BMA250E Digital, triaxial acceleration sensor

Bosch Sensortec

BOSCH
Invented for life

BMA250E: Data sheet

Document revision
Document release date
Document number
Technical reference code(s)
Notes
1.3

28 April 2015
BST-BMA250E-DS004-06
02731411690273141219
Data in this document are subject to change without notice.
Product photos and pictures are for illustration purposes only and may differ from the real product's appearance.
Not intended for publishing

$(®) \mathbf{B O S C H}$	BMA250E Data sheet	Page 2

BMA250E

10 BIT, DIGITAL, TRIAXIAL ACCELERATION SENSOR WITH INTELLIGENT ON-CHIP MOTION-TRIGGERED INTERRUPT CONTROLLER

Key features

- Ultra-Small package
- Digital interface
- Programmable functionality
- On-chip FIFO
- On-chip interrupt controller
- Ultra-low power
- Temperature sensor
- RoHS compliant, halogen-free

LGA package (12 pins), footprint $2 \mathrm{~mm} \times 2 \mathrm{~mm}$,
height 0.95 mm
SPI (4-wire, 3 -wire), $I^{2} \mathrm{C}, 2$ interrupt pins
$\mathrm{V}_{\text {DDIo }}$ voltage range: 1.2 V to 3.6 V
Acceleration ranges $\pm 2 \mathrm{~g} / \pm 4 \mathrm{~g} / \pm 8 \mathrm{~g} / \pm 16 \mathrm{~g}$
Low-pass filter bandwidths $1 \mathrm{kHz}-<8 \mathrm{~Hz}$
Integrated FIFO with a depth of 32 frames
Motion-triggered interrupt-signal generation for

- new data
- any-motion (slope) detection
- tap sensing (single tap / double tap)
- orientation recognition
- flat detection
- low-g/high-g detection
- no-motion / inactivity detection
Low current consumption, short wake-up time,
advanced features for system power management

Typical applications

- Display profile switching
- Menu scrolling, tap / double tap sensing
- Gaming
- Pedometer / step counting
- Free-fall detection
- E-compass tilt compensation
- Drop detection for warranty logging
- Advanced system power management for mobile applications

General description

The BMA250E is a triaxial, low-g acceleration sensor with digital output for consumer applications. It allows measurements of acceleration in three perpendicular axes. An evaluation circuitry (ASIC) converts the output of a micromechanical acceleration-sensing structure (MEMS) that works according to the differential capacitance principle.

Package and interfaces of the BMA250E have been defined to match a multitude of hardware requirements. Since the sensor features an ultra-small footprint and a flat package it is ingeniously suited for mobile applications.

The BMA250E offers a variable $V_{\text {DDIo }}$ voltage range from 1.2 V to 3.6 V and can be programmed to optimize functionality, performance and power consumption in customer specific applications.

(®) BOSCH	BMA250E Data sheet	Page 3

In addition it features an on-chip interrupt controller enabling motion-based applications without use of a microcontroller.

The BMA250E senses tilt, motion, inactivity and shock vibration in cell phones, handhelds, computer peripherals, man-machine interfaces, virtual reality features and game controllers.

(\oplus) BOSCH	BMA250E Data sheet	Page 4

Index of Contents

1. SPECIFICATION 8
2. ABSOLUTE MAXIMUM RATINGS 11
3. BLOCK DIAGRAM 12
4. FUNCTIONAL DESCRIPTION 13
4.1 SUPPLY VOLTAGE AND POWER MANAGEMENT 13
4.2 POWER MODES 14
4.3 SENSOR DATA 18
4.3.1 Acceleration data 18
4.3.2 TEMPERATURE SENSOR 19
4.4 SELF-TEST 20
4.5 Offset compensation 21
4.5.1 SLOW COMPENSATION 23
4.5.2 FAST COMPENSATION 23
4.5.3 MANUAL COMPENSATION 24
4.5.4 InLINE CALIBRATION 24
4.6 NoN-VOLATILE MEMORY 25
4.7 INTERRUPT CONTROLLER 26
4.7.1 General features 26
4.7.2 MAPPING TO PHYSICAL INTERRUPT PINS (INTTYPE TO INT PIN\#) 27
4.7.3 ELECTRICAL BEHAVIOUR (INT PIN\# TO OPEN-DRIVE OR PUSH-PULL) 28
4.7.4 New data interrupt 28
4.7.5 SLOPE / ANY-MOTION DETECTION 29
4.7.6 TAP SENSING 31
4.7.7 Orientation recognition 34
4.7.8 FLAT DETECTION 39
4.7.9 LOW-G INTERRUPT 40
4.7.10 High-G interrupt 41
4.7.11 No-MOTION / SLOW MOTION DETECTION. 42
4.8 Softreset 44
5. FIFO OPERATION 45
5.1 FIFO Operating Modes 45
5.2 FIFO Data Readout 46
5.3 FIFO Frame Counter and Overrun Flag 46
5.4 FIFO INTERRUPTS 47

(\oplus) BOSCH	BMA250E Data sheet	Page 5

6. REGISTER DESCRIPTION 48
6.1 GenERAL REMARKS 48
6.2 REGISTER MAP 49
REGISTER 0×00 (BGW CHIPID) 50
Register 0x02 (ACCD_X_LSB) 50
Register 0x03 (ACCD_X_MSB) 51
Register 0x04 (ACCD_Y_LSB) 52
Register 0x05 (ACCD_Y_MSB) 53
Register 0x06 (ACCD_Z_LSB) 54
Register 0x07 (ACCD_Z_MSB) 55
Register 0x08 (ACCD_TEMP) 56
Register 0x09 (INT_STATUS_0) 57
Register 0x0A (INT_STATUS_1) 58
Register 0x0B (INT_STATUS_2) 59
Register 0x0C (INT_STATUS_3) 60
Register 0x0E (FIFO_STATUS) 61
Register 0x0F (PMU_RANGE) 62
Register 0x10 (PMU_BW) 62
Register 0x11 (PMU_LPW) 63
Register 0x12 (PMU_LOW_NOISE) 64
Register 0x13 (ACCD_HBW) 65
Register 0x14 (BGW_SOFTRESET) 66
Register 0x16 (INT_EN_0) 66
Register 0x17 (INT_EN_1) 67
Register 0x18 (INT_EN_2) 68
Register 0x19 (INT_MAP_0) 69
Register 0x1A (INT_MAP_1) 70
Register 0x1B (INT_MAP_2) 71
Register 0x1E (INT_SRC) 72
Register 0x20 (INT_OUT_CTRL) 73
Register 0x21 (INT_RST_LATCH) 74
Register 0x22 (INT_0) 74
Register 0x23 (INT_1) 75
Register 0x24 (INT_2) 75

(\oplus) BOSCH	BMA250E Data sheet	Page 6

Register 0x25 (INT_3) 76
Register 0x26 (INT_4) 76
Register 0x27 (INT_5) 77
Register 0x28 (INT_6) 78
Register 0x29 (INT_7) 78
Register 0x2A (INT_8) 79
Register 0x2B (INT_9) 80
REgISTER 0x2C (INT_A) 81
Register 0x2D (INT_B) 82
Register 0x2E (INT_C) 82
Register 0x2F (INT_D) 83
Register 0x30 (FIFO_CONFIG_0) 84
ReGister 0x32 (PMU_SELF_TEST) 85
Register 0x33 (TRIM_NVM_CTRL) 86
Register 0x34 (BGW_SPI3_WDT) 87
Register 0x36 (OFC_CTRL) 88
Register 0x37 (OFC SETTING) 89
Register 0x38 (OFC_OFFSET_X) 90
Register 0x39 (OFC_OFFSET_Y) 91
Register 0x3A (OFC_OFFSET_Z) 92
Register 0x3B (TRIM_GP0) 92
Register 0x3C (TRIM_GP1) 93
Register 0x3E (FIFO_CONFIG_1) 94
Register 0x3F (FIFO_DATA) 95
7. DIGITAL INTERFACES 96
7.1 Serial peripheral interface (SPI) 97
7.2 Inter-Integrated Circuit (I²C) 101
7.2.1 SPI and I²C Access Restrictions 104
8. PIN-OUT AND CONNECTION DIAGRAM 105
8.1 PIN-OUT 105
8.2 Connection diagram 4-WIRE SPI 106
8.3 Connection diagram 3-wire SPI 107
8.4 Connection diagram I ${ }^{2} \mathrm{C}$ 108

$(円)$ BOSCH	BMA250E Data sheet	Page 7

9. PACKAGE 109
9.1 OUTLINE DIMENSIONS 109
9.2 SENSING AXES ORIENTATION 110
9.3 Landing Pattern Recommendation 111
9.4 MARKING 112
9.4.1 MASS PRODUCTION DEVICES 112
9.4.2 Engineering samples 112
9.5 SOLDERING GUIDELINES 113
9.6 HANDLING INSTRUCTIONS 114
9.7 Tape and reel specification 115
9.7.1 Orientation within the reel 116
9.8 ENVIRONMENTAL SAFETY 117
9.8.1 HALOGEN CONTENT 117
9.8.2 Internal package structure 117
10. LEGAL DISCLAIMER 118
10.1 Engineering samples 118
10.2 PRODUCT USE 118
10.3 ApPLICATION EXAMPLES AND HINTS 118
11. DOCUMENT HISTORY AND MODIFICATION 119

$(円) B O S C H$	BMA250E Data sheet	Page 8

1. Specification

Unless stated otherwise, the given values are over lifetime, operating temperature and voltage ranges. Minimum/maximum values are $\pm 3 \sigma$.

