

规格书 SPECIFICATION SHEET

Customer name:			
BERYL SERIES:	RD	TYPE:	RADIAL
DESCRIPTION:	15uF/400V	Ф10*16	
Apply date :	2022-04-12		

BERYL			CUSTOMER	
P/N:RD400M150LO10*16TH-2	A2Et	P/N:		
PREPARED	APPROVAL	PREPARED	CHECKED	APPROVAL
董桂茹工工學梅君	张业维			

After approved, please sign back 1 Approval Sheet before order. If not, we will treat it as tacitly acknowledged and accepted our relative standard and technical index.

Zhao Qing Beryl Electronic Technology Co., Ltd.

TEL: (0758) 13428556686 FAX: (0758) 2862870

E-mail: master@zq-beryl.com http://www.zq-beryl.com

NO.8 DUANZHOU ROAD, ZHAOQING CITY. GUANGDONG. CHINA

Sheet No.: 20220412 Page: 1/12

Revise record

NO.	Date	Revise reason	Revise content	Prepared					
01	2022.04.12	First issue	First issue 董桂茹						

Sheet No.: 20220412 Page : 2 / 12

1, Application

This specification applies to Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC 60384.

2. Table of specification and characteristics

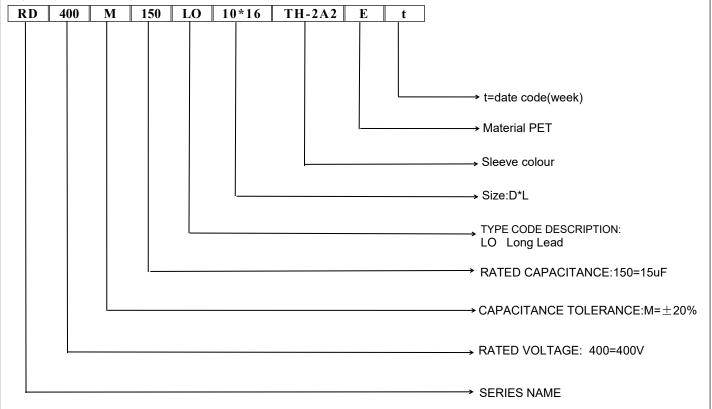
Series	Cap(uF) 120Hz/20°C	WV(V)	Size(mm)		Temperature	Capacitance Toloropas	Life(hours)	
	120HZ/20°C	. ,	D	L	(°C)	Tolerance	@105(°C)	
RD	15	400	10	16	-40 ~ +105	±20%	8000	

DF (%)(MAX)	LC(μA)(MAX)	ESR(Ω)(MAX)	RC (mA rms)	Surge voltage(V)
120Hz/20°C	2min/20°C	100KHz/25°C	(MAX)105°C/120Hz	
≤24	≤130	-	243	440

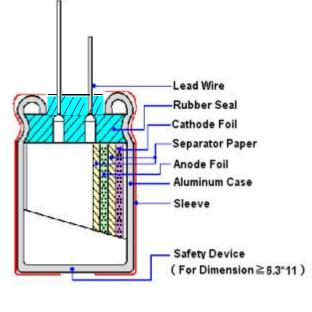
Other: /

3. Product Dimensions

Type

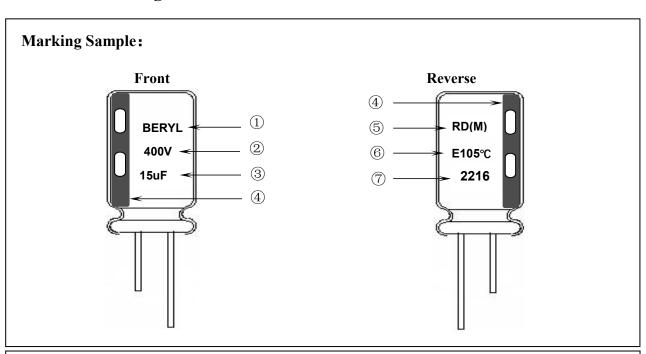


ФD	5	6.3	8	10	13	16	18	22
P	2	2.5	3.5	5	5	7.5	7.5	10
Фd	0.5	0.5	0.5/0.6	0.6	0.6	0.8	0.8	0.8
а			(L< 20)	± 1.5	(L≥2	$0) \pm 2.0$		


