

规 格书 SPECIFICATION SHEET

Customer name	:		
BERYL SERIES	:	RG	TYPE : RADIAL
DESCRIPTION	:	220uF/50V Φ8*16	
Apply date	:	2022-11-12	

BERYL		CUSTOMER			
P/N:RG050M221LO8*16TA-1A	1Et	P/N:			
PREPARED	APPROVAL	PREPARED	CHECKED	APPROVAL	
胡晓敏工程部	张业维				

After approved, please sign back 1 Approval Sheet before order. If not, we will treat it as tacitly acknowledged and accepted our relative standard and technical index.

Zhao Qing Beryl Electronic Technology Co., Ltd.

TEL: (0758) 2862871 FAX: (0758) 2862870

E-mail: master@zq-beryl.com http://www.zq-beryl.com

NO.8 DUANZHOU ROAD, ZHAOQING CITY. GUANGDONG. CHINA

Sheet NO.: 20221112 Page: 1/12

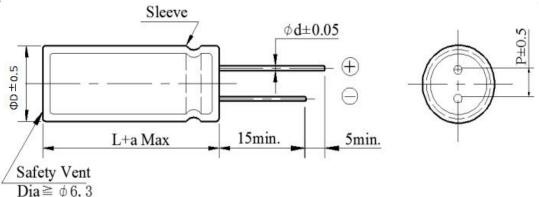
Revise record

NO.	Date	Revise reason	Revise content	Prepared
01	2022.11.12	First issue	First issue	胡晓敏

Sheet NO.: 20221112 Page : 2 / 12

1, Application

This specification applies to Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC 60384.

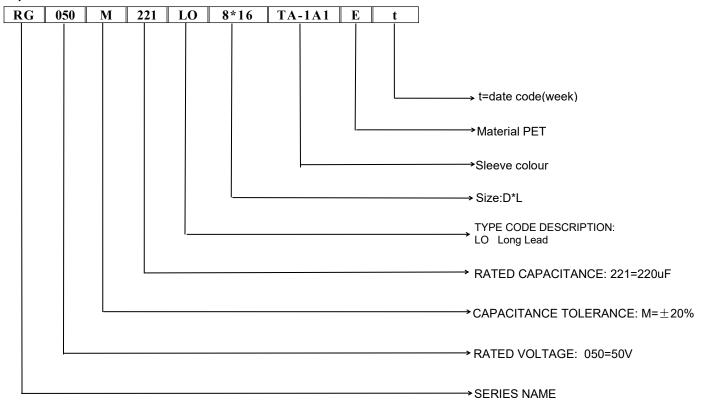

2. Table of specification and characteristics

Series	Cap(uF) 120Hz/20°C	WV(V)	Size	(mm)	Tempera		Capacitance Tolerance	Life(hours) @105(°C)
	120112/20 C		D	L			Totalice	(a) 103(C)
RG	220	50	8	16	-40 ~+1	105	±20%	8000
,	6)(MAX) Iz/20°C	LC(μA)(1 2min/2		,	()(MAX) Hz/25°C	RC (mA rms) (MAX)105°C/100KHz		Surge voltage(V)
<	≤10 ≤110 ≤0.24 905		905	58				

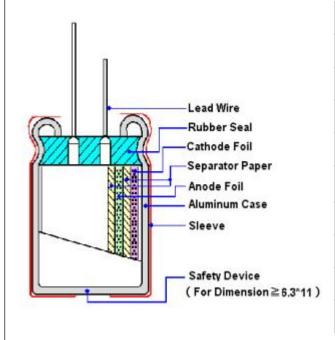
Other: /

3. Product Dimensions

Type



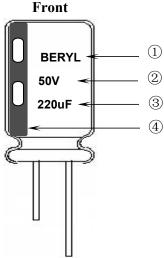
ΦD	5	6.3	8	10	13	16	18	22
P	2	2.5	3.5	5	5	7.5	7.5	10
Фd	0.5	0.5	0.5/0.6	0.6	0.6	0.8	0.8	0.8
а			(L< 20)	± 1.5	(L≥2	$0) \pm 2.0$		

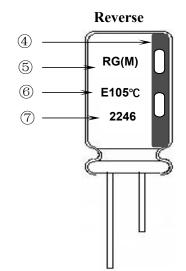

Sheet NO.: 20221112 Page: 3 / 12

4. Part Number

5. Construction

Material name	Composition	Supplier name
Lead	Al and (Fe+Cu+Sn)	NM、RH、ZY
Rubber	IIR	LHX、TH
Case	Aluminum	OX、YJ、LY2、SH
Paper	Wood / Fibrous plant materials	KE, CY
Anode foil	$Al + Al_2O_3$	HY1、HX2、HF、 HX1、GD、FC
Cathode foil	Aluminum	GY、LY1
Electrolyte	Glycol + Water +Ammonium salt	XZB、JZ2
Sleeve	PET	YL、CY
Adhesive tape	propylene, butyl acrylate	RK、RB、CW