Table 1: Parameter specification

Operating Conditions						
Parameter	Symbol	Condition	Min	Typ	Max	Units
Acceleration Range	$\mathrm{g}_{\mathrm{FS} 2 \mathrm{~g}}$	Selectable via serial digital interface		± 2		g
	gfs4g			± 4		g
	$\mathrm{gFsgg}^{\text {g }}$			± 8		g
	gFS16g			± 16		g
Supply Voltage Internal Domains	$V_{\text {DD }}$		1.62	2.4	3.6	V
Supply Voltage I/O Domain	$\mathrm{V}_{\text {DDIO }}$		1.2	2.4	3.6	V
Voltage Input Low Level	$\mathrm{V}_{\text {IL }}$	SPI \& ${ }^{2} \mathrm{C}$			$0.3 \mathrm{~V}_{\text {DDIO }}$	-
Voltage Input High Level	V_{IH}	SPI \& ${ }^{2} \mathrm{C}$	$0.7 \mathrm{~V}_{\text {DIIO }}$			-
Voltage Output Low Level	VoL	$\mathrm{I}_{\mathrm{LL}}=3 \mathrm{~mA}, \mathrm{SPI} \& \mathrm{I}^{2} \mathrm{C}$			$0.2 \mathrm{~V}_{\text {DIIO }}$	-
Voltage Output High Level	$\mathrm{V}_{\text {OH }}$	$\mathrm{I}_{\mathrm{OH}}=3 \mathrm{~mA}, \mathrm{SPI}$	$0.8 \mathrm{~V}_{\text {DIIO }}$			-
Total Supply Current in Normal Mode	$I_{\text {D }}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{bw}=1 \mathrm{kHz} \\ \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDIO}}=2.4 \mathrm{~V} \end{gathered}$		130		$\mu \mathrm{A}$
Total Supply Current in Suspend Mode	$\mathrm{I}_{\text {DSsum }}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDIO}}=2.4 \mathrm{~V} \end{gathered}$		2.1		$\mu \mathrm{A}$
Total Supply Current in Deep Suspend Mode	$\mathrm{I}_{\text {Ddsum }}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDIO}}=2.4 \mathrm{~V} \end{gathered}$		1		$\mu \mathrm{A}$
Total Supply Current in Low-power Mode 1	$\mathrm{I}_{\text {Dlp } 1}$	$\begin{gathered} \mathrm{T}_{A}=25^{\circ} \mathrm{C}, \mathrm{bw}=1 \mathrm{kHz} \\ \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDIO}}=2.4 \mathrm{~V} \\ \text { sleep duration }=25 \mathrm{~ms} \end{gathered}$		6.5		$\mu \mathrm{A}$
Total Supply Current in Low-power Mode 2	$\mathrm{l}_{\text {DDlp2 }}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{bw}=1 \mathrm{kHz} \\ \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDIO}}=2.4 \mathrm{~V} \\ \text { sleep duration }=25 \mathrm{~ms} \end{gathered}$		66		$\mu \mathrm{A}$

(A) BOSCH	BMA250E Data sheet	Page 9

Total Supply Current in Standby Mode	$\mathrm{l}_{\text {DSsbm }}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDIO}}=2.4 \mathrm{~V} \end{gathered}$		62		$\mu \mathrm{A}$
Wake-Up Time 1	$\mathrm{t}_{\mathrm{w}, \mathrm{up} 1}$	from Low-power Mode 1 or Suspend Mode or Deep Suspend Mode $\mathrm{bw}=1 \mathrm{kHz}$		1.3	1.8	ms
Wake-Up Time 2	$\mathrm{t}_{\mathrm{w} \text {,up2 }}$	from Low-power Mode 2 or Stand-by Mode $\mathrm{bw}=1 \mathrm{kHz}$		1	1.2	ms
Start-Up Time	$\mathrm{t}_{\text {s,up }}$	POR, bw $=1 \mathrm{kHz}$			3	ms
Non-volatile memory (NVM) write-cycles	$\mathrm{n}_{\text {NVM }}$				15	cycles
Operating Temperature	$\mathrm{T}_{\text {A }}$		-40		+85	${ }^{\circ} \mathrm{C}$
Output Signal						
Parameter	Symbol	Condition	Min	Typ	Max	Units
Sensitivity	$\mathrm{S}_{2 \mathrm{~g}}$	$\mathrm{g}_{\text {FS2g }}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		256		LSB/g
	$\mathrm{S}_{4 \mathrm{~g}}$	$\mathrm{g}_{\text {FS4g }}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		128		LSB/g
	$\mathrm{S}_{8 \mathrm{~g}}$	$\mathrm{g}_{\text {FS8g, }}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		64		LSB/g
	$\mathrm{S}_{16 \mathrm{~g}}$	$\mathrm{g}_{\text {FS16g }}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		32		LSB/g
Sensitivity Temperature Drift	TCS	$\underset{\text { Nominal } \mathrm{V}_{\text {DD }} \text { supplies }}{\mathrm{g}_{\mathrm{SS}}}$		± 0.02		\%/K
Zero-g Offset	Off	$\mathrm{g}_{\mathrm{FS2}}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, nominal $V_{D D}$ supplies, over life-time		± 80		mg
Zero-g Offset Temperature Drift	TCO	$\underset{\text { Nominal } \mathrm{V}_{\text {DD }} \text { supplies }}{\mathrm{g}_{\text {S }}}$		± 1		mg/K
Bandwidth	bw_{8}	$2^{\text {nd }}$ order filter, bandwidth programmable		8		Hz
	bw_{16}			16		Hz
	bw_{31}			31		Hz
	bw_{63}			63		Hz
	bw_{125}			125		Hz
	bw_{250}			250		Hz
	bw_{500}			500		Hz
	bw_{1000}			1,000		Hz
Nonlinearity	NL	best fit straight line, $\mathrm{g}_{\mathrm{FS} 2 \mathrm{~g}}$		± 0.5		\%FS
Output Noise Density	$\mathrm{n}_{\text {rms }}$	$\mathrm{g}_{\mathrm{FS} 2 \mathrm{~g},}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Nominal V_{DD} supplies Normal mode		400		$\mu \mathrm{g} / \mathrm{VHz}$

$((1)$ BOSCH	BMA250E Data sheet	Page 10

Temperature Sensor Measurement Range	T_{S}		-40		85	${ }^{\circ} \mathrm{C}$
Temperature Sensor Slope	dT_{S}			0.5		$\mathrm{~K} / \mathrm{LSB}$
Temperature Sensor Offset	OT_{S}			± 2		K
Parameter	Symbol	MECHANICAL CHARACTERISTICs Condition	Min	Typ	Max	Units
Cross Axis Sensitivity	S	relative contribution between any two of the three axes		1		$\%$
Alignment Error	E_{A}	relative to package outline		± 0.5		\circ

(®) BOSCH	BMA250E Data sheet	Page 11

2. Absolute maximum ratings

Table 2: Absolute maximum ratings

Parameter	Condition	Min	Max	Units
Voltage at Supply Pin	$V_{\text {DD }}$ Pin	-0.3	4.25	V
	$V_{\text {Ddıo }}$ Pin	-0.3	4.25	V
Voltage at any Logic Pin	Non-Supply Pin	-0.3	$\mathrm{V}_{\text {DDIO }}+0.3$	V
Passive Storage Temp. Range	$\leq 65 \%$ rel. H.	-50	+150	${ }^{\circ} \mathrm{C}$
None-volatile memory (NVM) Data Retention	$\mathrm{T}=85^{\circ} \mathrm{C},$ after 15 cycles	10		y
Mechanical Shock	Duration $\leq 200 \mu \mathrm{~s}$		10,000	g
	Duration $\leq 1.0 \mathrm{~ms}$		2,000	g
	Free fall onto hard surfaces		1.8	m
ESD	HBM, at any Pin		2	kV
	CDM		500	V
	MM		200	V

Note:
Stress above these limits may cause damage to the device. Exceeding the specified electrical limits may affect the device reliability or cause malfunction.