Sheet No.: 20220412 Page: 3 / 12

4. Part Number

5. Construction


Material name	Composition	Supplier name		
Lead	Al and (Fe+Cu+Sn)	NM、JX		
Rubber	EPT / IIR	LHX、LA、TH、LM2		
Case	Aluminum	OX、YJ、HL、LY2		
Paper	Wood / Fibrous plant materials	KE、DF		
Anode foil	$Al + Al_2O_3$	HY1、HY2、HF、HY3、 LD、FQ		
Cathode foil	Aluminum	GY、LY1		
Electrolyte	Glycol + Water +Ammonium salt	XZB、LM1、JZ2、FS		
Sleeve	PET	YL、CY		

Sheet No.: 20220412 Page: 4/12

BERYL 绿宝石

ALUMINUM ELECTROLYTIC CAPACITORS

6. Product Marking

Marking Details:

Capacitor shall be marked the following items:

- 1) Trademark (BERYL)
- 2) working voltage(400V)
- 3) Nominal capacitance(15uF)
- 4) Cathode marked
- 5) Series symbol & Nominal capacitance tolerance (M: -20% ~ +20%)
- 6) Sleeve material(E: PET)

Maximum operating temperature(105°C)

7) Date code (2216)

22: Manufactured year 2022

Code	19	20	21	22	23	24	25	26	
Year	2019	2020	2021	2022	2023	2024	2025	2026	

16: Manufactured week (01, 02, 03, 04......52, 53)

Sheet No.: 20220412 Page: 5 / 12

7. Characteristics

Standard atmospheric conditions

Unless other specified, the standard range of atmospheric conditions for making measurements and tests is as follows:

Ambient temperature : 15°C to 35°C
Relative humidity : 45% to 85%
Air pressure : 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature : $20^{\circ}\text{C} \pm 2^{\circ}\text{C}$ Relative humidity : 60% to 70%Air pressure : 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is $(160\sim400\mathrm{WV})$ -40°C to +105°C . $(450\sim500\mathrm{WV})$ -25°C to +105°C

Table

	ITEM	PERFORMANCE					
1	Nominal capacitance (Tolerance)	Condition> Measuring Frequency: 120Hz±12Hz Measuring Voltage: Not more than 0.5Vrms +1.5~2.0V.DC Measuring Temperature: 20±2°C Criteria> Shall be within the specified capacitance tolerance.					
2	Leakage current	<condition> Connecting the capacitor with a protective resistor $(1k\Omega\pm10\Omega)$ in series for 2 minutes, and then, measure leakage current. <criteria> I: Leakage current (μA) I (μA) ≤ 0.02CV +10 (μA), measurement circuit refer to right drawing. C: Capacitance (μF) V: Rated DC working voltage (V)</criteria></condition>					
3	Dissipation factor	Condition> Nominal capacitance, for measuring frequency, voltage and temperature. Criteria> Must be within the parameters (See page 3)					

Sheet No.: 20220412 Page: 6 / 12

	ITEM]	PERI	FORMAN	NCE		
4	Impedance	<condition> Measuring frequency:100kHz; Measuring temperature:20±2°C Measuring point: 2mm max. from the surface of a sealing rubber on the lead wire. <criteria> (20°C) Must be within the parameters (See page 3)</criteria></condition>							
5	Load life test	Maximum of current for R exceed the r recovering t <criteria> The charactete Leakage cu Capacitance Dissipation</criteria>	According to IEC60384-4No. 4.13 methods, the capacitor is stored at a temp Maximum operating temperature ±2°C with DC bias voltage plus the rated recurrent for Rated life +48/0hours. (The sum of DC and ripple peak voltage sexceed the rated working voltage) Then the product should be tested after 10 recovering time at atmospheric conditions. The result should meet the follow *Criteria> The characteristic shall meet the following requirements. Leakage current Not more than the specified value. Capacitance Change Within ±20% of initial value. Dissipation Factor Not more than 200%of the specified value. Appearance There shall be no leakage of electrolyte.						
6	Shelf life test	Condition> The capacitors are then stored with no voltage applied at a temperature of Maximum temperature±2°C for1000+48/0 hours. Following this period, the capacitors shall be from the test chamber and be allowed to stabilized at room temperature for16 hour leakage current Criteria> The characteristic shall meet the following requirements. Leakage current Not more than 200% of the specified value Capacitance Change Within ±20% of initial value. Dissipation Factor Not more than 200% of the specified value. Appearance There shall be no leakage of electrolyte.							s shall be remo
7	Maximum permissible (ripple current, temperature coefficient)	Cap. (µ) 1 Temperature C	vimum operated value of D.C. all not reverse tipliers: req (Hz) F) 5	ing temper	nd th	:			

