

规 格书

SPECIFICATION SHEET

Customer name:				
BERYL SERIES:	RD	TY	PE: RADIAL	
DESCRIPTION:	3.3uF/400V	Ф8*9		
Apply date :	2022-04-12			
BERYL			CUSTOMER	
P/N:RD400M3R3LO8*9TH-2B2	lEt	P/N:		
PREPARED	APPROVAL	PREPARED	CHECKED	APPROVAL
董桂茹	张业维			

After approved, please sign back 1 Approval Sheet before order. If not, we will treat it as tacitly acknowledged and accepted our relative standard and technical index.

Zhao Qing Beryl Electronic Technology Co., Ltd.

TEL: (0758) 13428556686 FAX: (0758) 2862870

E-mail: master@zq-beryl.com <u>http://www.zq-beryl.com</u>

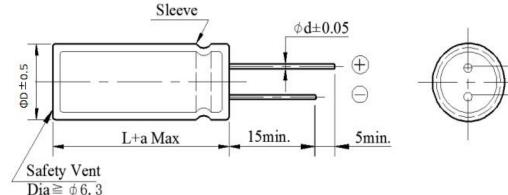
NO.8 DUANZHOU ROAD, ZHAOQING CITY. GUANGDONG. CHINA

Revise record

NO.	Date	Revise reason	Revise content	Prepared
01	2022.04.12	First issue	First issue	董桂茹

1、 Application

This specification applies to Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC 60384.

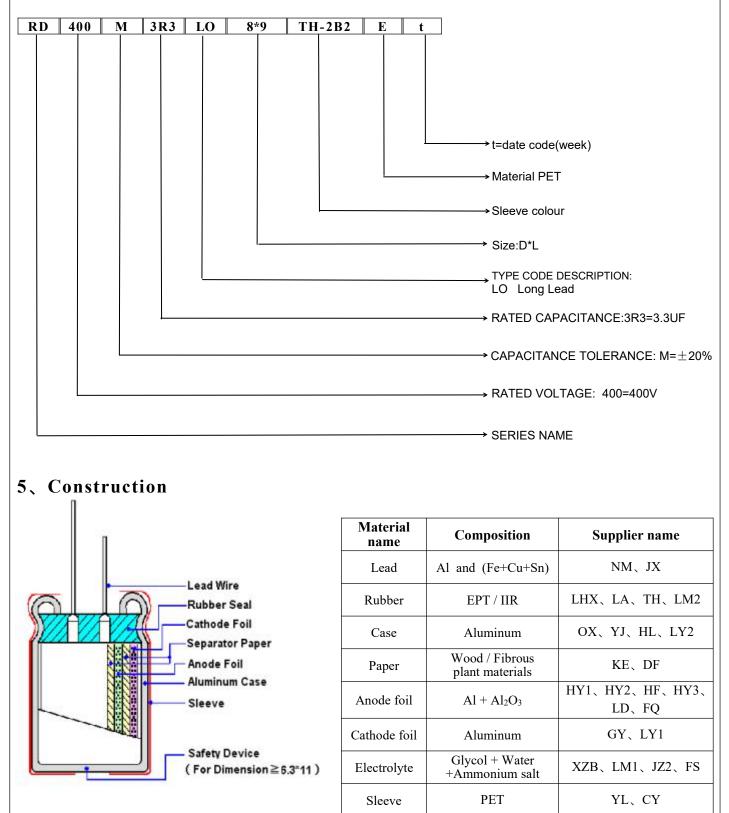

2. Table of specification and characteristics

Cap(uF) 20Hz/20°C	WV(V)	Size ((mm)	Temperature (°C)		-		-		-		-		_		-		_		_		- 1		Capacitance Tolerance	Life(hours) @105(°C)
20112/20 C		D L (C)			i olei anee	(105(C)																			
3.3	400	8	9	-40~+1	05	$\pm 20\%$	8000																		
(MAX) /20°C	LC(μA)(MAX) 2min/20°C					· /	Surge voltage(V)																		
4	≤36			-	85		440																		
(N /2	3.3 MAX) 0°C	3.3 400 MAX) LC(μA)(N 2min/2	D D 3.3 400 8 MAX) LC(μA)(MAX) 2min/20°C	D L 3.3 400 8 9 MAX) LC(μA)(MAX) ESR(Ω 20°C 2min/20°C 100KI	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	D L (°C) 10ferance 3.3 400 8 9 -40~+105 $\pm 20\%$ MAX) LC(μ A)(MAX) ESR(Ω)(MAX) RC (mA rms) 0°C 2min/20°C 100KHz/25°C (MAX)105°C/120Hz																		