$((1)$ BOSCH	BMA250E Data sheet	Page 12

3. Block diagram

Figure 1 shows the basic building blocks of the BMA250E:

Figure 1: Block diagram of BMA250E

$((1)$ BOSCH	BMA250E Data sheet	Page 13

4. Functional description

Note: Default values for registers can be found in chapter 6 .

4.1 Supply voltage and power management

The BMA250E has two distinct power supply pins:

- $V_{D D}$ is the main power supply for the internal blocks
- $\mathrm{V}_{\text {DDIO }}$ is a separate power supply pin used for supplying power for the interface

There are no limitations on the voltage levels of both pins relative to each other, as long as each of them lies within its operating range. Furthermore, the device can be completely switched off $\left(\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}\right)$ while keeping the $\mathrm{V}_{\text {DDIO }}$ supply on ($\mathrm{V}_{\mathrm{DDIO}}>0 \mathrm{~V}$) or vice versa.

When the $\mathrm{V}_{\text {DDIo }}$ supply is switched off, all interface pins (CSB, SDI, SCK, PS) must be kept close to $G^{N D} D_{10}$ potential.

The device contains a power-on reset (POR) generator. It resets the logic part and the register values after powering-on V_{DD} and $\mathrm{V}_{\text {DDIo }}$. Please note, that all application specific settings which are not equal to the default settings (refer to 6.2 register map), must be re-set to its designated values after POR.

There are no constraints on the switching sequence of both supply voltages. In case the $I^{2} \mathrm{C}$ interface shall be used, a direct electrical connection between $V_{\text {DDIO }}$ supply and the PS pin is needed in order to ensure reliable protocol selection. For SPI interface mode the PS pin must be directly connected to GND_{10}.

$(®) \mathbf{B O S C H}$	BMA250E Data sheet	Page 14

4.2 Power modes

The BMA250E has six different power modes. Besides normal mode, which represents the fully operational state of the device, there are five energy saving modes: deep-suspend mode, suspend mode, standby mode, low-power mode 1 and low-power mode 2.

The possible transitions between the power modes are illustrated in figure 2:

Figure 2: Power mode transition diagram

After power-up BMA250E is in normal mode so that all parts of the device are held powered-up and data acquisition is performed continuously.

In deep-suspend mode the device reaches the lowest possible power consumption. Only the interface section is kept alive. No data acquisition is performed and the content of the configuration registers is lost. Deep suspend mode is entered (left) by writing ' 1 ' (0 ') to the (0x11) deep_suspend bit while (0×11) suspend bit is set to ' 0 '. The $I^{2} \mathrm{C}$ watchdog timer remains functional. The (0×11) deep_ suspend bit, the (0×34) spi3 bit, (0×34) i2c_wdt_en bit and the (0×34) i2c_wdt_sel bit are functional in deep-suspend mode. Equally the interrupt level and driver configuration registers (0×20) int1_Ivl, (0×20) int1_od, (0×20) int2_Iv/, and (0×20) int2_od are accessible. Still it is possible to enter normal mode by performing a softreset as described in chapter 4.8. Please note, that all application specific settings which are not equal to the default settings (refer to 6.2 register map), must be re-set to its designated values after leaving deepsuspend mode.

$(円)$ BOSCH	BMA250E Data sheet	Page 15

In suspend mode the whole analog part is powered down. No data acquisition is performed. While in suspend mode the latest acceleration data and the content of all configuration registers are kept. Writing to and reading from registers is supported except from the (0x3E) fifo_config_1, (0x30) fifo_config_0 and (0x3F) fifo_data register. It is possible to enter normal mode by performing a softreset as described in chapter 4.8.

Suspend mode is entered (left) by writing ' 1 ' (' 0 ') to the (0×11) suspend bit after bit (0×12) lowpower_mode has been set to ' 0 '. Although write access to registers is supported at the full interface clock speed (SCL or SCK), a waiting period must be inserted between two consecutive write cycles (please refer also to section 7.2.1).

In standby mode the analog part is powered down, while the digital part remains largely operational. No data acquisition is performed. Reading and writing registers is supported without any restrictions. The latest acceleration data and the content of all configuration registers are kept. Standby mode is entered (left) by writing '1' ('0') to the (0x11) suspend bit after bit (0x12) lowpower_mode has been set to ' 1 '. It is also possible to enter normal mode by performing a softreset as described in chapter 4.8.

In low-power mode 1, the device is periodically switching between a sleep phase and a wakeup phase. The wake-up phase essentially corresponds to operation in normal mode with complete power-up of the circuitry. The sleep phase essentially corresponds to operation in suspend mode. Low-power mode is entered (left) by writing ' 1 ' (' 0 ') to the (0×11) lowpower_en bit with bit ($0 x 12$) lowpower_mode set to ' 0 '. Read access to registers is possible except from the ($0 \times 3 F$) fifo_data register. However, unless the register access is synchronised with the wake-up phase, the restrictions of the suspend mode apply.

Low-power mode 2 is very similar to low-power mode 1, but register access is possible at any time without restrictions. It consumes more power than low-power mode 1. In low-power mode 2 the device is periodically switching between a sleep phase and a wake-up phase. The wakeup phase essentially corresponds to operation in normal mode with complete power-up of the circuitry. The sleep phase essentially corresponds to operation in standby mode. Low-power mode is entered (left) by writing ' 1 ' ('0') to the (0×11) lowpower_en bit with bit (0×12) lowpower mode set to ' 1 '.

The timing behaviour of the low-power modes 1 and 2 depends on the setting of the (0×12) sleeptimer_mode bit. When (0x12) sleeptimer_mode is set to ' 0 ', the event-driven time-base mode (EDT) is selected. In EDT the duration of the wake-up phase depends on the number of samples required by the enabled interrupt engines. If an interrupt is detected, the device stays in the wake-up phase as long as the interrupt condition endures (non-latched interrupt), or until the latch time expires (temporary interrupt), or until the interrupt is reset (latched interrupt). If no interrupt is detected, the device enters the sleep phase immediately after the required number of acceleration samples have been taken and an active interface access cycle has ended. The EDT mode is recommended for power-critical applications which do not use the FIFO. Also, EDT mode is compatible with legacy BST sensors. Figure 3 shows the timing diagram for lowpower modes 1 and 2 when EDT is selected.

(®) BOSCH	BMA250E Data sheet	Page 16

Figure 3: Timing Diagram for low-power mode 1/2, EDT

When (0x12) sleeptimer_mode is set to ' 1 ', the equidistant-sampling mode (EST) is selected. The use of the EST mode is recommended when the FIFO is used since it ensures that equidistant samples are sampled into the FIFO regardless of whether the active phase is extended by active interrupt engines or interface activity. In EST mode the sleep time $t_{\text {SLEEP }}$ is defined as shown in Figure 4. The FIFO sampling time $t_{\text {SAMPLE }}$ is the sum of the sleep time $t_{\text {SLEEP }}$ and the sensor data sampling time $t_{\text {SSMP }}$. Since interrupt engines can extend the active phase to exceed the sleep time $t_{\text {SLEEP }}$, equidistant sampling is only guaranteed if the bandwidth has been chosen such that $1 /(2 * b w)=n^{*} t_{\text {SLEEP }}$ where n is an integer. If this condition is infringed, equidistant sampling is not possible. Once the sleep time has elapsed the device will store the next available sample in the FIFO. This set-up condition is not recommended as it may result in timing jitter.