Sheet NO.: 20221112 Page: 4/12


BERYL 绿宝石

ALUMINUM ELECTROLYTIC CAPACITORS

6. Product Marking

Marking Sample:

Marking Details:

Capacitor shall be marked the following items:

- 1) Trademark (BERYL)
- 2) working voltage(50V)
- 3) Nominal capacitance(220uF)
- 4) Cathode marked
- 5) Series symbol & Nominal capacitance tolerance (M: -20% ~ +20%)
- 6) Sleeve material(E: PET)

Maximum operating temperature(105°C)

7) Date code (2246)

22: Manufactured year 2022

Code	19	20	21	22	23	24	25	26	
Year	2019	2020	2021	2022	2023	2024	2025	2026	

46: Manufactured week (01, 02, 03, 04......52, 53)

Sheet NO.: 20221112 Page: 5 / 12

7. Characteristics

Standard atmospheric conditions

Unless other specified, the standard range of atmospheric conditions for making measurements and tests is as follows:

Ambient temperature : 15°C to 35°C
Relative humidity : 45% to 85%
Air pressure : 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature : $20^{\circ}\text{C} \pm 2^{\circ}\text{C}$ Relative humidity : 60% to 70%Air pressure : 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is $(6.3\sim100 \text{WV})$ -40°C to +105°C.

Table

	ITEM	PERFORMANCE
1	Nominal capacitance (Tolerance)	Condition> Measuring Frequency: 120Hz±12Hz Measuring Voltage: Not more than 0.5Vrms +1.5~2.0V.DC Measuring Temperature: 20±2°C Criteria> Shall be within the specified capacitance tolerance.
2	Leakage current	 <condition> Connecting the capacitor with a protective resistor (1kΩ±10Ω) in series for 2 minutes, and then, measure leakage current.</condition> <criteria> I: Leakage current (μA) I (μA) ≤0.01CVor 3 (μA) whichever is greater, measurement circuit refer to right drawing.</criteria> C: Capacitance (μF) V: Rated DC working voltage (V)
3	Dissipation factor	<condition> Nominal capacitance, for measuring frequency, voltage and temperature. <criteria> Must be within the parameters (See page 3)</criteria></condition>

Sheet NO.: 20221112 Page : 6 / 12

	ITEM		PE	RFORMAN	NCE		
4	Impedance	<condition> Measuring frequency:100kHz; Measuring temperature:20±2°C Measuring point: 2mm max. from the surface of a sealing rubber on the lead wire. <criteria> (20°C) Must be within the parameters (See page 3)</criteria></condition>					
5	Load life test	According to IEC60384-4No. 4.13 methods, the capacitor is stored at a temperature of Maximum operating temperature ±2°C with DC bias voltage plus the rated ripple current for Rated life +48/0hours. (The sum of DC and ripple peak voltage shall not exceed the rated working voltage) Then the product should be tested after 16 hours recovering time at atmospheric conditions. The result should meet the following table: **Criteria** The characteristic shall meet the following requirements. Leakage current Not more than the specified value. Capacitance Change Within ±25% of initial value. Dissipation Factor Not more than 200% of the specified value. Appearance There shall be no leakage of electrolyte.					ripple e shall not 16 hours
6	Shelf life test	Condition> The capacitors are then stored with no voltage applied at a temperature of Maximum operating temperature±2°C for1000+48/0 hours. Following this period, the capacitors shall be removed from the test chamber and be allowed to stabilized at room temperature for16 hours. measure leakage current Criteria> The characteristic shall meet the following requirements. Leakage current Not more than 200% of the specified value. Capacitance Change Within ±25% of initial value. Dissipation Factor Not more than 200% of the specified value. Appearance There shall be no leakage of electrolyte.					
7	Maximum permissible (ripple current, temperature coefficient)	Condition> The maximum permissible ripple current is the maximum A.C current at 100kHz and can be applied at maximum operating temperature Table-3 The combined value of D.C voltage and the peak A.C voltage shall not exceed the rated voltage and shall not reverse voltage. Frequency Multipliers: Freq (Hz) 120 1k 100k 100					

