



### **FEATURES**

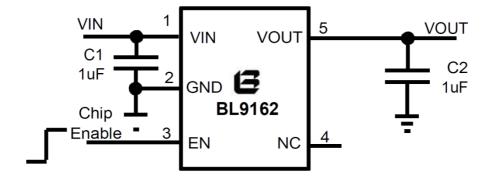
- Ultra-low Noise
- Ultra-Fast Transient Response
- High PSRR: -87dB @ 217Hz

-83dB @ 1KHz

-54dB @ 1MHz

- 0.1µA Standby Current When Shutdown
- Low Dropout: 140mV@300mA (Vout=2.8V)
- Wide Operating Voltage Ranges: 1.6V to 5.5V
- Current Limiting and Short Circuit Current Protection
- Thermal Shutdown Protection
- Only 1µF Output Capacitor Required for Stability
- Fast output discharge
- Available in SOT23-5, SC70-5 and DFN1X1-4L Packages

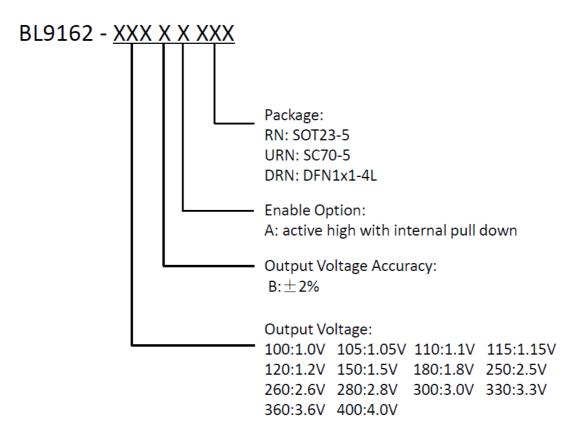
### **APPLICATIONS**


- Cellular and Smart Phones
- Cordless Telephones
- Camera and Machine Vision Modules
- · Battery-Powered Equipment
- · Laptop, Palmtops, Notebook Computers
- Hand-Held Instruments

- PCMCIA Cards
- Portable Information Appliances

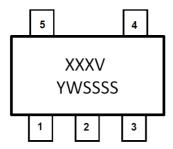
### **DESCRIPTION**

The BL9162 is designed for portable applications with demanding performance space requirements. The BL9162 performance is optimized for battery-powered systems to deliver ultra-low noise and low quiescent current. Regulator ground current increases only slightly in dropout, further prolonging the battery life. The BL9162 also works with low-ESR ceramic capacitors, reducing the amount of board space necessary for power applications, critical in hand-held wireless devices. The BL9162 consumes only 0.1µA current in shutdown mode and has fast turn-on time (Typical 100µs). The other features include ultra-low dropout voltage, high output accuracy, current limiting protection, and high ripple rejection ratio.


#### TYPICAL APPLICATION








### ORDERING INFORMATION



# **Package Marking**





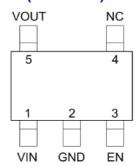
V: Output voltage

Y: Data code—Year W: Data code-Week

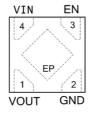
#### DFN1×1-4L






|                | V       |                       |                | v       |                       |  |
|----------------|---------|-----------------------|----------------|---------|-----------------------|--|
| Output Voltage | SOT23-5 | SC70-5 &<br>DFN1X1-4L | Output Voltage | SOT23-5 | SC70-5 &<br>DFN1X1-4L |  |
| 1.0V           | В       | А                     | 2.5V           | E       | Р                     |  |
| 1.05V          | -<br>В  | -<br>A                | 2.6V           | Т       | Q                     |  |
| 1.1V           | F       | В                     | 2.8V           | G       | S                     |  |
| 1.15V          | -<br>F  | -<br>В                | 3.0V           | I       | U                     |  |
| 1.2V           | А       | С                     | 3.3V           | К       | Х                     |  |
| 1.5V           | С       | F                     | 3.6V           | Y       | Υ                     |  |
| 1.8V           | D       | I                     | 4.0V           | Z       | Z                     |  |

| Υ    | 4    | 5    | 6    | <br>0    | 1    |  |
|------|------|------|------|----------|------|--|
| Year | 2014 | 2015 | 2016 | <br>2020 | 2021 |  |


| W    | Α | <br>Y  | Z  | а  |     | у  | Z  |
|------|---|--------|----|----|-----|----|----|
| Week | 1 | <br>25 | 26 | 27 | ••• | 51 | 52 |