Figure 4: Timing Diagram for low-power mode $1 / 2$, EST

(A) BOSCH	BMA250E Data sheet	Page 17

The sleep time for lower-power mode 1 and 2 is set by the (0×11) sleep_dur bits as shown in the following table:

Table 3: Sleep phase duration settings

(0x11) sleep_dur	Sleep Phase Duration $\boldsymbol{t}_{\text {sleep }}$				
0000 b	0.5 ms	$	$	0001 b	0.5 ms
:---:	:---:				
0010 b	0.5 ms				
0011 b	0.5 ms				
0100 b	0.5 ms				
0101 b	0.5 ms				
0110 b	1 ms				
0111 b	2 ms				
1000 b	4 ms				
1001 b	6 ms				
1010 b	10 ms				
1011 b	25 ms				
1100 b	50 ms				
1101 b	100 ms				
1110 b	500 ms				
1111 b	1 s				

The current consumption of the BMA250E in low-power mode 1 ($I_{D D / p 1}$) and low-power mode 2 ($I_{D D / p 2)}$ can be estimated with the following formulae:

$$
\begin{aligned}
& I_{D D l p 1} \approx \frac{t_{\text {sleep }} \cdot I_{\text {DDsum }}+t_{\text {active }} \cdot I_{D D}}{t_{\text {sleep }}+t_{\text {active }}} . \\
& I_{D D l p 22} \approx \frac{t_{\text {sleep }} \cdot I_{D D \text { sbm }}+t_{\text {active }} \cdot I_{D D}}{t_{\text {sleep }}+t_{\text {active }}}
\end{aligned}
$$

When estimating the length of the wake-up phase $t_{\text {active }}$, the corresponding typical wake-up time, $t_{w, u p 1}$ or $t_{w, \text { up } 2}$ and $t_{u t}$ (given in Table 4) have to be considered:

If bandwidth is $>=31.25 \mathrm{~Hz}$:

$$
t_{\text {active }}=t_{u t}+t_{w, u p 1}-0.9 \mathrm{~ms}\left(\text { or } t_{\text {active }}=t_{u t}+t_{w, \text { up } 2}-0.9 \mathrm{~ms}\right)
$$

else:

$$
t_{\text {active }}=4 t_{u t}+t_{w, \text { up } 1}-0.9 \mathrm{~ms}\left(\text { or } t_{\text {active }}=4 t_{u t}+t_{w, \text { up2 } 2}-0.9 \mathrm{~ms}\right)
$$

During the wake-up phase all analog modules are held powered-up, while during the sleep phase most analog modules are powered down. Consequently, a wake-up time of at least $t_{w, u p 1}$ $\left(t_{w, u p 2}\right)$ is needed to settle the analog modules so that reliable acceleration data are generated.

$($ (®) BOSCH	BMA250E Data sheet	Page 18

4.3 Sensor data

4.3.1 Acceleration data

The width of acceleration data is 10 bits given in two's complement representation. The 10 bits for each axis are split into an MSB upper part (one byte containing bits 9 to 2) and an LSB lower part (one byte containing bits 2 to 0 of acceleration and a ($0 \times 02,0 \times 04,0 \times 06$) new_data flag). Reading the acceleration data registers shall always start with the LSB part. In order to ensure the integrity of the acceleration data, the content of an MSB register is locked by reading the corresponding LSB register (shadowing procedure). When shadowing is enabled, the MSB must always be read in order to remove the data lock. The shadowing procedure can be disabled (enabled) by writing ' 1 ' (' 0 ') to the bit shadow_dis. With shadowing disabled, the content of both MSB and LSB registers is updated by a new value immediately. Unused bits of the LSB registers may have any value and should be ignored. The ($0 \times 02,0 \times 04,0 \times 06$) new_data flag of each LSB register is set if the data registers have been updated. The flag is reset if either the corresponding MSB or LSB part is read.

Two different streams of acceleration data are available, unfiltered and filtered. The unfiltered data is sampled with 2 kHz . The sampling rate of the filtered data depends on the selected filter bandwidth and is always twice the selected bandwidth (BW = ODR/2). Which kind of data is stored in the acceleration data registers depends on bit (0×13) data_high_bw. If (0×13) data_high_bw is ' 0 ' (' 1 '), then filtered (unfiltered) data is stored in the registers. Both data streams are offset-compensated.

The bandwidth of filtered acceleration data is determined by setting the (0x10) bw bit as followed:

Table 4: Bandwidth configuration

bw	Bandwidth	Update Time tut
$00 x$ ux	${ }^{*}$)	-
01000	7.81 Hz	64 ms
01001	15.63 Hz	32 ms
01010	31.25 Hz	16 ms
01011	62.5 Hz	8 ms
01100	125 Hz	4 ms
01101	250 Hz	2 ms
01110	500 Hz	1 ms
01111	1000 Hz	0.5 ms
1 kxxx	$\left.{ }^{*}\right)$	-

*) Note: Settings 00xxx result in a bandwidth of 7.81 Hz ; settings 1 xxxx result in a bandwidth of 1000 Hz . It is recommended to actively set an application specific and an appropriate bandwidth and to use the range from ' $01000 \mathrm{~b}^{\prime}$ to ' 01111 b ' only in order to be compatible with future products.

(A) BOSCH	BMA250E Data sheet	Page 19

The BMA250E supports four different acceleration measurement ranges. A measurement range is selected by setting the ($0 \times 0 F$) range bits as follows:

Table 5: Range selection

Range	Acceleration measurement range	Resolution
0011	$\pm 2 \mathrm{~g}$	$3.91 \mathrm{mg} / \mathrm{LSB}$
0101	$\pm 4 \mathrm{~g}$	$7.81 \mathrm{mg} / \mathrm{LSB}$
1000	$\pm 8 \mathrm{~g}$	$15.63 \mathrm{mg} / \mathrm{LSB}$
1100	$\pm 16 \mathrm{~g}$	$31.25 \mathrm{mg} / \mathrm{LSB}$
others	reserved	-

4.3.2 Temperature sensor

The width of temperature data is 8 bits given in two's complement representation. Temperature values are available in the (0×08) temp register.

The slope of the temperature sensor is $0.5 \mathrm{~K} / \mathrm{LSB}$, its center temperature is $23^{\circ} \mathrm{C}[(0 \times 08)$ temp $=$ $0 \times 00]$.

(A) BOSCH	BMA250E Data sheet	Page 20

4.4 Self-test

This feature permits to check the sensor functionality by applying electrostatic forces to the sensor core instead of external accelerations. By actually deflecting the seismic mass, the entire signal path of the sensor can be tested. Activating the self-test results in a static offset of the acceleration data; any external acceleration or gravitational force applied to the sensor during active self-test will be observed in the output as a superposition of both acceleration and self-test signal.

Before the self-test is enabled the g-range should be set to 8 g . The self-test is activated individually for each axis by writing the proper value to the (0x32) self_test_axis bits (' 01 b ' for x axis, '10b' for y-axis, '11b' for z-axis, ' 00 b ' to deactivate self-test). It is possible to control the direction of the deflection through bit (0×32) self_test_sign. The excitation occurs in negative (positive) direction if (0×32) self_test_sign $=$ ' $0 b^{\prime}{ }^{-}\left(1 b^{\prime}\right)$. The amplitude of the deflection has to be set high by writing (0×32) self_test_amp=' 1 b '. After the self-test is enabled, the user should wait 50 ms before interpreting the acceleration data.

In order to ensure a proper interpretation of the self-test signal it is recommended to perform the self-test for both (positive and negative) directions and then to calculate the difference of the resulting acceleration values. Table 6 shows the minimum differences for each axis. The actually measured signal differences can be significantly larger.

Table 6: Self-test difference values

	x-axis signal	y-axis signal	z-axis signal
resulting minimum difference signal	800 mg	800 mg	

It is recommended to perform a reset of the device after a self-test has been performed. If the reset cannot be performed, the following sequence must be kept to prevent unwanted interrupt generation: disable interrupts, change parameters of interrupts, wait for at least 50 ms , enable desired interrupts.

(\leftrightarrow) BOSCH	BMA250E Data sheet	Page 21

4.5 Offset compensation

Offsets in measured signals can have several causes but they are always unwanted and disturbing in many cases. Therefore, the BMA250E offers an advanced set of four digital offset compensation methods which are closely matched to each other. These are slow, fast, and manual compensation as well as inline calibration.

The compensation is performed with unfiltered data, and is then applied to both, unfiltered and filtered data. If necessary the result of this computation is saturated to prevent any overflow errors (the smallest or biggest possible value is set, depending on the sign). However, the registers used to read and write compensation values have only a width of 8 bits.