Other: /

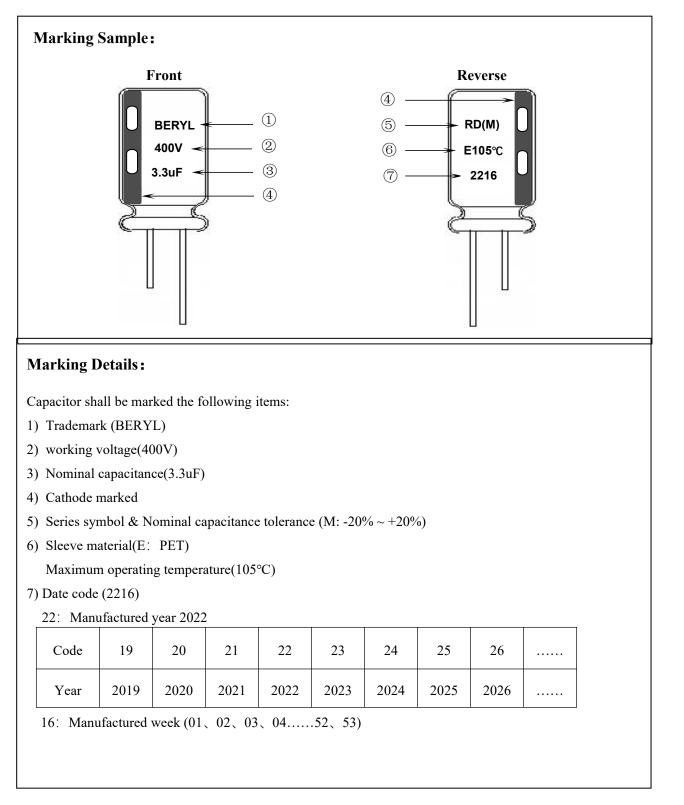
3、 Product Dimensions

Туре


ΦD	5	6.3	8	10	13	16	18	22
Р	2	2.5	3.5	5	5	7.5	7.5	10
Фd	0.5	0.5	0.5/0.6	0.6	0.6	0.8	0.8	0.8
а			(L< 20)	± 1.5	(L≥2	$0) \pm 2.0$		

Sheet NO.: 20220412

P±0.5



4、Part Number

6、Product Marking

7、 Characteristics

Standard atmospheric conditions

Unless other specified, the standard range of atmospheric conditions for making measurements and tests is as follows:

Ambient temperature :15°C to 35°CRelative humidity:45% to 85%

Air pressure : 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions: Ambient temperature : $20^{\circ}C \pm 2^{\circ}C$ Relative humidity : 60% to 70%Air pressure : 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is $(160 \sim 400 \text{WV}) - 40^{\circ}\text{C}$ to $+105^{\circ}\text{C}$ $(450 \sim 500 \text{WV}) - 25^{\circ}\text{C}$ to $+105^{\circ}\text{C}$

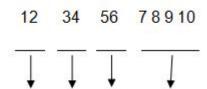
Table

	ITEM	PERFORMANCE
1	Nominal capacitance (Tolerance)	<condition> Measuring Frequency: 120Hz±12Hz Measuring Voltage: Not more than 0.5Vrms +1.5~2.0V.DC Measuring Temperature: 20±2°C <criteria> Shall be within the specified capacitance tolerance.</criteria></condition>
2	Leakage current	$\begin{array}{c} <\!\! \textbf{Condition}\!\!> \\ \text{Connecting the capacitor with a protective resistor } (1k\Omega\pm10\Omega) \text{ in series for} \\ 2 \text{ minutes, and then, measure leakage current.} \\ <\!\! \textbf{Criteria}\!\!> \\ \text{I: Leakage current } (\mu\text{A}) \\ \text{I} (\mu\text{A}) \leq 0.02\text{CV}+10(\mu\text{A}), \\ \text{measurement circuit refer to right drawing.} \\ \text{C: Capacitance } (\mu\text{F}) \\ \text{V: Rated DC working voltage } (\text{V}) \end{array}$
3	Dissipation factor	<condition> Nominal capacitance, for measuring frequency, voltage and temperature. Must be within the parameters (See page 3)</condition>

