

规 格书 SPECIFICATION SHEET

Customer name	:		
BERYL SERIES	:	HW	TYPE : RADIAL
DESCRIPTION	:	2.2uF/450V Φ6.3*12	
Apply date	:	2022-11-12	

BERYL			CUSTOME	R
P/N:HW450M2R2LO6.3*12TA-	1A1Et	P/N:		
PREPARED	APPROVAL	PREPARED	CHECKED	APPROVAL
胡晓敏工程。梅君	张业维			

After approved, please sign back 1 Approval Sheet before order. If not, we will treat it as tacitly acknowledged and accepted our relative standard and technical index.

Zhao Qing Beryl Electronic Technology Co., Ltd.

TEL: (0758) 2862871 FAX: (0758) 2862870

E-mail: master@zq-beryl.com http://www.zq-beryl.com

NO.8 DUANZHOU ROAD, ZHAOQING CITY. GUANGDONG. CHINA

Sheet NO.: 20221112 Page: 1/12

Revise record

NO.	Date	Revise reason	Revise content	Prepared
01	2022.11.12	First issue	First issue	胡晓敏

Sheet NO.: 20221112 Page : 2 / 12

23

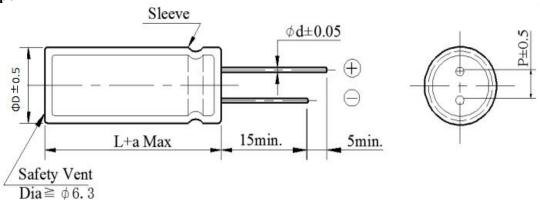
495

1, Application

This specification applies to Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC 60384.

2. Table of specification and characteristics

≤29.8

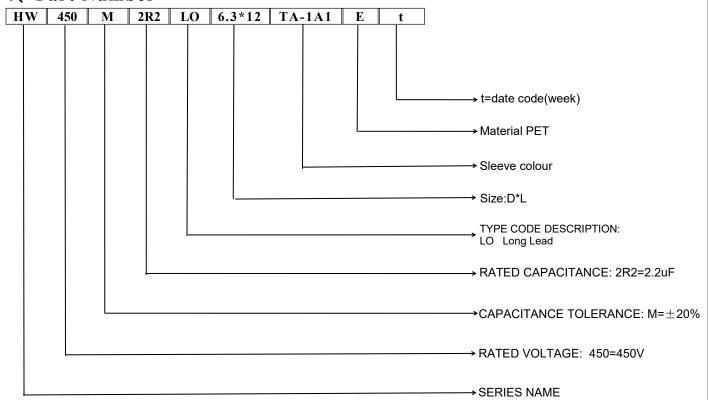

Series	Cap(uF) 120Hz/20°C	WV(V)	Size	Size (mm)		1 cmper acas		Temperature (°C)		Life(hours) @105(°C)		
	120112/20 C		D	L	(40)						Tolerance	(a) 103(C)
HW	2.2	450	6.3	12	-25~+105		±20%	10000				
DF (%)(MAX) 120Hz/20°C		LC(μA)(I 2min/2	· · · · · · · · · · · · · · · · · · ·	,	e)(MAX) Hz/25°C		C (mA rms) X)105°C/120Hz	Surge voltage(V)				

Other: /

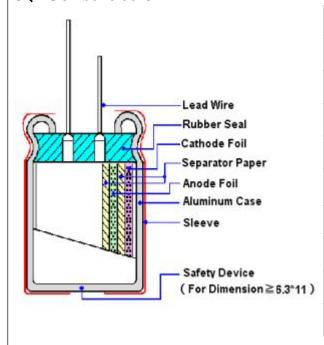
3, Product Dimensions

Type

≤24



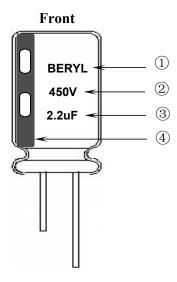
ФD	5	6.3	8	10	13	16	18	22
P	2	2.5	3.5	5	5	7.5	7.5	10
Φd	0.5	0.5	0.5/0.6	0.6	0.6	0.8	0.8	0.8
a			(L<20)	± 1.5	(L≥2	$0) \pm 2.0$		

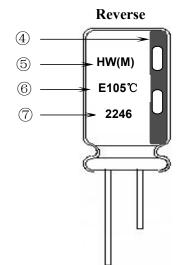

Sheet NO.: 20221112 Page: 3 / 12

4. Part Number

5. Construction

Material name	Composition	Supplier name
Lead	Al and (Fe+Cu+Sn)	NM、RH、ZY
Rubber	IIR	LHX、TH
Case	Aluminum	OX、YJ、LY2、SH
Paper	Wood / Fibrous plant materials	KE、CY
Anode foil	$Al + Al_2O_3$	HY1、HX2、HF、 HX1、GD、FC
Cathode foil	Aluminum	GY、LY1
Electrolyte	Glycol + Water +Ammonium salt	XZB、JZ2
Sleeve	PET	YL、CY
Adhesive tape	propylene, butyl acrylate	RK、RB、CW