An overview of the offset compensation principle is given in figure 5:

Figure 5: Principle of offset compensation

(A) BOSCH	BMA250E Data sheet	Page 22

The public offset compensation registers (0x38) offset_x, (0x39) offset_y, (0x3A) offset_z are images of the corresponding registers in the NVM. With each image update (see section 4.6 Non-volatile memory for details) the contents of the NVM registers are written to the public registers. The public registers can be over-written by the user at any time. After changing the contents of the public registers by either an image update or manually, all 8bit values are extended to 10bit values for internal computation. In the opposite direction, if an internally computed value changes it is converted to an 8bit value and stored in the public register.

Depending on the selected g-range the conversion from 10bit to 8bit values can result in a loss of accuracy of one to several LSB. This is shown in figure 5.

In case an internally computed compensation value is too small or too large to fit into the corresponding register, it is saturated in order to prevent an overflow error.

By writing ' 1 ' to the (0×36) offset_reset bit, all offset compensation registers are reset to zero.

$(H) B O S C H$	BMA250E Data sheet	Page 23

4.5.1 Slow compensation

Slow compensation is based on a $1^{\text {st }}$ order high-pass filter, which continuously drives the average value of the output data stream of each axis to zero. The bandwidth of the high-pass filter is configured with bit (0x37) cut_off according to Table 7Fehler! Verweisquelle konnte nicht gefunden werden.

Table 7: Compensation period settings

(0x37) cut_off	high-pass filter bandwidth	Example bw $=500 \mathrm{~Hz}$
0b	$\frac{1 \mathrm{~Hz} \times b w *}{1000 \mathrm{~Hz}}$	$\frac{1 \mathrm{~Hz} \times 500 \mathrm{~Hz}}{1000 \mathrm{~Hz}}=0.5 \mathrm{~Hz}$
$1 b$	$\frac{10 \mathrm{~Hz} \times b w *}{1000 \mathrm{~Hz}}$	$\frac{10 \mathrm{~Hz} \times 500 \mathrm{~Hz}}{1000 \mathrm{~Hz}}=5 \mathrm{~Hz}$

*bw: please insert selected decimal data bandwidth value [Hz] from table 4

The slow compensation can be enabled (disabled) for each axis independently by setting the bits (0×36) hp_x_en, $h p_{-} y_{-} e n, h p_{-} z _e n$ to '1' ('0'), respectively.

Slow compensation should not be used in combination with low-power mode. In low-power mode the conditions (availability of necessary data) for proper function of slow compensation are not fulfilled.

4.5.2 Fast compensation

Fast compensation is a one-shot process by which the compensation value is set in such a way that when added to the raw acceleration, the resulting acceleration value of each axis approaches the target value. This is best suited for "end-of-line trimming" with the customer's device positioned in a well-defined orientation. For fast compensation the g-range has to be switched to 2 g .

The algorithm in detail: An average of 16 consecutive acceleration values is computed and the difference between target value and computed value is written to ($0 \times 38,0 \times 39,0 \times 3 A$) offset_filt_ $x / y / z$. The public registers ($0 x 38,0 \times 39,0 x 3 A$) offset_filt_ $x / y / z$ are updated with the contents of the internal registers (using saturation if necessary) and can be read by the user.

Fast compensation is triggered for each axis individually by setting the (0x36) cal_trigger bits as shown in Table 8:

Table 8: Fast compensation axis selection

(0x36)	
cal_trigger	Selected Axis
00 b	none
01 b	x
10 b	y
11 b	z

$((1)$ BOSCH	BMA250E Data sheet	Page 24

Register (0x36) cal_trigger is a write-only register. Once triggered, the status of the fast correction process is reflected in the status bit (0×36) cal_rdy. Bit (0×36) cal_rdy is ' 0 ' while the correction is in progress. Otherwise it is ' 1 '. Bit (0×36) cal_rdy is ' 0 ' when (0×36) cal_trigger is not '00'.
For the fast offset compensation, the compensation target can be chosen by setting the bits (0x37) offset_target_x, (0x37) offset_target_y, and (0x37) offset_target_z according to Table 9:

Table 9: Offset target settings

(0x37) offset_target_x/y/z	Target value
00 b	0 g
01 b	+1 g
10 b	-1 g
11 b	0 g

Fast compensation should not be used in combination with any of the low-power modes. In lowpower mode the conditions (availability of necessary data) for proper function of fast compensation are not fulfilled.

4.5.3 Manual compensation

The contents of the public compensation registers ($0 x 38,0 x 39,0 x 3 A$) offset_filt_x/y/z can be set manually via the digital interface. It is recommended to write into these registers directly after a new data interrupt has occurred in order not to disturb running offset computations.

Writing to the offset compensation registers is not allowed while the fast compensation procedure is running.

4.5.4 Inline calibration

For certain applications, it is often desirable to calibrate the offset once and to store the compensation values permanently. This can be achieved by using one of the aforementioned offset compensation methods to determine the proper compensation values and then storing these values permanently in the NVM. See section 4.6 Non-volatile memory for details of the storing procedure.

Each time the device is reset, the compensation values are loaded from the non-volatile memory into the image registers and used for offset compensation until they are possibly overwritten using one of the other compensation methods.

$($ (A) BOSCH	BMA250E Data sheet	Page 25

4.6 Non-volatile memory

The entire memory of the BMA250E consists of three different kinds of registers: hard-wired, volatile, and non-volatile. Part of it can be both read and written by the user. Access to nonvolatile memory is only possible through (volatile) image registers.

Altogether, there are eight registers (octets) with NVM backup which are accessible by the user. The addresses of the image registers range from 0×38 to $0 \times 3 \mathrm{C}$. While the addresses up to $0 \times 3 \mathrm{~A}$ are used for offset compensation (see 4.4 Offset Compensation), addresses $0 \times 3 \mathrm{~B}$ and $0 \times 3 \mathrm{C}$ are general purpose registers not linked to any sensor-specific functionality.

The content of the NVM is loaded to the image registers after a reset (either POR or softreset) or after a user request which is performed by writing ' 1 ' to the write-only bit (0×33) nvm_load. As long as the image update is in progress, bit (0x33) nvm_rdy is ' 0 ', otherwise it is ' 1 '.

The image registers can be read and written like any other register.
Writing to the NVM is a three-step procedure:

1. Write the new contents to the image registers.
2. Write ' 1 ' to bit (0x33) nvm_prog_mode in order to unlock the NVM.
3. Write ' 1 ' to bit (0x33) nvm_prog_trig and keep ' 1 ' in bit (0x33) nvm_prog_mode in order to trigger the write process.

Writing to the NVM always renews the entire NVM contents. It is possible to check the write status by reading bit (0×33) nvm_rdy. While (0×33) nvm_rdy = ' 0 ', the write process is still in progress; if ($0 x 33$) nvm_rdy $=$ ' 1 ', then writing is completed. As long as the write process is ongoing, no change of power mode and image registers is allowed. Also, the NVM write cycle must not be initiated while image registers are updated, in low-power mode, and in suspend mode.

Please note that the number of permitted NVM write-cycles is limited as specified in Table 1. The number of remaining write-cycles can be obtained by reading bits (0×33) nvm_remain.

$(円)$ BOSCH	BMA250E Data sheet	Page 26

4.7 Interrupt controller

The BMA250E is equipped with eight programmable interrupt engines. Each interrupt can be independently enabled and configured. If the trigger condition of an enabled interrupt is fulfilled, the corresponding status bit is set to ' 1 ' and the selected interrupt pin is activated. The BMA250E provides two interrupt pins, INT1 and INT2; interrupts can be freely mapped to any of these pins. The state of a specific interrupt pin is derived from a logic 'or' combination of all interrupts mapped to it.

The interrupt status registers are updated when a new data word is written into the acceleration data registers. If an interrupt is disabled, all active status bits associated with it are immediately reset.

4.7.1 General features

An interrupt is cleared depending on the selected interrupt mode, which is common to all interrupts. There are three different interrupt modes: non-latched, latched, and temporary. The mode is selected by the (0x21) latch_int bits according to Table 10.

Table 10: Interrupt mode selection

(0×21) latch int	Interrupt mode
0000b	non-latched
0001b	temporary, 250 ms
0010b	temporary, 500 ms
0011b	temporary, 1s
0100b	temporary, 2s
0101b	temporary, 4s
0110b	temporary, 8s
0111b	latched
1000b	non-latched
1001b	temporary, 250 ${ }^{\text {s }}$
1010b	temporary, $500 \mu \mathrm{~s}$
1011b	temporary, 1 ms
1100b	temporary, 12.5 ms
1101b	temporary, 25 ms
1110b	temporary, 50 ms
1111b	latched

An interrupt is generated if its activation condition is met. It can not be cleared as long as the activation condition is fulfilled. In the non-latched mode the interrupt status bit and the selected pin (the contribution to the 'or' condition for INT1 and/or INT2) are cleared as soon as the activation condition is no more valid. Exceptions to this behavior are the new data, orientation, and flat interrupts, which are automatically reset after a fixed time.

