GENERAL DESCRIPTION

The BL9362 is a wide input range，high－efficiency， and high frequency DC－to－DC step－down switching regulator，capable of delivering up to 0.6 A of output current．

With a fixed switching frequency of 2 MHz ，this current mode PWM controlled converter allows the use of small external components，such as ceramic input and output caps，as well as small inductors．
Including cold crank and double battery jump－ starts，the minimum input voltage may be as low as 4.5 V and the maximum up to 60 V ，with even higher transient voltages．With these high input voltages，linear regulators cannot be used for high supply currents without overheating the regulator．Instead，high efficiency switching regulators such as BL9362 must be used to minimize thermal dissipation．
BL9362 is available SOT23－6 Packages．

FEATURES

－Wide Input Operating Range from 4.5 V to 60 V
－ $850 \mathrm{~m} \Omega$ internal NMOS
－Up to 95% Efficiency at 16 V in 12 V out $\mathrm{L}=47 \mathrm{uH}$ with 300 mA loading
－Internal compensation
－Capable of Delivering 600mA continuous output current
－Fixed 2 MHz PWM operation
－Internal soft start
－Output voltage adjustable down to 0．795V
－Cycle－by－cycle current limit
－Current Mode control
－Short－circuit protection
－Logic Control Shutdown EN can be short to VIN
－Thermal shutdown and UVLO
－Available in SOT23－6 Package

APPLICATIONS

－Smart／Industrial／Power Meters
－Industrial Applications
－Automotive Applications

PIN OUT

PINOUT DESCRIPTION

Pin \#	Name	Description
1	BST	Bootstrap pin for top Switch. In Typ. application, a 0.1uF or larger capacitor should be connected between this pin and the LX pin to supply current to the top Switch gate and top Switch driver.
2	GND	Analog Ground
3	FB	Output feedback pin. In Typ. application, FB senses the output voltage and is regulated by the control loop to 795mV. Connect a resistive divider at FB.
4	EN	Drive EN pin high to turn on the regulator and low to turn off the regulator.
5	VIN	Input voltage pin, In Typ. application, VIN supplies power to the IC. Connect a 4.5V to 60 V supply to VIN and bypass VIN to GND with a suitably large capacitor to eliminate noise on the input to the IC.
6	LX	LX is the Switching node that supplies power to the output Connect the output LC filter from LX to the output load.

TYPICAL APPLICATION

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

Parameter	
Input Voltage Range	Value
Max Operating Junction Temperature(Tj)	$-0.3 \mathrm{~V}-60 \mathrm{~V}$
LX, EN Voltage	$150^{\circ} \mathrm{C}$
BST Voltage	-0.3 V to $\mathrm{VIN}+0.3 \mathrm{~V}$
FB Voltage	-0.3 V to $\mathrm{LX}+6 \mathrm{~V}$
LX to ground curren	-0.3 V to 6 V
Operating Temperature(To)	
Package Thermal Resistance ($\theta \mathrm{jc}$)	SOT23-6
Storage Temperature(Ts)	$-40^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}$
ESD Rating	$110^{\circ} \mathrm{C} / \mathrm{W}$

Note: Exceed these limits to damage to the device. Exposure to absolute maximum
rating conditions may affect device reliability.

ELECTRICAL CHARACTERISTICS

(VIN $=$ VEN $=16 \mathrm{~V}$, unless otherwise specified. Typical values are at $\mathrm{TA}=25^{\circ} \mathrm{C}$.)

SYMBOL	PARAMETER	Test conditions	MIN	TYP	MAX	UNITS
VIN	Input Voltage Range		4.5		60	V
IQ	Input Supply Current	$\mathrm{Vfb}=5 \mathrm{~V}$ no loading		648		uA
Isd	Input Shutdown Current	Ven<0.3V		0.2	3	uA
VFB		$4.5 \mathrm{~V}<\mathrm{Vin}<60 \mathrm{~V}$	0.780	0.795	0.810	V
ENABLE						
Ven_ON	En high level	VFB=0V,rising		1.23		V
Ven_OFF	En low level	VFB $=0 \mathrm{~V}$,falling		1.13		V
En hys	En Hysteresis	$\mathrm{VFB}=0 \mathrm{~V}$		0.10		V
IEN	Enable input current	VEN=16V		4.4		uA
MODULATOR						
Fosc	OSC frequency		1.6	2	2.4	MHz
Dmax				87		\%
Ton min	Min on time			100		ns
Ilim	Limited current			0.95		A
Temp	Termal shutdown	Temp rising		160		${ }^{\circ} \mathrm{C}$
		Temp falling		140		${ }^{\circ} \mathrm{C}$
Power stage output						
Ileakage	NMOS leakage	$\begin{aligned} & \text { VEN=0V, } \\ & \text { VLX }=0 \mathrm{~V} \end{aligned}$			10	uA
RDSON	NMOS on resistance	$\begin{gathered} \text { VIN=12V } \\ \text { Vbst-Vlx=5V } \end{gathered}$		850		$\mathrm{m} \Omega$

FUNCTIONAL DESCRIPTIONS

Loop Operation

The BL9362 is a wide input range, high-efficiency, DC-to-DC step-down switching regulator, capable of delivering up to 0.6 A of output current, integrated with a $850 \mathrm{~m} \Omega$ high side MOSFET. It uses a PWM current-mode control scheme. An error amplifier integrates error between the FB signal and the internal reference voltage. The output of the integrator is then compared to the sum of a current-sense signal and the slope compensation ramp. This operation generates a PWM signal that modulates the duty cycle of the power MOSFETs to achieve regulation for output voltage.