## **PIN CONFIGURATIONS**

# SOT23-5 & SC70-5 (TOP VIEW)



## DFN1X1-4L (TOP VIEW)

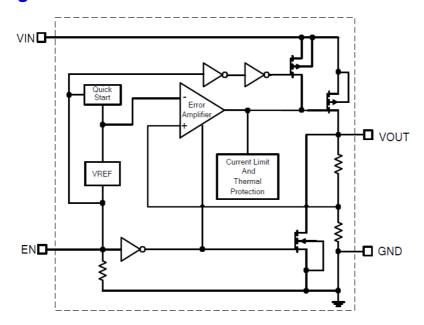


### Thermal Resistance (Note 3)

| Package | $\Theta_{JA}$ | $\Theta_{JC}$ |
|---------|---------------|---------------|
| SOT23-5 | 250℃/W        | 130℃/W        |
| SC70-5  | 333℃/W        | 170℃/W        |



# **Pin Description**


### SOT23-5 & SC70-5

|     | <b>40010</b> | •                                                            |  |  |  |  |
|-----|--------------|--------------------------------------------------------------|--|--|--|--|
| PIN | NAME         | FUNCTION                                                     |  |  |  |  |
| 1   | VIN          | Power Input Voltage.                                         |  |  |  |  |
| 2   | GND          | Ground.                                                      |  |  |  |  |
| 3   | EN           | Chip Enable Pin, This pin has an internal pull-down resistor |  |  |  |  |
| 4   | NC           | No Connection.                                               |  |  |  |  |
| 5   | VOUT         | Output Voltage.                                              |  |  |  |  |
|     |              |                                                              |  |  |  |  |

### DFN1X1-4L

| PIN         | NAME | FUNCTION                                                                                     |
|-------------|------|----------------------------------------------------------------------------------------------|
| 1           | VOUT | Output Voltage.                                                                              |
| 2           | GND  | Ground.                                                                                      |
| 3           | EN   | Chip Enable Pin, This pin has an internal pull-down resistor                                 |
| 4           | VIN  | Power Input Voltage.                                                                         |
| Exposed Pad |      | The exposed pad should be connected to a large ground plane to maximize thermal performance. |

# **Block Diagram**







# **Absolute Maximum Rating** (Note 1)

Input Supply Voltage (VIN)

EN Pin Input Voltage

Output Voltages

Output Current

-0.3V to +6V

-0.3V to VIN

-0.3V to VIN

-0.3V to VIN

300mA

Maximum Junction Temperature 150°C
Operating Temperature Range (Note2) -40°C to 85°C
Storage Temperature Range -65°C to 125°C
Lead Temperature (Soldering, 10s) 300°C

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

**Note 2:** The BL9162 is guaranteed to meet performance specifications from 0°C to 70°C. Specifications over the –40°C to 85°C operating temperature range are assured by design, characterization and correlation with statistical process controls.