(A) BOSCH	BMA250E Data sheet	Page 27

In latched mode an asserted interrupt status and the selected pin are cleared by writing ' 1 ' to bit (0×21) reset_int. If the activation condition still holds when it is cleared, the interrupt status is asserted again with the next change of the acceleration registers.

In the temporary mode an asserted interrupt and selected pin are cleared after a defined period of time. The behaviour of the different interrupt modes is shown graphically in figure 6. The timings in this mode are subject to the same tolerances as the bandwidths (see Table 1).

Figure 6: Interrupt modes
Several interrupt engines can use either unfiltered or filtered acceleration data as their input. For these interrupts, the source can be selected with the bits in register ($0 \times 1 E$). These are ($0 \times 1 E$) int_src_data, ($0 \times 1 E$) int_src_tap, ($0 x 1 E$) int_src_slo_no_mot, (0x1E) int_src_slope, (0x1E) int_src_high, and ($0 \times 1 E$) int_src_low. Setting the respective bits to ' 0 ' ('1') selects filtered (unfiltered) data as input. The orientation recognition and flat detection interrupt always use filtered input data.

It is strongly recommended to set interrupt parameters prior to enabling the interrupt. Changing parameters of an already enabled interrupt may cause unwanted interrupt generation and generation of a false interrupt history. A safe way to change parameters of an enabled interrupt is to keep the following sequence: disable the desired interrupt, change parameters, wait for at least 10 ms , and then re-enable the desired interrupt.

4.7.2 Mapping to physical interrupt pins (inttype to INT Pin\#)

Registers (0×19) to ($0 \times 1 B$) are dedicated to mapping of interrupts to the interrupt pins "INT1" or "INT2". Setting ($0 x 19$) int1 ""inttype" to '1' (' 0 ') maps (unmaps) "inttype" to pin "INT1". Correspondingly setting ($0 x 1 B$) int2_"inttype" to '1' ('0') maps (unmaps) "inttype" to pin "INT2".

Note: "inttype" to be replaced with the precise notation, given in the memory map in chapter 6.
Example: For flat interrupt (int1_flat): Setting (0x19) int1_flat to '1' maps int1_flat to pin "INT1".

$((1)$ BOSCH	BMA250E Data sheet	Page 28

4.7.3 Electrical behaviour (INT pin\# to open-drive or push-pull)

Both interrupt pins can be configured to show the desired electrical behaviour. The 'active' level of each interrupt pin is determined by the (0×20) int1_Ivl and (0×20) int2_Iv/ bits.

If (0×20) int1_Ivl = '1' ('0') / (0×20) int2_Ivl = ' 1 ' (' 0 '), then pin "INT1" / pin "INT2" is active ' 1 ' (' 0 '). The characteristic of the output driver of the interrupt pins may be configured with bits (0×20) int1_od and (0×20) int2_od. By setting bits (0×20) int1_od / (0×20) int2_od to ' 1 ', the output driver shows open-drive characteristic, by setting the configuration bits to ' 0 ', the output driver shows push-pull characteristic. When open-drive characteristic is selected in the design, external pull-up or pull-down resistor should be applied according the int_Ivl configuration.

4.7.4 New data interrupt

This interrupt serves for synchronous reading of acceleration data. It is generated after storing a new value of z-axis acceleration data in the data register. The interrupt is cleared automatically when the next data acquisition cycle starts. The interrupt status is ' 0 ' for at least $50 \mu \mathrm{~s}$.

The interrupt mode of the new data interrupt is fixed to non-latched.
It is enabled (disabled) by writing ' 1 ' (' 0 ') to bit (0×17) data_en. The interrupt status is stored in bit ($0 x 0 \mathrm{~A}$) data_int.

Due to the settling time of the filter, the first interrupt after wake-up from suspend or standby mode will take longer than the update time.

$((1)$ BOSCH	BMA250E Data sheet	Page 29

4.7.5 Slope / any-motion detection

Slope / any-motion detection uses the slope between successive acceleration signals to detect changes in motion. An interrupt is generated when the slope (absolute value of acceleration difference) exceeds a preset threshold. It is cleared as soon as the slope falls below the threshold. The principle is made clear in figure 7.

Figure 7: Principle of any-motion detection
The threshold is defined through register (0x28) slope_th. In terms of scaling 1 LSB of (0x28) slope_th corresponds to 3.91 mg in 2 g -range (7.81 mg in 4 g -range, 15.6 mg in 8 g -range and 31.3 mg in 16 g -range). Therefore the maximum value is 996 mg in 2 g -range (1.99 g in 4 g range, 3.98 g in 8 g -range and 7.97 g in 16 g -range).

The time difference between the successive acceleration signals depends on the selected bandwidth and equates to $1 /\left(2^{*}\right.$ bandwidth) ()t=1/(2*bw)). In order to suppress false triggers, the interrupt is only generated (cleared) if a certain number N of consecutive slope data points is larger (smaller) than the slope threshold given by (0×28) slope_th. This number is set by the (0x27) slope_dur bits. It is $N=(0 x 27)$ slope_dur +1 for (0×27).

Example: (0x27) slope_dur = 00b, ..., 11b = 1decimal, ..., 4decimal.

(A) BOSCH	BMA250E Data sheet	Page 30

4.7.5.1 Enabling (disabling) for each axis

Any-motion detection can be enabled (disabled) for each axis separately by writing ' 1 ' ('0') to bits (0×16) slope_en_x, (0×16) slope_en_y, (0×16) slope_en_z. The criteria for any-motion detection are fulfilled and the slope interrupt is generated if the slope of any of the enabled axes exceeds the threshold (0×28) slope_th for [(0x27) slope_dur +1$]$ consecutive times. As soon as the slopes of all enabled axes fall or stay below this threshold for [(0x27) slope_dur +1] consecutive times the interrupt is cleared unless interrupt signal is latched.

4.7.5.2 Axis and sign information of slope / any motion interrupt

The interrupt status is stored in bit (0x09) slope_int. The any-motion interrupt supplies additional information about the detected slope. The axis which triggered the interrupt is given by that one of bits ($0 x 0 B$) slope_first_x, ($0 x 0 B$) slope_first_y, ($0 x 0 B$) slope_first_z that contains a value of ' 1 '. The sign of the triggering slope is held in bit ($0 x 0 B$) slope_sign until the interrupt is retriggered. If ($0 x 0 B$) slope_sign $=$ ' 0 ' (' 1 '), the sign is positive (negative).

$(H) B O S C H$	BMA250E Data sheet	Page 31

4.7.6 Tap sensing

Tap sensing has a functional similarity with a common laptop touch-pad or clicking keys of a computer mouse. A tap event is detected if a pre-defined slope of the acceleration of at least one axis is exceeded. Two different tap events are distinguished: A 'single tap' is a single event within a certain time, followed by a certain quiet time. A 'double tap’ consists of a first such event followed by a second event within a defined time frame.

Single tap interrupt is enabled (disabled) by writing ' 1 ' ('0') to bit (0x16) s_tap_en. Double tap interrupt is enabled (disabled) by writing ' 1 ' ('0') to bit (0x16) d_tap_en.
While temporary latching is used do not simultaneously enable single tap interrupt and double tap interrupt.

The status of the single tap interrupt is stored in bit (0x09) s_tap_int, the status of the double tap interrupt is stored in bit $(0 x 09) d_{-}$tap_int.

The slope threshold for detecting a tap event is set by bits ($0 \times 2 B$) tap_th. The meaning of ($0 \times 2 B$) tap_th depends on the range setting. 1 LSB of ($0 \times 2 B$) tap_th corresponds to a slope of 62.5 mg in 2 g -range, 125 mg in 4 g -range, 250 mg in 8 g -range, and 500 mg in 16 g -range.

In figure 8 the meaning of the different timing parameters is visualized:

Figure 8: Timing of tap detection

$((1)$ BOSCH	BMA250E Data sheet	Page 32

The parameters ($0 x 2 A$) tap_shock and ($0 x 2 A$) tap_quiet apply to both single tap and double tap detection, while ($0 \times 2 A$) tap_dur applies to double tap detection only. Within the duration of ($0 \times 2 A$) tap_shock any slope exceeding ($0 \times 2 B$) tap_th after the first event is ignored. Contrary to this, within the duration of ($0 x 2 A$) tap_quiet no slope exceeding ($0 x 2 B$) tap_th must occur, otherwise the first event will be cancelled.