Sheet NO.: 20221112 Page : 4 / 12


BERYL 绿宝石

ALUMINUM ELECTROLYTIC CAPACITORS

6. Product Marking

Marking Sample:

Marking Details:

Capacitor shall be marked the following items:

- 1) Trademark (BERYL)
- 2) working voltage(450V)
- 3) Nominal capacitance(2.2uF)
- 4) Cathode marked
- 5) Series symbol & Nominal capacitance tolerance (M: -20% ~ +20%)
- 6) Sleeve material(E: PET)

Maximum operating temperature(105°C)

7) Date code (2246)

22: Manufactured year 2022

Code	19	20	21	22	23	24	25	26	
Year	2019	2020	2021	2022	2023	2024	2025	2026	

46: Manufactured week (01, 02, 03, 04......52, 53)

Sheet NO.: 20221112 Page: 5 / 12

7. Characteristics

Standard atmospheric conditions

Unless other specified, the standard range of atmospheric conditions for making measurements and tests is as follows:

Ambient temperature : 15°C to 35°C
Relative humidity : 45% to 85%
Air pressure : 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature : $20^{\circ}\text{C} \pm 2^{\circ}\text{C}$ Relative humidity : 60% to 70%Air pressure : 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is $(160\sim450WV)$ -40°C to +105°C.

Table

	ITEM	PERFORMANCE
1	Nominal capacitance (Tolerance)	<condition> Measuring Frequency: 120Hz±12Hz Measuring Voltage: Not more than 0.5Vrms +1.5~2.0V.DC Measuring Temperature: 20±2°C <criteria> Shall be within the specified capacitance tolerance.</criteria></condition>
2	Leakage current	 Condition> Connecting the capacitor with a protective resistor (1kΩ±10Ω) in series for 2 minutes, and then, measure leakage current. Criteria> I: Leakage current (μA) I (μA) ≤0.02CV+10 (μA) measurement circuit refer to right drawing. C: Capacitance (μF) V: Rated DC working voltage (V)
3	Dissipation factor	<condition> Nominal capacitance, for measuring frequency, voltage and temperature. <criteria> Must be within the parameters (See page 3)</criteria></condition>

Sheet NO.: 20221112 Page: 6 / 12

IT	EM	PERFORMANCE						
4 I	mpedance	Condition> Measuring frequency:100kHz; Measuring temperature:20±2°C Measuring point: 2mm max. from the surface of a sealing rubber on the lead wire. Criteria> (20°C) Must be within the parameters (See page 3)						
5	Load life test	Condition> According to IEC6 Maximum operatin current for Rated li exceed the rated w recovering time at Criteria> The characteristic s Leakage current Capacitance Char Dissipation Facto Appearance	g temperature fe +48/0horonking voltatmospherical hall meet the North gee Winge North Nort	are ±2°C vars. (The age) Then c condition the following the thin ±30% the three that the three t	with DC sum of I the pro ns. The ng required an the span of initian 300%	bias voltage pDC and ripple duct should be result should rements.	peak voltage sleetested after 16 meet the followed value.	ople nall not hours
6	Shelf life test	<condition> The capacitors are the temperature ± 2°C from the test change and the condition of the condition of the capacitance of the capacitance</condition>	for 1000+4 mber and b all meet the Not e With	following more than in ±30% amore than	require 500% of initial 300% of	ing this period lized at room to the second to the specified of the specified in the specified to the specified of the specified to the specif	d value.	shall be re
7 p	Maximum permissible (ripple current, emperature coefficient)	Condition> The maximum perm applied at maximum Table-3 The combined value voltage and shall not Frequency Multiplier Freq (Hz) Cap. (µF) 2.2 Temperature Coeffici Temperature	operating to of D.C volution reverse volutions: 120 1.00 ent:	tage and t ltage.	re	10k 2.25		