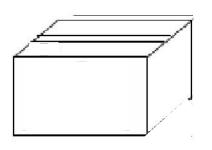
	ITEM		ł	PERFORMAN	NCE			
4	Impedance	Condition> Measuring frequency:100kHz; Measuring temperature:20±2°C Measuring point: 2mm max. from the surface of a sealing rubber on the lead wire. Criteria> (20°C) Must be within the parameters (See page 3)						
5	Load life test	<condition> According to IEC60384 Maximum operating ten current for Rated life +4 exceed the rated working recovering time at atmost <criteria> The characteristic shall Leakage current Capacitance Change Dissipation Factor Appearance</criteria></condition>	nperature $\pm 2^{\circ}$ 48/0hours. (T ng voltage) T ospheric cond meet the follo Not more Within $\pm 2^{\circ}$	C with DC bia he sum of DC nen the produc itions. The res owing requirent than the spec 20% of initial y than 200% of the spec	is voltage pli and ripple p at should be ult should m nents. ified value. value. the specified	us the rated a beak voltage tested after 1 beet the follo	ripple shall not 16 hours	
6	Shelf life test	Appearance There shall be no leakage of electrolyte. <condition> The capacitors are then stored with no voltage applied at a temperature of Mattemperature±2°C for1000+48/0 hours. Following this period, the capacitors from the test chamber and be allowed to stabilized at room temperature for leakage current <criteria> The characteristic shall meet the following requirements. Leakage current Not more than 200% of the specified value. Capacitance Change Within ±20% of initial value. Dissipation Factor Not more than 200% of the specified value. Appearance There shall be no leakage of electrolyte.</criteria></condition>						
7	Maximum permissible (ripple current, temperature coefficient)	<condition> The maximum permissib applied at maximum ope Table-3 The combined value of I voltage and shall not rev Frequency Multipliers: Freq (Hz) Cap. (μF) 3.3 Temperature Coefficient: Temperature (° Factor</condition>	rating temper D.C voltage an erse voltage. 120 1.00	ature ad the peak A.0 1k 1.50 85				

	ITEM	PERFORMANCE									
8	Terminal strength	seconds. I Fixed the o 2~3 second Diam 0.: (Criteria>	capacito Bending capacito ds, and t eter of lo 5mm and 0.6~0.8 1	r, applied for strength of r, applied for hen bent it ead wire d less mm	lied force to the terminal in lead out direction for $30+$ gth of terminals. lied force to bent the terminal (1~4 mm from the rub ent it for 90° to its original position within 2~3 secon					the rubbe seconds N (kgf)	er) for 90° within
			able cha	nges shall b	e found,	no b	oreakage o	r loosene	ess at the	terminal	
		<condition> STEP</condition>	Testi	ng tempera	ure (°C)			Tim	e]
			10501	20±2	<u>()</u>	T T	Fime to rea			ibrium	-
		2		-40 -25±	3	-	Fime to rea		-		-
	Temperature characteristics	3	20±2			reach thermal equilibrium			-		
		4 105±2				Г	Fime to rea	to reach thermal equilibrium			-
		5	5 20±2			Г	Fime to rea	ach thern	nal equil	ibrium	-
9		<criteria> a. At +105 Dissipat The leal b. In step 5 Dissipat The leal c. At - 40° Voltage Z-40°C/Z-</criteria>	°C, capa tion factor cage cur 5, capaci tion factor cage cur C, Impe (V)	and impedation acitance measurement measurement shall be very rent shall be very rent shall be very rent shall ne dance (Z) range (Z) r	asured at within the red shall ured at + within the ot more t atio shall	+20 lim not n 20°C lim nan t	°C shall b hit of Item nore than C shall be hit of Item the specifi	e within 7.3 10 times within ±1 7.3 ed value	±25% of of its sp 10% of it	ecified va s origina	alue. l value.
10	Surge test	$\label{eq:condition} $$ \end{picture}$ $$ Applied a surge voltage to the capacitor connected with a (100 ±50)/CR (k\Omega) resistor in series for 30±5 seconds in every 5±0.5 minutes at 15~35°C.Procedure shall be repeated 1000 times. Then the capacitors shall be left under normal humidity for 1-2 hours before measurement CR : Nominal Capacitance (µF) $$ Criteria> $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$									
She	et NO.: 20220			-				Page	: 8,	/ 12	