Sheet NO.: 20221112 Page: 7 / 12

Sheet NO.: 20221112

ALUMINUM ELECTROLYTIC CAPACITORS

Page : 8 / 12

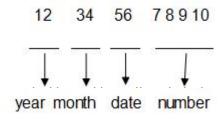
	ITEM				PE	RFO	RMAN	ICE				
8	Terminal strength	Fixed the conservation seconds. If Fixed the conservation is second Diameter 1.5 Conservation in the conservation is second or conservation in the conservation in the conservation is second or conservation in the conservation in the conservation is second or conservation in the conservation in the conservation is second or conservation in the c	ength of term capacitor, ap Bending stre capacitor, ap ds, and then eter of lead v 5mm and les 0.6~0.8 mm	plied for ngth of plied for bent it f	terminals rce to be or 90° to Tens	its of the file for the file fo	e termin original orce N () (51)	positio	4 mm for within minding for 2.5 (0)	orce N (0.25)	e rubbe seconds (kgf)	r) for 90° withi s.
		<condition></condition>	TD 1: 1		(00)				т:			7
	STEP	Testing to	emperat 20±2	ure (°C)	+	ima ta		Time	o anilik			
	1		$\frac{20\pm 2}{0}$,		ime to						
	3			_	ime to							
		4		$\frac{105\pm2}{20+2}$			ime to					
		5 20±2 Time to reach thermal equilibrium Capacitance, DF, and impedance shall be measured at 120Hz.										
9 Temperature characteristics		 Criteria> a. At +105°C, capacitance measured at +20°C shall be within ±25% of its original value. Dissipation factor shall be within the limit of Item 7.3 The leakage current measured shall not more than 10 times of its specified value. b. In step 5, capacitance measured at +20°C shall be within ±10% of its original value. Dissipation factor shall be within the limit of Item 7.3 The leakage current shall not more than the specified value. c. At-40°C, Impedance (Z) ratio shall not exceed the value of the following table. 						alue. Il value.				
		Voltage (V) 6.3	10	16	25	35	50	63	80	100	
		Z-40°C/Z+	20℃ 8	6	4	3	3	3	3	3	3	
		series for 30± 1000 times. T before measur	5 seconds in hen the capa rement	every s	5±0.5 mii	utes	at 15~	35°C.P	rocedu	re shall	l be rep	2) resistor in eated
		CR: Nomina	ai Capacitan	ce (µF)								
10 Surge test	Surge test	Capacitance Change With Dissipation Factor Not			Not more than the specified value. Within $\pm 15\%$ of initial value. Not more than the specified value. There shall be no leakage of electrolyte.							
		Attention: This test si		r voltag							plicable	to such over

	ITEM	PERFORMANCE					
		<condition> Temperature cycle: According to IEC60384-4 Naccording as below:</condition>	Jo.4.7 methods, capacito	r shall be placed in an oven, the condi	ition		
		Te	emperature	Time			
		(1) +20°C		3 Minutes			
	Change of temperature test	(2) Rated low tempera	ture (- 40°C) (-25°C)	30±2 Minutes			
11		(3) Rated high temper	ature (+105°C)	30±2 Minutes			
		(1) to $(3) = 1$ cycle, tot	al 5 cycle				
		Criteria> The characteristic shall mee Leakage current	t the following requirem Not more than the s				
		Dissipation Factor	Not more than the s	specified value.			
		Appearance	There shall be no le	eakage of electrolyte.			
12	Damp heat test	Condition					
13	Solderability test	Condition> The capacitor shall be tested under the following conditions: Soldering temperature : 245 ±5°C Dipping depth : 2mm Dipping speed : 25±2.5mm/s Dipping time : 3±0.5s Criteria> Soldering wetting time Less than 3s Coating quality A minimum of 95% of the surface being immersed					