Sheet No.: 20220412 Page: 7 / 12

	ITEM	PERFORMANCE									
8	Terminal strength	seconds. If Fixed the control of the	force to the terminal in lead out direction for 30+5-0 of terminals. force to bent the terminal (1~4 mm from the rubber) for 90° with the force to be one of the terminal of the force to be one of the terminal of the force of					ber) for 90° within ads.			
		<condition></condition>									
		STEP 1	Testing to	emperati 20±2	ıre (°C)	Ti	me to re		ime	quilibriun	
		2								quilibriun	
		3				_		reach thermal equilibriu			
		4			_				<u>,</u> quilibriun		
		5		20±2		Ti	me to re	each the	ermal e	- quilibriun	n
9	Temperature characteristics	a. At +105 Dissipat The lead b. In step 5 Dissipat The lead	ion factor shage current b, capacitance ion factor shage current C, Impedance	nce meanall be we measure measure all be we shall no	rithin the ed shall nured at +2 vithin the t more that tio shall nured at +2 vithin the tio shall n	+20°C limit ot mo 0°C s limit an th	C shall be of Item shall be of Item e specif	to e with 7.3 10 time within 7.3 red val	in $\pm 25\%$ es of its $\pm 10\%$ oue.	s specified of its orig	inal value.
		Z-40°C/Z+2	20°C 6	6	6	6	6	8	-		
10	Surge test	 Condition> Applied a surge voltage to the capacitor connected with a (100 ±50)/CR (kΩ) r series for 30±5 seconds in every 5±0.5 minutes at 15~35°C. Procedure shall be repeat 1000 times. Then the capacitors shall be left under normal humidity for 1-2 hours before measurement CR: Nominal Capacitance (μF) Criteria>							repeated		

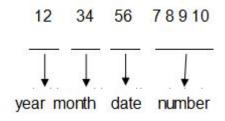
Sheet No.: 20220412 Page: 8 / 12

	ITEM	PERFORMANCE								
		Ten Aco	dition> nperature cycle: cording to IEC60384-4 No ording as below:	.4.7 methods, capacito	or shall be placed in an over	, the condition				
				nperature	Time					
			(1) +20°C		3 Minutes					
	Change of		(2) Rated low temperatu	are (-40°C) (-25°C)	30±2 Minutes					
11	temperature test		(3) Rated high temperat	ure (+105°C)	30±2 Minutes					
			(1) to (3) =1 cycle, total	5 cycle						
		<crite< td=""><td>eria> e characteristic shall meet t</td><td>ha following requirem</td><td>ant</td><th></th></crite<>	eria> e characteristic shall meet t	ha following requirem	ant					
		1110	Leakage current	Not more than the						
			Dissipation Factor	Not more than the						
			Appearance	There shall be no le	eakage of electrolyte.					
12	Damp heat test	40±	exposed for 500±8 hours in 2°C, the characteristic characteristic characteristic characteristic characteristic characteria> Leakage current Capacitance Change Dissipation Factor Appearance	Not more than the sp Within $\pm 10\%$ of initial	owing requirement. ecified value. al value. of the specified value.					
13	Solderability test	<conde< td=""><td>dition> capacitor shall be tested udering temperature : 245 ping depth : 2m ping speed : 255 ping time : 3±0</td><td>5±5°C .m ±2.5mm/s</td><td>nditions:</td><th></th></conde<>	dition> capacitor shall be tested udering temperature : 245 ping depth : 2m ping speed : 255 ping time : 3±0	5±5°C .m ±2.5mm/s	nditions:					
			Coating quality	A minimum of 950 immersed	% of the surface being					

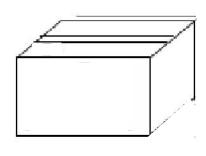
Sheet No.: 20220412 Page: 9 / 12

ITEM		PERFORMANCE				
14	Vibration test	*Condition> The following conditions shall be applied for 2 hours in each 3 mutually perpendicular directions. Vibration frequency range: 10Hz ~ 55Hz each to peak amplitude: 1.5mm Sweep rate: 10Hz ~ 55Hz ~ 10Hz in about 1 minute Mounting method: The capacitor with diameter greater than 12.5mm or longer than 25mm must be fixed in place with a bracket. Within 30°				
			To be soldered			
		Criteria> After the test, the following ite				
			o intermittent contacts, open or short circuiting.			
		No	No damage of tab terminals or electrodes.			
		Appearance of	No mechanical damage in terminal. No leakage of electrolyte or swelling of the case. The markings shall be legible.			
	Resistance to solder heat test	Condition> Terminals of the capacitor shall be immersed into solder bath at 260±5°Cfor10±1seconds or400±10°Cfor3 -0 seconds to 1.5~2.0 mm from the body of capacitor. Then the capacitor shall be left under the normal temperature and normal humidity for 1~2 hours before measurement. Criteria>				
15		Leakage current	Not more than the specified value.			
		Capacitance Change	Within ±5% of initial value.			
		Dissipation Factor	Not more than the specified value.			
		Appearance There shall be no leakage of electrolyte.				
16	Vent test					
		The vent shall operate with no dangerous conditions such as flames or dispersion of pieces of the capacitor and/or case.				