4.7.6.1 Single tap detection

A single tap is detected and the single tap interrupt is generated after the combined durations of ($0 x 2 A$) tap_shock and ($0 x 2 A$) tap_quiet, if the corresponding slope conditions are fulfilled. The interrupt is cleared after a delay of 12.5 ms .
Do not map single-tap to any INT pin if you do not want to use it.

4.7.6.2 Double tap detection

A double tap interrupt is generated if an event fulfilling the conditions for a single tap occurs within the set duration in ($0 \times 2 A$) tap_dur after the completion of the first tap event. The interrupt is automatically cleared after a delay of 12.5 ms .

4.7.6.3 Selecting the timing of tap detection

For each of parameters ($0 \times 2 A$) tap_shock and ($0 \times 2 A$) tap_quiet two values are selectable. By writing ' 0 ' ('1') to bit ($0 \times 2 A$) tap_shock the duration of ($0 \times 2 A$) tap_shock is set to 50 ms (75 ms). By writing ' 0 ' (' 1 ') to bit ($0 \times 2 A$) tap_quiet the duration of ($0 \times 2 \bar{A}$) tap_quiet is set to 30 ms (20 ms)

The length of $(0 \times 2 A)$ tap_dur can be selected by setting the ($0 \times 2 A$) tap_dur bits according to Table 11

Table 11: Selection of tap_dur

(0x2A) tap_dur	length of tap_dur
000b	50 ms
001b	100 ms
010b	150 ms
011b	200 ms
100 b	250 ms
101 b	375 ms
110 b	500 ms
111 b	700 ms

$((1)$ BOSCH	BMA250E Data sheet	Page 33

4.7.6.4 Axis and sign information of tap sensing

The sign of the slope of the first tap which triggered the interrupt is stored in bit ($0 \times 0 B$) tap_sign (' 0 ' means positive sign, ' 1 ' means negative sign). The value of this bit persists after clearing the interrupt.

The axis which triggered the interrupt is indicated by bits ($0 x 0 B$) tap_first_x, ($0 x 0 B$) tap_first_y, and ($0 \times 0 B$) tap_first_z.
The bit corresponding to the triggering axis contains a ' 1 ' while the other bits hold a ' 0 '. These bits are cleared together with clearing the interrupt status.
4.7.6.5 Tap sensing in low power mode

In low-power mode, a limited number of samples is processed after wake-up to decide whether an interrupt condition is fulfilled. The number of samples is selected by bits (0x2B) tap_samp according to Table 12.

Table 12: Meaning of (0x2B) tap_samp

(0x2B) tap_samp	Number of Samples
00b	2
01 b	4
10 b	8
11 b	16

((1)) BOSCH	BMA250E Data sheet	Page 34

4.7.7 Orientation recognition

The orientation recognition feature informs on an orientation change of the sensor with respect to the gravitational field vector ' g '. The measured acceleration vector components with respect to the gravitational field are defined as shown in figure 9.

Figure 9: Definition of vector components

Therefore, the magnitudes of the acceleration vectors are calculated as follows:

$$
\begin{aligned}
& \text { acc_ } x=1 g \times \sin \theta \times \cos \varphi \\
& a c c _y=-1 g \times \sin \theta \times \sin \varphi \\
& \text { acc_z }=1 g \times \cos \theta \\
& \text { acc_y/acc_x }=-\tan \varphi
\end{aligned}
$$

Depending on the magnitudes of the acceleration vectors the orientation of the device in the space is determined and stored in the three ($0 \times 0 \mathrm{C}$) orient bits. These bits may not be reset in the sleep phase of low-power mode. There are three orientation calculation modes with different thresholds for switching between different orientations: symmetrical, high-asymmetrical, and low-asymmetrical. The mode is selected by setting the ($0 \times 2 \mathrm{C}$) orient_mode bits as given in Table 13.

Table 13: Orientation mode settings

(0x2C) orient_mode	Orientation Mode
00 b	symmetrical
01 b	high-asymmetrical
10b	low-asymmetrical
11 b	symmetrical

$(円)$ BOSCH	BMA250E Data sheet	Page 35

For each orientation mode the ($0 \times 0 \mathrm{C}$) orient bits have a different meaning as shown in Table 14 to Table 16:

Table 14: Meaning of the ($0 \times 0 \mathrm{C}$) orient bits in symmetrical mode

$\begin{aligned} & \text { (0x0C) } \\ & \text { orient } \end{aligned}$	Name	Angle	Condition
x00	portrait upright	$315^{\circ}<\varphi<45^{\circ}$	$\left\|\operatorname{acc}_{-} y\right\|<\left\|a c c _x\right\|-\quad$ 'hyst' and acc_x - 'hyst'" ≥ 0
x01	portrait upside down	$135^{\circ}<\varphi<225^{\circ}$	$\left\|\operatorname{acc} _y\right\|<\left\|a c c _x\right\|-\quad$ 'hyst' and acc_x + 'hyst' < 0
x10	landscape left	$45^{\circ}<\varphi<135^{\circ}$	\mid acc_y\| $\geq\left\|a c c _x\right\|+$ 'hyst' and acc_y < 0
x11	landscape right	$225^{\circ}<\varphi<315^{\circ}$	$\begin{gathered} \mid \text { acc_y }\left\|\geq\left\|a c c _x\right\|+\right.\text { 'hyst' } \\ \text { and acc_y } \geq 0 \end{gathered}$

Table 15: Meaning of the ($0 \times 0 \mathrm{C}$) orient bits in high-asymmetrical mode

(0x0C) orient	Name	Angle	Condition
x00	portrait upright	$297^{\circ}<\varphi<63^{\circ}$	$\left\|\operatorname{acc} _y\right\|<2 \cdot\left\|a c c _x\right\|-$ 'hyst' and acc_x - 'hyst' ≥ 0
x01	portrait upside down	$117^{\circ}<\varphi<243^{\circ}$	$\begin{gathered} \left\|a c c _y\right\|<2 \cdot\left\|a c c _x\right\|-' h y s t ' \\ \text { and acc_x }+ \text { 'hyst' }<0 \end{gathered}$
x10	landscape left	$63^{\circ}<\varphi<117^{\circ}$	$\begin{gathered} \mid \text { acc_y }\|\geq 2 \cdot\| a c c _x \mid+ \text { 'hyst' } \\ \text { and acc_y }<0 \end{gathered}$
x11	landscape right	$243^{\circ}<\varphi<297^{\circ}$	$\begin{gathered} \left\|\operatorname{acc} _y\right\| \geq 2 \cdot\left\|a_{-} c_{-} x\right\|+\text { 'hyst' } \\ \text { and acc_y } \geq 0 \end{gathered}$

Table 16: Meaning of the ($0 \times 0 \mathrm{C}$) orient bits in low-asymmetrical mode

(0x0C) orient	Name	Angle	Condition
x00	portrait upright	$333^{\circ}<\varphi<27^{\circ}$	$\left\|\operatorname{acc} _y\right\|<0.5 \cdot\left\|a c c _x\right\|-1 h y s t '$ and acc_x-hyst' ≥ 0
x01	portrait upside down	$153^{\circ}<\varphi<207^{\circ}$	$\left\|\operatorname{acc} _y\right\|<0.5 \cdot\left\|a c c _x\right\|-' h y s t$ and acc_x + 'hyst' < 0
x10	landscape left	$27^{\circ}<\varphi<153^{\circ}$	$\begin{gathered} \mid \text { acc_y } y\|\geq 0 . \overline{5} \cdot\| \operatorname{acc} _x \mid+ \text { 'hyst' } \\ \text { and acc_y }<0 \end{gathered}$
x11	landscape right	$207^{\circ}<\varphi<333^{\circ}$	$\begin{gathered} \mid \text { acc_y\| } \geq 0.5 \cdot\left\|\operatorname{acc} _x\right\|+\text { 'hyst' } \\ \text { and acc_ } y \geq 0 \end{gathered}$

In the preceding tables, the parameter 'hyst' stands for a hysteresis, which can be selected by setting the ($0 \times 2 \mathrm{C}$) orient_hyst bits. 1 LSB of ($0 \times 2 \mathrm{C}$) orient_hyst always corresponds to 62.5 mg , in any g-range (i.e. increment is independent from g-range setting). It is important to note that by using a hysteresis $\neq 0$ the actual switching angles become different from the angles given in the tables since there is an overlap between the different orientations.
The most significant bit of the ($0 x 0 \mathrm{C}$) orient bits (which is displayed as an ' x ' in the above given tables) contains information about the direction of the z-axis. It is set to ' 0 ' (' 1 ') if acc_z ≥ 0 (acc_z < 0).