**Note 3:** Thermal Resistance is specified with approximately 1 square of 1 ozcopper.





# **Electrical Characteristics** (Note 4)

(V<sub>IN</sub>=Vout +1V, EN=V<sub>IN</sub>, C<sub>IN</sub>=C<sub>OUT</sub>=1 $\mu$ F, T<sub>A</sub>=25 $^{\circ}$ C, unless otherwise noted.)

| Parameter                                                     |                          | Symbol             | Conditions                                                   | MIN | TYP   | MAX  | unit          |
|---------------------------------------------------------------|--------------------------|--------------------|--------------------------------------------------------------|-----|-------|------|---------------|
| Input Voltage                                                 |                          | V <sub>IN</sub>    |                                                              | 1.6 |       | 5.5  | V             |
| Output Voltage Accuracy                                       |                          | $\Delta V_{OUT}$   | V <sub>IN=</sub> Vout+1V,<br>I <sub>OUT</sub> =1mA           | -2  |       | +2   | %             |
| Current Limit                                                 |                          | I <sub>LIM</sub>   | R <sub>LOAD</sub> =1Ω                                        | 350 |       |      | mA            |
| Short Ci                                                      | rcuit Current            | I <sub>SHORT</sub> | V <sub>OUT</sub> =0V                                         |     | 180   |      | mA            |
| Quieso                                                        | ent Current              | IQ                 | V <sub>EN</sub> >1.2V, I <sub>OUT</sub> =0mA                 |     | 45    | 70   | μА            |
|                                                               |                          |                    | I <sub>OUT</sub> =300mA,<br>V <sub>OUT</sub> =3.3V           |     | 130   | 200  |               |
|                                                               |                          |                    | I <sub>ОUT</sub> =300mA,<br>V <sub>ОUT</sub> =2.8V           |     | 140   | 210  |               |
| Dropo                                                         | out Voltage              | $V_{DROP}$         | I <sub>OUT</sub> =300mA,<br>V <sub>OUT</sub> =1.8V           |     | 210   | 300  | mV            |
|                                                               |                          |                    | I <sub>OUT</sub> =300mA,<br>V <sub>OUT</sub> =1.0V           |     | 450   | 650  |               |
| Line Regulation (Note 5)                                      |                          | $\Delta V_{LINE}$  | V <sub>IN</sub> =Vout+1V to<br>5.5V<br>I <sub>OUT</sub> =1mA |     | 0.03  | 0.17 | %/V           |
| Load Regulation(Note 6)                                       |                          | $\Delta V_{LOAD}$  | 1mA <i<sub>OUT&lt;300mA<br/>V<sub>IN</sub>=Vout+1V</i<sub>   |     | 0.002 |      | %mA           |
| Output Voltage <sup>(Note 7)</sup><br>Temperature Coefficient |                          | TC <sub>VOUT</sub> | I <sub>OUT</sub> =1mA                                        |     | ±60   |      | ppm/℃         |
| Stand                                                         | by Current               | I <sub>STBY</sub>  | V <sub>EN</sub> =GND,<br>Shutdown                            |     | 0.1   | 1    | μА            |
| EN Input                                                      | Bias Current             | I <sub>IBSD</sub>  | V <sub>EN</sub> =GND or V <sub>IN</sub>                      |     | 0.1   | 1    | μΑ            |
| EN                                                            | Logic Low                | V <sub>IL</sub>    | V <sub>IN</sub> =3V to 5.5V,<br>Shutdown                     |     |       | 0.4  | V             |
| Input<br>Threshold                                            | Logic High               | V <sub>IH</sub>    | V <sub>IN</sub> =3V to 5.5V,<br>Start up                     | 1.2 |       |      | V             |
| Outp                                                          | Output Noise             |                    | 10 to100kHz; Соит=1uF<br>louт=100mA; Vouт=2.8V               |     | 50    |      |               |
| Voltage                                                       |                          | e <sub>NO</sub>    | 10 to100kHz; C <sub>ОUT</sub> =1uF<br>louт=100mA; Vouт=1.8V  |     | 38    |      | $\mu V_{RMS}$ |
| Power                                                         | f=217Hz                  |                    |                                                              |     | -87   |      |               |
| Supply<br>Rejection                                           | f=1KHz                   |                    | I <sub>OUT</sub> =10mA                                       |     | -83   |      |               |
|                                                               | f=10KHz                  | PSRR               | V <sub>OUT</sub> =1.8V<br>V <sub>IN</sub> =2.8V              |     | -72   |      | dB            |
| Ratio                                                         | f=1MHz                   |                    |                                                              |     | -54   |      |               |
| Tem                                                           | al Shutdown<br>nperature | T <sub>SD</sub>    | Shutdown, Temp increasing                                    |     | 170   |      | $^{\circ}$    |
| Thermal Shutdown Hysteresis                                   |                          | T <sub>SDHY</sub>  |                                                              |     | 25    |      | $^{\circ}$    |

