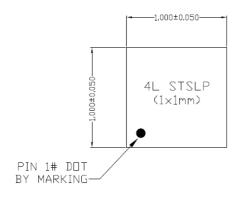


300mA Ultra-low Noise, Ultra-Fast CMOS LDO Regulator

SC70-5

GUAGE PLANE

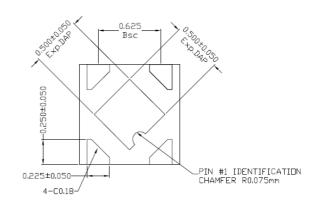
SEATING PLANE


VIEW A-A

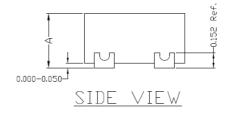
СПМ	MDN	DIMENS	IDN	
TOWK 49	IN M	ILLIMET	ERS	
) 	MIN	NDMAL	MAX	
Α	0.80	ı	1.10	
A1	0	ı	0.10	
A2	0.80	0.90	1.00	
А3	0.47	0.52	0.57	
Α4	0.33	0.38	0.43	
b	0.15	ı	0.30	
Π	0.10	ı	0.25	
D	1.85	2.00	2.20	
٥	0	0.65 BS	С	
е1	1.30 BSC			
Ε	1.80	2.10	2.40	
E1	1.15	1.25	1.35	
L	0.10	ı	0.45	
L1	O	.42 RE	F.	
L2	0	0.20 BS		
θ	0°	4*	30°	
0 1	4°	-	12°	
aaa		0.10		
bbb		0.10		

300mA Ultra-low Noise, Ultra-Fast
CMOS LDO Regulator

DFN1×1-4L

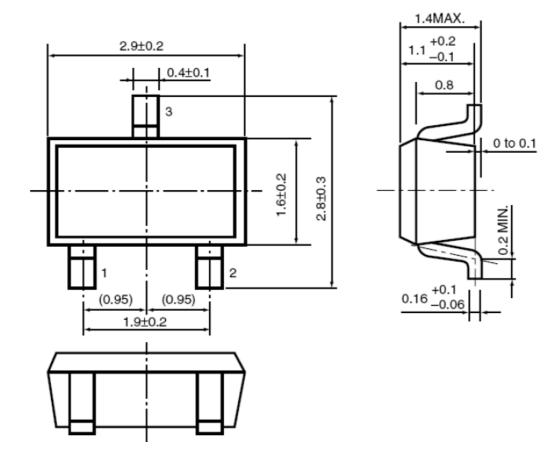

TOP VIEW

TUP VIEW


NOTE:

1). ' A ' DIMENSION AS BELOW TABLE

		STSLP
	MAX.	0,600
\triangle	N□M.	0.550
	MIN.	0.500


BOTTOM VIEW

300mA Ultra-low Noise, Ultra-Fast
CMOS LDO Regulator

SOT23-3

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Linear Voltage Regulators category:

Click to view products by Belling manufacturer:

Other Similar products are found below:

LV56831P-E LV5684PVD-XH MCDTSA6-2R L7815ACV-DG PQ3DZ53U LV56801P-E TLE42794G L78L05CZ/1SX L78LR05DL-MA-E 636416C 714954EB ZMR500QFTA LV5680P-E L78M15CV-DG L79M05T-E TLS202A1MBVHTSA1 L78LR05D-MA-E NCV317MBTG NTE7227 MP2018GZD-33-P MP2018GZD-5-P LV5680NPVC-XH LT1054CN8 MP2018GZD-5-Z MP2018GZD-33-Z AT55EL50ESE APL5934DKAI-TRG 78L05U 78L05 CL9193A15L5M CL9036A30F4M CL9036A18F4M CL9036A25F4M CL9036A28F4M CL9036A33F4M CL9906A18F4N CL9906A30F4N CL9908A30F4M CL9908A33F4M CL9908A18F4M CL9908A28F4M TL431ACM/TR TL431AIM/TR LM78L05ACM/TR HT7812ARMZ HT7805ARMZ HT317LRHZ HXY6206I-3.0 HXY6206I-3.3 XC6206P252MR XC6206P282MR