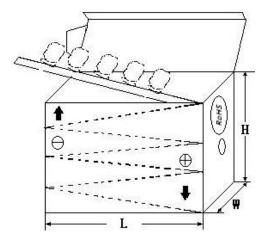
	ITEM	PERFORMANCE							
		Ten Acc	<condition> Temperature cycle: According to IEC60384-4 No.4.7 methods, capacitor shall be placed in an oven according as below:</condition>						
			Tem	nperature	Time				
			(1) +20°C		3 Minutes				
	Change of		(2) Rated low temperatu	are (- 40°C) (-25°C)	30±2 Minutes				
11	temperature test		(3) Rated high temperate	ure (+105°C)	30±2 Minutes				
			(1) to (3) =1 cycle, total	5 cycle					
		Crite	e ria> e characteristic shall meet t	he following requireme	nt.				
			Leakage current	Not more than the sp					
			Dissipation Factor	ion Factor Not more than the specified value.					
			Appearance	There shall be no lea	kage of electrolyte	Э.			
12	Damp heat	be e 40± <crite< th=""><th>cording to IEC60384-4 No. exposed for 500±8 hours in 2°C, the characteristic cha eria> Leakage current</th><th>an atmosphere of 90~9</th><th>95%R H .at wing requirement.</th><th></th></crite<>	cording to IEC60384-4 No. exposed for 500±8 hours in 2°C, the characteristic cha eria> Leakage current	an atmosphere of 90~9	95%R H .at wing requirement.				
	test			Not more than the spe	lifted value.				
	eese		Course items of the second	W/41.in + 100/ - £ in 41-1	1				
			Capacitance Change	Within $\pm 10\%$ of initial					
			Dissipation Factor	Not more than 120% of	f the specified val	ue.			
				-	f the specified val	ue.			
13	Solderability test	<cone Sole Dip Dip</cone 	Dissipation Factor Appearance dition> e capacitor shall be tested u dering temperature : 245 ping depth : 2m ping speed : 25- ping time : 3±0	Not more than 120% of There shall be no leak under the following con- $5\pm5^{\circ}C$ m ±2.5 mm/s	f the specified valuate of electrolyte.	ue.			
13	Solderability	<cone Sole Dip Dip Dip</cone 	Dissipation Factor Appearance dition> e capacitor shall be tested u dering temperature : 245 ping depth : 2m ping speed : 25- ping time : 3±0	Not more than 120% of There shall be no leak under the following con- $5\pm5^{\circ}C$ m ±2.5 mm/s	f the specified valuate of electrolyte.	ue.			


	ITEM	PERFORMANCE							
14	Vibration test	<condition> The following conditions shall be applied for 2 hours in each 3 mutually perpendicular directions. Vibration frequency range : 10Hz ~ 55Hz each to peak amplitude : 1.5mm Sweep rate : 10Hz ~ 55Hz ~ 10Hz in about 1 minute Mounting method: The capacitor with diameter greater than 12.5mm or longer than 25mm must be fixed in place with a bracket. 4mm or less Within 30° 4mm or less Within 30° To be soldered To be soldered After the test, the following items shall be tested: Inner construction No intermittent contacts, open or short circuiting. No damage of tab terminals or electrodes. No mechanical damage in terminal. No leakage of electrolyte or swelling of the case. The markings shall be legible.</condition>							
15	Resistance to solder heat test	<condition> Terminals of the capacitor shall be immersed into solder bath at 260±5°Cfor10±1seconds or400±10°Cfor3⁻⁰ seconds to 1.5~2.0 mm from the body of capacitor. Then the capacitor shall be left under the normal temperature and normal humidity for 1~2 hours before measurement. <criteria> Leakage current Not more than the specified value.</criteria></condition>							
		Capacitance ChangeWithin ±5% of initial value.							
		Dissipation Factor Not more than the specified value.							
		AppearanceThere shall be no leakage of electrolyte.							
16	Vent test	<condition> The following test only apply to those products with vent products at diameter ≥Ø6.3 with vent. D.C. test The capacitor is connected with its polarity reversed to a DC power source. Then a current selected from Table 2 is applied. <table 2=""> Diameter (mm) DC Current (A) 22.4 or less 1</table></condition>							