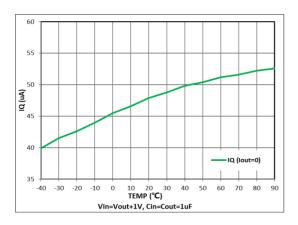




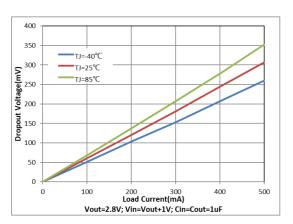
Note 4: Production test at +25°C. Specifications over the temperature range are guaranteed by design and characterization.

Note 5: Line regulation is calculated by 
$$\Delta V_{LINE} = |\left(\frac{V_{OUT1} - V_{OUT2}}{\Delta V_{IN} \times V_{OUT(normal)}}\right)|^{\times 100}$$
 Where  $V_{OUT1}$  is the output voltage when  $V_{IN}$ =5.5V, and  $V_{OUT2}$  is the output voltage when  $V_{IN}$ =4.3V,

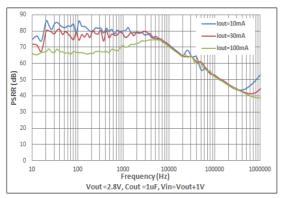
 $\Delta V_{IN}$ =1.2V.  $V_{OUT}$  (normal) =3.3V.


Note 6: Load regulation is calculated by 
$$\Delta V_{LOAD} = \left(\frac{V_{OUT_1} - V_{OUT_2}}{\Delta I_{OUT} \times V_{OUT (normal)}}\right) \times 100$$

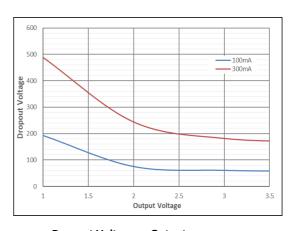
Where Vout1 is the output voltage when Iout=1mA, and Vout2 is the output voltage when Iout=300mA. △Iout=299mA, Vout(normal)=2.8V.


**Note 7:** The temperature coefficient is calculated by  $TC_{V_{OLT}} = \frac{\Delta V_{OLT}}{\Delta T \times V_{OLT}}$ 

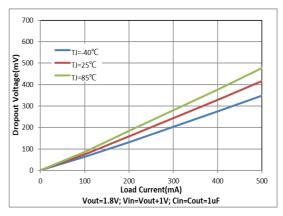



### **Typical Performance Characteristics**

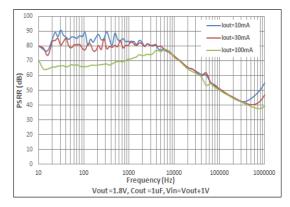



**Quiescent Current vs Temperature** 




Output Dropout Voltage vs Load Current (Vout=2.8V)

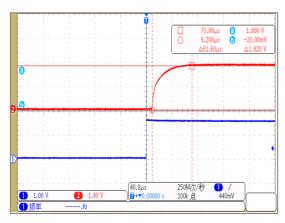



Power-Supply Ripple Rejection vs Frequency (Vout=2.8V)