Sheet No.: 20220412 Page: 10 / 12

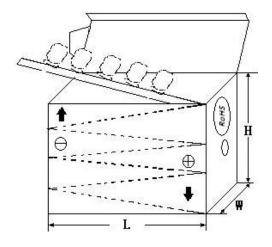


8. Packing Information


Packing Label Marked (the following items shall be marked on the label) (Inside box or bag)

(1)Clint order number (2)Client part number (3)Beryl part number (4)Capacitance (5)Voltage (6)Dimension (7)Packaging quantity (8)Capacitance tolerance (9) QC Marking (10) Lot number (11) Series

LOT Number:


1) Bulk Packing:

3) Outer box

2) Taped Packing:

4) Outer box label:

BERYL	Zhao Qin	g Beryl Ele Ltd.	ctronic	Technology Co.,
C.S.R:		- 110 115		
C.S.R P/O:				ROHS HE
C.S.R P/N:				
S.P.R P/N:				QC
SPEC:				
QTY:	PCS	TOL:	%	
L/N:		S.P.R:		3

Sheet No.: 20220412 Page: 11 / 12

9. Prohibition to Use Environment- related Substances

We are hereby to certify the followings:

Our company hereby warrants and guarantees that all or part of products, including, but not limited to, the peripherals, accessories or package, delivered to your company (including your subsidiaries and affiliated companies) directly or indirectly by our company are free from any of the substances listed below.

The latest version of <Substances Prohibited as per RoHS or <Sony-SS-00259>

	Cadmium and cadmium compounds				
Accord with	Lead and lead compounds				
heavy metal	Mercury and mercury compounds				
	Hexavalent chromium compounds				
	Polychlorinated biphenyls (PCB)				
Organia ablasis	Polychlorinated naphthalenes (PCN)				
Organic chlorin	Polychlorinated terphenyls (PCT)				
compounds	Chlorinated paraffins (CP)				
	Other chlorinated organic compounds				
Organic	Polybrominated biphenyls (PBB)				
bromine	Polybrominated diphenylethers (PBDE)				
compounds	Other brominated organic compounds				
Tributyltin compo	ounds				
Triphenyltin compounds					
Asbestos					
Specific azo compounds					
Formaldehyde					
Polyvinyl chloride (PVC) and PVC blends					
F、Cl、Br、I					
REACH					

Sheet No.: 20220412 Page: 12 / 12

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Aluminium Electrolytic Capacitors - Radial Leaded category:

Click to view products by BERYL manufacturer:

Other Similar products are found below:

LXY50VB4.7M-5X11 RFO-100V471MJ7P# ECE-A1EGE220 B41041A7226M8 B41044A7157M6 NCD681K10KVY5PF

NEV1000M25EF-BULK NEV100M35DC NEV100M63DE NEV220M25DD-BULK NEV.33M100AA NEV4700M50HB NEV.47M100AA

NEVH1.0M250AB NEVH3.3M250BB NEVH3.3M450CC KME50VB100M-8X11.5 SG220M1CSA-0407 ES5107M016AE1DA

ESMG160ETD102MJ16S ESX472M16B 227RZS050M 476CKH100MSA 477RZS050M B41793A9108Q1 UVX1V101KPA1FA

UVX1V222MHA1CA KME25VB100M-6.3X11 VTL100S10 VTL470S10 VTL470S16A 511D336M250EK5D 052687X ECE-A1CF471

NRE-S560M16V6.3X7TBSTF RGA221M1CTA-0611G ERZA630VHN182UP54N UPL1A331MPH NEV1000M6.3DE NEV100M16CB

NEV100M50DD-BULK NEV2200M16FF NEV220M50EE NEV2.2M50AA NEV330M63EF NEV4700M35HI NEV4.7M100BA

NEV47M16BA NEV47M50CB-BULK NEVH1.0M350AB