Sheet NO.: 20221112 Page: 7 / 12

	ITEM]	PER	FORMANO	CE	
		Fixed the c seconds. B Fixed the c	Bending streng apacitor, appli	th of termined force to the for	nals. bent to it	the termina s original po	ead out direction for 30+5-1 (1~4 mm from the rubber osition within 2~3 seconds	r) for 90° within
8	Terminal strength	Diame	eter of lead win	re 1		e force N kgf)	Bending force N (kgf)	
		0.5	mm and less		5	(0.51)	2.5 (0.25)	
		0	.6~0.8 mm		10 (1.02)	5 (0.51)	
		<criteria> No noticea</criteria>	ble changes sl	nall be four	nd, no	breakage o	or looseness at the terminal	l.
		<condition></condition>				T		_
		STEP	Testing tem	•	C)		Time	_
		1)±2			ach thermal equilibrium	_
		2	-25±3				each thermal equilibrium	
		3)±2			ach thermal equilibrium	_
		4		5±2	Time to reach thermal equilibriu			_
		5)±2	Time to reach thermal equilibrium ance shall be measured at 120Hz.			
9	Temperature characteristics	a. At +105° a. At +105° Dissipati The leak b. In step 5 Dissipati The leak	C, capacitance ion factor shall age current m, capacitance ion factor shall age current sh	e measured l be within easured sha measured a l be within all not mor	the lat +20 the lat the lat the lat the late the	20°C shall be imit of Item t more than o'C shall be imit of Item n the specif	be within $\pm 25\%$ of its origing 7.3 10 times of its specified v within $\pm 10\%$ of its origina 7.3	alue. Il value.
		Voltage ((V) 160	~400	450	0~500		
		Z-25°C/Z+	20°C	4		6		
		Condition> Applied a surge voltage to the capacitor connected with series for 30±5 seconds in every 5±0.5 minutes at 15~35°C.Pr 1000 times. Then the capacitors shall be left under normal hur before measurement CR: Nominal Capacitance (μF)						
10	Surge test	Capacitance Dissipation Appearance Attention: This test sir	Criteria> Leakage current Capacitance Change Dissipation Factor Appearance				ed value. of electrolyte.	e to such over

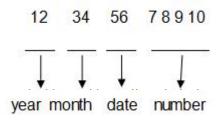
Sheet NO.: 20221112 Page: 8 / 12

	ITEM	PERFORMANCE						
		<condition> Temperature cycle: According to IEC60384-4 Naccording as below:</condition>	Temperature cycle: According to IEC60384-4 No.4.7 methods, capacitor shall be placed in an oven					
		Te	mperature	Time				
		(1) +20°C		3 Minutes				
	Change of	(2) Rated low tempera	ture (-25°C)	30±2 Minutes				
11	temperature test	(3) Rated high tempera	ature (+105°C)	30±2 Minutes				
		(1) to $(3) = 1$ cycle, total	al 5 cycle					
		Criteria> The characteristic shall meet Leakage current	the following requirement Not more than the s					
		Dissipation Factor	Not more than the s	pecified value.				
		Appearance	There shall be no le	akage of electrolyte.				
12	Damp heat test	Humidity test: According to IEC60384-4 N be exposed for 500±8 hours 40±2°C, the characteristic ch <criteria> Leakage current Capacitance Change Dissipation Factor Appearance</criteria>	95%R H .at					
13	Solderability test	Condition> The capacitor shall be tested under the following conditions: Soldering temperature : 245 ±5°C Dipping depth : 2mm Dipping speed : 25±2.5mm/s Dipping time : 3±0.5s Criteria> Soldering wetting time Less than 3s Coating quality A minimum of 95% of the surface being immersed						

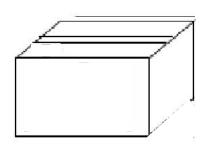
Sheet NO.: 20221112 Page: 9 / 12

	ITEM	PERFORMANCE
14	Vibration test	Condition> The following conditions shall be applied for 2 hours in each 3 mutually perpendicular directions. Vibration frequency range: 10Hz ~ 55Hz each to peak amplitude: 1.5mm Sweep rate: 10Hz ~ 55Hz ~ 10Hz in about 1 minute Mounting method: The capacitor with diameter greater than 12.5mm or longer than 25mm must be fixed in place with a bracket. Within 30°
		<pre> </pre> <pre> </pre> <pre> To be soldered</pre>
		After the test, the following items shall be tested:
		Inner construction No intermittent contacts, open or short circuiting. No damage of tab terminals or electrodes.
		Appearance No mechanical damage in terminal. No leakage of electrolyte or swelling of the case. The markings shall be legible.
	Resistance	Condition> Terminals of the capacitor shall be immersed into solder bath at 260±5°Cfor10±1seconds or400±10°Cfor3 ⁻⁰ seconds to 1.5~2.0 mm from the body of capacitor. Then the capacitor shall be left under the normal temperature and normal humidity for 1~2 hours before measurement. Criteria>
15	to solder heat	Leakage current Not more than the specified value.
	test	Capacitance Change Within ±5% of initial value.
		Dissipation Factor Not more than the specified value.
		Appearance There shall be no leakage of electrolyte.
16	Vent	Condition> The following test only apply to those products with vent products at diameter ≥∅6.3 with vent. D.C. test The capacitor is connected with its polarity reversed to a DC power source. Then a current selected from Table 2 is applied. Table 2>
10	test	Diameter (mm) DC Current (A)
		22.4 or less 1
		<criteria> The vent shall operate with no dangerous conditions such as flames or dispersion of pieces of the capacitor and/or case.</criteria>