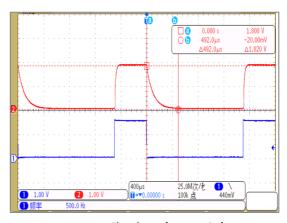


**Dropout Voltage vs Output** 

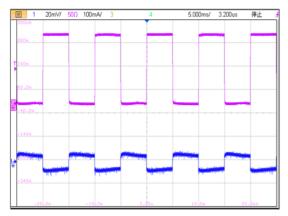



Dropout Voltage vs Load Current (Vout=1.8V)

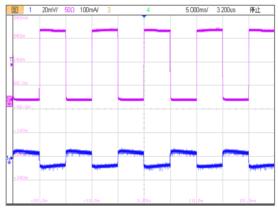



Power-Supply Ripple Rejection vs Frequency(Vout=1.8V)

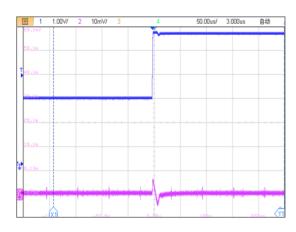




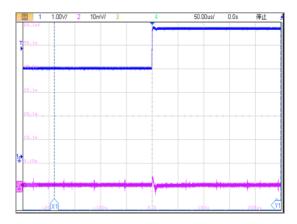




EN Start (Vout=1.8V)




EN Shutdown (Vout=1.8V)




Load Trans 1mA - 300mA (Vout= 1.8V)



Load Trans 1mA - 300mA (Vout= 2.8V)



Line Trans 2.8V~5.5V (Vout=1.8V,lout=1mA)



Line Trans 3.8V~5.5V (Vout=2.8V,lout=1mA)





### **Applications Information**

Like any low-dropout regulator, the external capacitors used with the BL9162 must be carefully selected for regulator stability and performance. Using a capacitor whose value is >  $1\mu F$  on the BL9162 input and the amount of capacitance can be increased without limit. The input capacitor must be located a distance of not more than 0.5 inch from the input pin of the IC and returned to a clean analog ground. Any good quality ceramic or tantalum can be used for this capacitor. The capacitor with larger value and lower ESR (equivalent series resistance) provides better PSRR and line-transient response. The output capacitor must meet both requirements for minimum amount of capacitance and ESR in all LDOs application. Generally, 1.0- $\mu F$  X7R-type ceramic capacitors are recommended because these capacitors have minimal variation in value and equivalent series resistance (ESR) over temperature. Output capacitor of larger capacitance can reduce noise and improve load transient response, stability, and PSRR. The output capacitor should be located not more than 0.5 inch from the VOUT pin of the BL9162 and returned to a clean analog ground.

### **Enable Function**

The BL9162 features an LDO regulator enable/disable function. To assure the LDO regulator will switch on; the EN turn on control level must be greater than 1.2 volts. The LDO regulator will go into the shutdown mode when the voltage on the EN pin falls below 0.4 volts. For to protect the system, the BL9162 have a quick discharge function. If the enable function is not needed in a specific application, it may be tied to VIN to keep the LDO regulator in a continuously on state.

#### **Thermal Considerations**

Thermal protection limits power dissipation in BL9162. When the operation junction temperature exceeds 170°C, the OTP circuit starts the thermal shutdown function turn the pass element off. The pass element turns on again after the junction temperature cools by 25°C.

For continue operation, do not exceed absolute maximum operation junction temperature 125°C. The power dissipation definition in device is:

$$PD(MAX) = (TJ(MAX) - TA)/\theta JA$$

Where TJ(MAX) is the maximum operation junction temperature 125°C, TA is the ambient temperature and the θJA is the junction to ambient thermal resistance. For recommended operating conditions specification of BL9162, where TJ(MAX) is the maximum junction temperature of the die (125°C) and TA is the maximum ambient temperature. The junction to ambient thermal resistance (θJA is layout dependent) for SOT-23-5 package is 250°C/W, on standard JEDEC 51-3 thermal test board. The maximum power dissipation at TA= 25°C can be calculated by following formula:

 $PD(MAX) = (125^{\circ}C-25^{\circ}C)/250 = 400 \text{mW} (SOT-23-5)$ 

The maximum power dissipation depends on operating ambient temperature for fixed TJ(MAX) and





thermal resistance θJA. It is also useful to calculate the junction of temperature of the BL9162 under a set of specific conditions. In this example let the Input voltage VIN=3.3V, the output current Io=300mA and the case temperature TA=40°C measured by a thermal couple during operation. The power dissipation for the VOUT=2.8V version of the BL9162 can be calculated as:

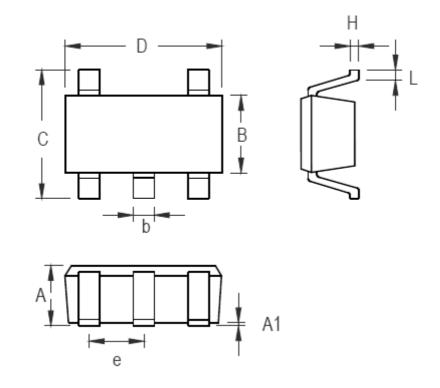
 $PD = (3.3V-2.8V) \times 300mA + 3.6V \times 100uA = 150mW$ 

And the junction temperature, TJ, can be calculated as follows:

TJ=TA+PD×θJA=40°C+0.15W×250°C/W=40°C+37.5°C=77.5°C<TJ(MAX) =125°C

For this operating condition, TJ is lower than the absolute maximum operating junction temperature, 125°C, so it is safe to use the BL9162 in this configuration.

### Layout considerations

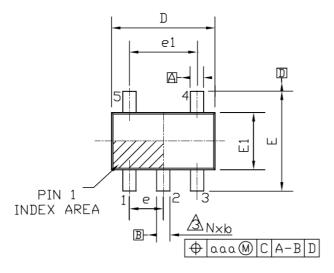

To improve ac performance such as PSRR, output noise, and transient response, it is recommended that the PCB be designed with separate ground planes for VIN and VOUT, with each ground plane connected only at the GND pin of the device.

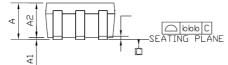


300mA Ultra-low Noise, Ultra-Fast
CMOS LDO Regulator

# **Package Description**

## **SOT23-5**





| Symbol | Dimensions Ir | n Millimeters | Dimensions In Inches |       |  |
|--------|---------------|---------------|----------------------|-------|--|
|        | Min           | Max           | Min                  | Max   |  |
| Α      | 0.889         | 1.295         | 0.035                | 0.051 |  |
| A1     | 0.000         | 0.152         | 0.000                | 0.006 |  |
| В      | 1.397         | 1.803         | 0.055                | 0.071 |  |
| b      | 0.356         | 0.559         | 0.014                | 0.022 |  |
| С      | 2.591         | 2.997         | 0.102                | 0.118 |  |
| D      | 2.692         | 3.099         | 0.106                | 0.122 |  |
| е      | 0.838         | 1.041         | 0.033                | 0.041 |  |
| Н      | 0.080         | 0.254         | 0.003                | 0.010 |  |
| L      | 0.300         | 0.610         | 0.012                | 0.024 |  |