APPLICATION INFORMATION

Setting Output Voltages

Output voltages are set by external resistors. The FB threshold is 0.795 V .
RTOP = RBOTTOM × [(VOUT / 0.795) -1]

Inductor Selection

The peak-to-peak ripple is limited to 30% of the maximum output current. This places the peak current far enough from the minimum over current trip level to ensure reliable operation while providing enough current ripples for the current mode converter to operate stably. In this case, for 0.6 A maximum output current, the maximum inductor ripple current is 300 mA . The inductor size is estimated as following equation:

> LIDEAL=(VIN(MAX)-VOUT)/IRIPPLE*DMIN*(1/FOSC)

Therefore, for VOUT $=5 \mathrm{~V}$, The inductor values is calculated to be $\mathrm{L}=13 \mu \mathrm{H}$. Chose $10 \mu \mathrm{H}$ or $15 \mu \mathrm{H}$
For VOUT $=3.3 \mathrm{~V}$, The inductor values is calculated to be $\mathrm{L}=9.2 \mu \mathrm{H}$. Chose $10 \mu \mathrm{H}$

Output Capacitor Selection

For most applications a nominal $22 \mu \mathrm{~F}$ or larger capacitor is suitable. The BL9362 internal compensation is designed for a fixed corner frequency that is equal to $\mathrm{FC}=8.7 \mathrm{KHz}$
For example, for VOUT=5V, L=15 $\mu \mathrm{H}, \mathrm{COUT}=22 \mu \mathrm{~F}$.
The output capacitor keeps output ripple small and ensures control-loop stability. The output capacitor must also have low impedance at the switching frequency. Ceramic, polymer, and tantalum capacitors are suitable, with ceramic exhibiting the lowest ESR and high-frequency impedance. Output ripple with a ceramic output capacitor is approximately as follows:

$$
\text { VRIPPLE }=\operatorname{IL}(\text { PEAK })[1 /(2 \pi x \text { fOSC } x \text { COUT })]
$$

If the capacitor has significant ESR, the output ripple component due to capacitor ESR is as follows:
VRIPPLE(ESR) = IL(PEAK) x ESR

Input Capacitor Selection

The input capacitor in a DC-to-DC converter reduces current peaks drawn from the battery or other input power source and reduces switching noise in the controller. The impedance of the input capacitor at the switching frequency should be less than that of the input source so high-frequency switching currents do not pass through the input source. The output capacitor keeps output ripple small and ensures control-loop stability.

Components Selection

$\operatorname{VOUT}(\mathrm{V})$	$\operatorname{COUT}(\mu \mathrm{F})$	$\mathrm{L}(\mu \mathrm{H})$
12	22	15 to 22
5	22	10 to 15
3.3	22	6.8 to 10

BL9362

PACKAGE OUTLINE

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
C	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
e	$0.950(B S C)$		$0.037(\mathrm{BSC})$	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

Tray information

Storage conditions and packaging

Humidity sensitivity level : MSL 3
Warranty period : Two years
Packing method: Tape
Minimum packaging : SOT23-6L 3000

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Controllers category:
Click to view products by Belling manufacturer:
Other Similar products are found below :
NCP1218AD65R2G NCP1244BD065R2G NCP1336ADR2G NCP6153MNTWG NCP81101BMNTXG NCP81205MNTXG SJE6600 AZ7500BMTR-E1 SG3845DM NCP1250BP65G NCP4204MNTXG NCP6132AMNR2G NCP81102MNTXG NCP81206MNTXG NCP1240AD065R2G NCP1240FD065R2G NCP1361BABAYSNT1G NCP1230P100G NX2124CSTR SG2845M NCP1366BABAYDR2G NCP81101MNTXG NCP81174NMNTXG NCP4308DMTTWG NCP4308AMTTWG NCP1366AABAYDR2G NCP1251FSN65T1G NCP1246BLD065R2G MB39A136PFT-G-BND-ERE1 NCP1256BSN100T1G LV5768V-A-TLM-E NCP1365BABCYDR2G NCP1365AABCYDR2G NCP1246ALD065R2G AZ494AP-E1 CR1510-10 NCP4205MNTXG XRP6141ELTR-F RY8017 LP6260SQVF LP6298QVF ISL6121LIB ISL6225CA ISL6244HRZ ISL6268CAZ ISL6315IRZ ISL6420AIAZ-TK ISL6420AIRZ ISL6420IAZ ISL6421ERZ