8、 Packing Information


Packing Label Marked (the following items shall be marked on the label)
(Inside box or bag)
(1)Clint order number (2)Client part number (3)Beryl part number (4)Capacitance (5)Voltage (6)Dimension
(7)Packaging quantity (8)Capacitance tolerance (9) QC Marking (0) Lot number (1) Series

LOT Number :



year month date number

1) Bulk Packing:

2) Taped Packing:

3) Outer box

外箱

4) Outer box label:

BERYL	Zhao Qin	g Beryl Elec Ltd.	ctronic	CTechnology Co.,
C.S.R:				
C.S.R P/O:				ROHS HE
C.S.R P/N				
S.P.R P/N:				QC
SPEC:				
QTY:	PCS	TOL:	%	
L/N:		S.P.R:		2

9、 Prohibition to Use Environment- related Substances

We are hereby to certify the followings:

Our company hereby warrants and guarantees that all or part of products, including, but not limited to, the peripherals, accessories or package, delivered to your company (including your subsidiaries and affiliated companies) directly or indirectly by our company are free from any of the substances listed below.

	Cadmium and cadmium compounds						
Accord with	Lead and lead compounds						
heavy metal	Mercury and mercury compounds						
	Hexavalent chromium compounds						
	Polychlorinated biphenyls (PCB)						
Onequie shlarin	Polychlorinated naphthalenes (PCN)						
Organic chlorin	Polychlorinated terphenyls (PCT)						
compounds	Chlorinated paraffins (CP)						
	Other chlorinated organic compounds						
Organic	Polybrominated biphenyls (PBB)						
bromine	Polybrominated diphenylethers (PBDE)						
compounds	Other brominated organic compounds						
Tributyltin compo	ounds						
Triphenyltin com	pounds						
Asbestos							
Specific azo com	pounds						
Formaldehyde							
Polyvinyl chlorid	e (PVC) and PVC blends						
F、Cl、Br、I							
REACH	REACH						

The latest version of <Substances Prohibited as per RoHS or <Sony-SS-00259>

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Aluminium Electrolytic Capacitors - Radial Leaded category:

Click to view products by **BERYL** manufacturer:

Other Similar products are found below :

LXY50VB4.7M-5X11 RFO-100V471MJ7P# ECE-A1EGE220 B41041A7226M8 B41044A7157M6 NCD681K10KVY5PF NEV1000M25EF-BULK NEV100M35DC NEV100M63DE NEV220M25DD-BULK NEV.33M100AA NEV4700M50HB NEV.47M100AA NEVH1.0M250AB NEVH3.3M250BB NEVH3.3M450CC KME50VB100M-8X11.5 SG220M1CSA-0407 ES5107M016AE1DA ESMG160ETD102MJ16S ESX472M16B 227RZS050M 476CKH100MSA 477RZS050M B41793A9108Q1 UVX1V101KPA1FA UVX1V222MHA1CA KME25VB100M-6.3X11 VTL100S10 VTL470S10 VTL470S16A 511D336M250EK5D 052687X ECE-A1CF471 NRE-S560M16V6.3X7TBSTF RGA221M1CTA-0611G ERZA630VHN182UP54N UPL1A331MPH NEV1000M6.3DE NEV100M16CB NEV100M50DD-BULK NEV2200M16FF NEV220M50EE NEV2.2M50AA NEV330M63EF NEV4700M35HI NEV4.7M100BA NEV47M16BA NEV47M50CB-BULK NEVH1.0M350AB