300mA Ultra-low Noise, Ultra-Fast CMOS LDO Regulator

### **SC70-5**



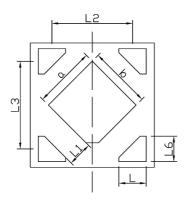


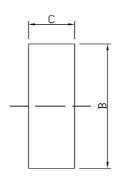


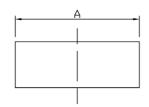
GUAGE PLANE

OU

SEATING PLANE

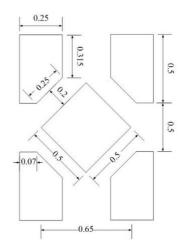

VIEW A-A


| COMMON DIMENSION |          |         |      |  |  |  |
|------------------|----------|---------|------|--|--|--|
| S Y M P          | IN M     | ILLIMET | ERS  |  |  |  |
| D<br>L           | MIN      | NOMAL   | MAX  |  |  |  |
| Α                | 0.80     | ı       | 1.10 |  |  |  |
| A1               | 0        | ı       | 0.10 |  |  |  |
| A2               | 0.80     | 0.90    | 1.00 |  |  |  |
| АЗ               | 0.47     | 0.52    | 0.57 |  |  |  |
| Α4               | 0.33     | 0.38    | 0.43 |  |  |  |
| ಶ                | 0.15     | ı       | 0.30 |  |  |  |
| Π                | 0.10     | 1       | 0.25 |  |  |  |
| D                | 1.85     | 2.00    | 2.20 |  |  |  |
| ٩                | 0.65 BSC |         |      |  |  |  |
| е1               | 1.30 BSC |         |      |  |  |  |
| Ε                | 1.80     | 2.10    | 2.40 |  |  |  |
| E1               | 1.15     | 1.25    | 1.35 |  |  |  |
| L                | 0.10     | ı       | 0.45 |  |  |  |
| L1               | O        | .42 RE  | F.   |  |  |  |
| L2               |          | .20 BS  | 2    |  |  |  |
| θ                | 0°       | 4°      | 30°  |  |  |  |
| <b>0</b> 1       | 4°       | -       | 12°  |  |  |  |
| aaa              | 0.10     |         |      |  |  |  |
| bbb              | 0.10     |         |      |  |  |  |
|                  |          |         |      |  |  |  |




300mA Ultra-low Noise, Ultra-Fast
CMOS LDO Regulator

### DFN1×1-4L








There may be slight differences in shape

| Dimensions In<br>Millimeterer |       |       |       |  |  |  |
|-------------------------------|-------|-------|-------|--|--|--|
| Symbol                        | MIN   | TYP   | MAX   |  |  |  |
| Α                             | 0.950 | 1.000 | 1.050 |  |  |  |
| В                             | 0.950 | 1.000 | 1.050 |  |  |  |
| С                             | 0.320 | 0.370 | 0.420 |  |  |  |
| L                             | 0.170 | 0.220 | 0.270 |  |  |  |
| L1                            | 0.140 | 0,190 | 0.240 |  |  |  |
| L2                            | 0.600 | 0.650 | 0.700 |  |  |  |
| L3                            | 0.625 | 0.675 | 0.725 |  |  |  |
| L6                            | 0.175 | 0.225 | 0.275 |  |  |  |
| a                             | 0.440 | 0.490 | 0.540 |  |  |  |
| b                             | 0.440 | 0.490 | 0.540 |  |  |  |



RECOMMENDED LAND PATTERN (Unit: mm)

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Linear Voltage Regulators category:

Click to view products by Belling manufacturer:

Other Similar products are found below:

LV56831P-E LV5684PVD-XH MCDTSA6-2R L7815ACV-DG PQ3DZ53U LV56801P-E TLE42794G L78L05CZ/1SX L78LR05DL-MA-E 636416C 714954EB ZMR500QFTA LV5680P-E L78M15CV-DG L79M05T-E TLS202A1MBVHTSA1 L78LR05D-MA-E NCV317MBTG NTE7227 MP2018GZD-33-P MP2018GZD-5-P LV5680NPVC-XH LT1054CN8 MP2018GZD-5-Z MP2018GZD-33-Z AT55EL50ESE APL5934DKAI-TRG 78L05U 78L05 CL9193A15L5M CL9036A30F4M CL9036A18F4M CL9036A25F4M CL9036A28F4M CL9036A33F4M CL9906A18F4N CL9906A30F4N CL9908A30F4M CL9908A33F4M CL9908A18F4M CL9908A28F4M TL431ACM/TR TL431AIM/TR LM78L05ACM/TR HT7812ARMZ HT7805ARMZ HT317LRHZ HXY6206I-3.0 HXY6206I-3.3 XC6206P252MR XC6206P282MR