Sheet NO.: 20221112 Page: 10 / 12

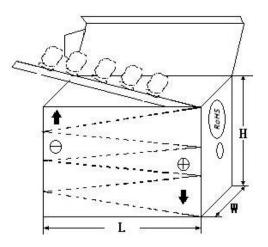


8. Packing Information


Packing Label Marked (the following items shall be marked on the label) (Inside box or bag)

(1)Clint order number (2)Client part number (3)Beryl part number (4)Capacitance (5)Voltage (6)Dimension (7)Packaging quantity (8)Capacitance tolerance (9) QC Marking (10) Lot number (11) Series

LOT Number:


1) Bulk Packing:

3) Outer box

2) Taped Packing:

4) Outer box label:

	Tel III i i i	Ltd.		111111111
C.S.R:				B UA HE
C.S.R P/O:				ROHS HE
C.S.R P/N:				
S.P.R P/N:				QC
SPEC:				
QTY:	PCS	TOL:	%	
L/N:		S.P.R:		

Sheet NO.: 20221112 Page: 11 / 12

9. Prohibition to Use Environment- related Substances

We are hereby to certify the followings:

Our company hereby warrants and guarantees that all or part of products, including, but not limited to, the peripherals, accessories or package, delivered to your company (including your subsidiaries and affiliated companies) directly or indirectly by our company are free from any of the substances listed below.

The latest version of <Substances Prohibited as per RoHS or <Sony-SS-00259>

Accord with heavy metal Mercury and mercury compounds Hexavalent chromium compounds Polychlorinated biphenyls (PCB) Polychlorinated naphthalenes (PCN) Polychlorinated terphenyls (PCT) Chlorinated paraffins (CP)
heavy metal Mercury and mercury compounds Hexavalent chromium compounds Polychlorinated biphenyls (PCB) Polychlorinated naphthalenes (PCN) Polychlorinated terphenyls (PCT)
Hexavalent chromium compounds Polychlorinated biphenyls (PCB) Polychlorinated naphthalenes (PCN) Polychlorinated terphenyls (PCT)
Organic chlorin compounds Polychlorinated biphenyls (PCB) Polychlorinated naphthalenes (PCN) Polychlorinated terphenyls (PCT)
Organic chlorin compounds Polychlorinated naphthalenes (PCN) Polychlorinated terphenyls (PCT)
Organic chlorin compounds Polychlorinated terphenyls (PCT)
Polychlorinated terphenyls (PCT)
Chlorinated paraffins (CP)
Other chlorinated organic compounds
Organic Polybrominated biphenyls (PBB)
bromine Polybrominated diphenylethers (PBDE)
compounds Other brominated organic compounds
Tributyltin compounds
Triphenyltin compounds
Asbestos
Specific azo compounds
Formaldehyde
Polyvinyl chloride (PVC) and PVC blends
F、Cl、Br、I
REACH

Sheet NO.: 20221112 Page: 12 / 12

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Aluminium Electrolytic Capacitors - Radial Leaded category:

Click to view products by BERYL manufacturer:

Other Similar products are found below:

LXY50VB4.7M-5X11 RFO-100V471MJ7P# ECE-A1EGE220 B41041A7226M8 B41044A7157M6 NCD681K10KVY5PF

NEV1000M25EF-BULK NEV100M35DC NEV100M63DE NEV220M25DD-BULK NEV.33M100AA NEV4700M50HB NEV.47M100AA

NEVH1.0M250AB NEVH3.3M250BB NEVH3.3M450CC KME50VB100M-8X11.5 SG220M1CSA-0407 ES5107M016AE1DA

ESMG160ETD102MJ16S ESX472M16B 227RZS050M 476CKH100MSA 477RZS050M B41793A9108Q1 UVX1V101KPA1FA

UVX1V222MHA1CA KME25VB100M-6.3X11 VTL100S10 VTL470S10 VTL470S16A 511D336M250EK5D 052687X ECE-A1CF471

NRE-S560M16V6.3X7TBSTF RGA221M1CTA-0611G ERZA630VHN182UP54N UPL1A331MPH NEV1000M6.3DE NEV100M16CB

NEV100M50DD-BULK NEV2200M16FF NEV220M50EE NEV2.2M50AA NEV330M63EF NEV4700M35HI NEV4.7M100BA

NEV47M16BA NEV47M50CB-BULK NEVH1.0M350AB