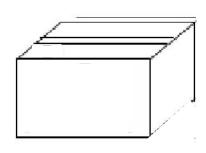
Sheet NO.: 20221112 Page: 9 / 12

	ITEM	PERFORMANCE
14	Vibration test	Condition> The following conditions shall be applied for 2 hours in each 3 mutually perpendicular directions. Vibration frequency range: 10Hz ~ 55Hz each to peak amplitude: 1.5mm Sweep rate: 10Hz ~ 55Hz ~ 10Hz in about 1 minute Mounting method: The capacitor with diameter greater than 12.5mm or longer than 25mm must be fixed in place with a bracket. Within 30°
		<criteria> To be soldered</criteria>
		After the test, the following items shall be tested:
		Inner construction No intermittent contacts, open or short circuiting. No damage of tab terminals or electrodes.
		Appearance No mechanical damage in terminal. No leakage of electrolyte or swelling of the case. The markings shall be legible.
	Resistance	Condition> Terminals of the capacitor shall be immersed into solder bath at 260±5°Cfor10±1seconds or400±10°Cfor3 ⁻⁰ seconds to 1.5~2.0 mm from the body of capacitor. Then the capacitor shall be left under the normal temperature and normal humidity for 1~2 hours before measurement. Criteria>
15	to solder heat	Leakage current Not more than the specified value.
	test	Capacitance Change Within ±5% of initial value.
		Dissipation Factor Not more than the specified value.
		Appearance There shall be no leakage of electrolyte.
16	Vent	Condition> The following test only apply to those products with vent products at diameter ≥∅6.3 with vent. D.C. test The capacitor is connected with its polarity reversed to a DC power source. Then a current selected from Table 2 is applied. Table 2>
10	test	Diameter (mm) DC Current (A)
		22.4 or less 1
		<criteria> The vent shall operate with no dangerous conditions such as flames or dispersion of pieces of the capacitor and/or case.</criteria>

Sheet NO.: 20221112 Page: 10 / 12

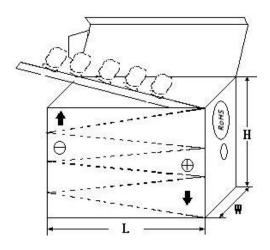


8. Packing Information


Packing Label Marked (the following items shall be marked on the label) (Inside box or bag)

(1)Clint order number (2)Client part number (3)Beryl part number (4)Capacitance (5)Voltage (6)Dimension (7)Packaging quantity (8)Capacitance tolerance (9) QC Marking (10) Lot number (11) Series

LOT Number:


1) Bulk Packing:

3) Outer box

2) Taped Packing:

4) Outer box label:

C.S.R:		Ltd.		
C.S.R P/0:				ROHS HF
C.S.R P/N:				
S.P.R P/N:				QC
SPEC:				
QTY:	PCS	TOL:	%	
L/N:		S.P.R:		

Sheet NO.: 20221112 Page: 11 / 12

9. Prohibition to Use Environment- related Substances

We are hereby to certify the followings:

Our company hereby warrants and guarantees that all or part of products, including, but not limited to, the peripherals, accessories or package, delivered to your company (including your subsidiaries and affiliated companies) directly or indirectly by our company are free from any of the substances listed below.

The latest version of <Substances Prohibited as per RoHS or <Sony-SS-00259>

	Cadmium and cadmium compounds			
	1			
Accord with	Lead and lead compounds			
heavy metal	Mercury and mercury compounds			
	Hexavalent chromium compounds			
Organic chlorin compounds	Polychlorinated biphenyls (PCB)			
	Polychlorinated naphthalenes (PCN)			
	Polychlorinated terphenyls (PCT)			
	Chlorinated paraffins (CP)			
	Other chlorinated organic compounds			
Organic	Polybrominated biphenyls (PBB)			
bromine	Polybrominated diphenylethers (PBDE)			
compounds	Other brominated organic compounds			
Tributyltin compounds				
Triphenyltin compounds				
Asbestos				
Specific azo compounds				
Formaldehyde				
Polyvinyl chloride (PVC) and PVC blends				
F、Cl、Br、I				
REACH				

Sheet NO.: 20221112 Page : 12 / 12

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Aluminium Electrolytic Capacitors - Radial Leaded category:

Click to view products by BERYL manufacturer:

Other Similar products are found below:

LXY50VB4.7M-5X11 RFO-100V471MJ7P# ECE-A1EGE220 B41041A7226M8 B41044A7157M6 NCD681K10KVY5PF

NEV1000M25EF-BULK NEV100M35DC NEV100M63DE NEV220M25DD-BULK NEV.33M100AA NEV4700M50HB NEV.47M100AA

NEVH1.0M250AB NEVH3.3M250BB NEVH3.3M450CC KME50VB100M-8X11.5 SG220M1CSA-0407 ES5107M016AE1DA

ESMG160ETD102MJ16S ESX472M16B 227RZS050M 476CKH100MSA 477RZS050M B41793A9108Q1 UVX1V101KPA1FA

UVX1V222MHA1CA KME25VB100M-6.3X11 VTL100S10 VTL470S10 VTL470S16A 511D336M250EK5D 052687X ECE-A1CF471

NRE-S560M16V6.3X7TBSTF RGA221M1CTA-0611G ERZA630VHN182UP54N UPL1A331MPH NEV1000M6.3DE NEV100M16CB

NEV100M50DD-BULK NEV2200M16FF NEV220M50EE NEV2.2M50AA NEV330M63EF NEV4700M35HI NEV4.7M100BA

NEV47M16BA NEV47M50CB-BULK NEVH1.0M350AB