$(円)$ BOSCH	BMA250E Data sheet	Page 36

Figure 10 shows the typical switching conditions between the four different orientations for the symmetrical mode i.e. without hysteresis:

Figure 10: Typical orientation switching conditions w/o hysteresis

The orientation interrupt is enabled (disabled) by writing ' 1 ' (' 0 ') to bit ($0 x 16$) orient_en. The interrupt is generated if the value of ($0 \times 0 \mathrm{C}$) orient has changed. It is automatically cleared after one stable period of the $(0 \times 0 \mathrm{C})$ orient value. The interrupt status is stored in the (0×09) orient_int bit. The register ($0 x 0 \mathrm{C}$) orient always reflects the current orientation of the device, irrespective of which interrupt mode has been selected. Bit (0x0C) orient<2> reflects the device orientation with respect to the z-axis. The bits ($0 x 0 \mathrm{C}$) orient<1:0> reflect the device orientation in the $x-y$-plane. The conventions associated with register (0x0C) orient are detailed in chapter 6.

$(H) B O S C H$	BMA250E Data sheet	Page 37

4.7.7.1 Orientation blocking

The change of the ($0 \times 0 \mathrm{C}$) orient value and - as a consequence - the generation of the interrupt can be blocked according to conditions selected by setting the value of the ($0 \times 2 \mathrm{C}$) orient_blocking bits as described by Table 17.

Table 17: Blocking conditions for orientation recognition

$(0 \times 2 C)$ orient_blocking	Conditions
00b	no blocking
01b	theta blocking or acceleration in any axis $>1.5 \mathrm{~g}$
10b	```theta blocking or acceleration slope in any axis > 0.2 g or acceleration in any axis > 1.5g```
11b	theta blocking or acceleration slope in any axis $>0.4 \mathrm{~g}$ or acceleration in any axis $>1.5 \mathrm{~g}$ and value of orient is not stable for at least 100 ms

The theta blocking is defined by the following inequality:

$$
|\tan \theta|<\frac{\sqrt{\text { blocking_theta }}}{8} .
$$

The parameter blocking_theta of the above given equation stands for the contents of the (0x2D) orient_theta bits. It is possible to define a blocking angle between 0° and 44.8°. The internal blocking algorithm saturates the acceleration values before further processing. As a consequence, the blocking angles are strictly valid only for a device at rest; they can be different if the device is moved.

Example:
To get a maximum blocking angle of 19° the parameter blocking_theta is determined in the following way: $\left(8^{*} \tan \left(19^{\circ}\right)\right)^{2}=7.588$, therefore, blocking_value $=8 \mathrm{dec}=001000 \mathrm{~b}$ has to be chosen.

In order to avoid unwanted generation of the orientation interrupt in a nearly flat position ($z \sim 0$, sign change due to small movements or noise), a hysteresis of 0.2 g is implemented for the z axis, i. e. a after a sign change the interrupt is only generated after $|\mathrm{z}|>0.2 \mathrm{~g}$.

4.7.7.2 Up-Down Interrupt Suppression Flag

Per default an orientation interrupt is triggered when any of the bits in register ($0 \times 0 \mathrm{C}$) orient changes state. The BMA250E can be configured to trigger orientation interrupts only when the

$(円)$ BOSCH	BMA250E Data sheet	Page 38

device position changes in the $x-y$-plane while orientation changes with respect to the z-axis are ignored. A change of the orientation of the z-axis, and hence a state change of bit ($0 x 0 \mathrm{C}$) orient<2> is ignored (considered) when bit ($0 \times 2 \mathrm{D}$) orient_ud_en is set to ' 0 ' (' 1 ').

$((1)$ BOSCH	BMA250E Data sheet	Page 39

4.7.8 Flat detection

The flat detection feature gives information about the orientation of the devices' z-axis relative to the g-vector, i. e. it recognizes whether the device is in a flat position or not.

The flat angle Θ is adjustable by ($0 \times 2 E$) flat_theta from 0° to 44.8°. The flat angle can be set according to following formula:

$$
\Theta=\operatorname{atan}\left(\frac{1}{8} \sqrt{\text { flat_theta }}\right)
$$

A hysteresis of the flat detection can be enabled by (0x2F) flat_hy bits. In this case the flat position is set if the angle drops below following threshold:

$$
\Theta_{\text {hys }, l l}=\operatorname{atan}\left(\frac{1}{8} \sqrt{\text { flat_theta } \cdot\left(1-\frac{\text { flat_hy }}{1024}\right)-\frac{\text { flat_hy }}{16}}\right)
$$

The flat position is reset if the angle exceeds the following threshold:

$$
\Theta_{\text {hyst }, u l}=\operatorname{atan}\left(\frac{1}{8} \sqrt{\text { flat_theta } \cdot\left(1+\frac{\text { flat_hy }}{1024}\right)+\frac{\text { flat_hy }}{16}}\right)
$$

The flat interrupt is enabled (disabled) by writing ' 1 ' (0 ') to bit (0×16) flat_en. The flat value is stored in the $(0 \times 0 C)$ flat bit if the interrupt is enabled. This value is ' 1 ' if the device is in the flat position, it is ' 0 ' otherwise. The flat interrupt is generated if the flat value has changed and the new value is stable for at least the time given by the (0x2F) flat_hold_time bits. A flat interrupt may be also generated if the flat interrupt is enabled. The actual status of the interrupt is stored in the (0x09) flat_int bit. The flat orientation of the sensor can always be determined from reading the ($0 x 0 \mathrm{C}$) flat bit after interrupt generation. If unlatched interrupt mode is used, the ($0 x 09$) flat_int value and hence the interrupt is automatically cleared after one sample period. If temporary or latched interrupt mode is used, the (0x09) flat_int value is kept fixed until the latch time expires or the interrupt is reset.

The meaning of the ($0 \times 2 F$) flat hold time bits can be seen from Table 18.

Table 18: Meaning of flat_hold_time

(0x2F) flat_hold_time	Time
00b	0
01b	512 ms
10b	1024 ms
11b	2048 ms

$((1)$ BOSCH	BMA250E Data sheet	Page 40

4.7.9 Low-g interrupt

This interrupt is based on the comparison of acceleration data against a low-g threshold, which is most useful for free-fall detection.

The interrupt is enabled (disabled) by writing ' 1 ' (' 0 ') to the ($0 x 17$) low_en bit. There are two modes available, 'single' mode and 'sum' mode. In 'single' mode, the acceleration of each axis is compared with the threshold; in 'sum' mode, the sum of absolute values of all accelerations $\left|a c c_{-} x\right|+\left|a c c_{-} y\right|+\left|a c c_{-} z\right|$ is compared with the threshold. The mode is selected by the contents of the (0x24) low_mode bit: '0' means 'single' mode, '1' means 'sum' mode.

The low-g threshold is set through the (0x23) low_th register. 1 LSB of (0×23) low_th always corresponds to an acceleration of 7.81 mg (i.e. increment is independent from g-range setting).

A hysteresis can be selected by setting the (0x24) low_hy bits. 1 LSB of (0x24) low_hy always corresponds to an acceleration difference of 125 mg in any g-range (as well, increment is independent from g-range setting).

The low-g interrupt is generated if the absolute values of the acceleration of all axes ('and' relation, in case of single mode) or their sum (in case of sum mode) are lower than the threshold for at least the time defined by the (0x22) low_dur register. The interrupt is reset if the absolute value of the acceleration of at least one axis ('or' relation, in case of single mode) or the sum of absolute values (in case of sum mode) is higher than the threshold plus the hysteresis for at least one data acquisition. In bit (0x09) low_int the interrupt status is stored.

The relation between the content of (0x22) low_dur and the actual delay of the interrupt generation is: delay $[\mathrm{ms}]=[(0 \times 22)$ low_dur +1$] \cdot 2 \mathrm{~ms}$. Therefore, possible delay times range from 2 ms to 512 ms .

(A) BOSCH	BMA250E Data sheet	Page 41

4.7.10 High-g interrupt

This interrupt is based on the comparison of acceleration data against a high-g threshold for the detection of shock or other high-acceleration events.

The high-g interrupt is enabled (disabled) per axis by writing ' 1 ' ('0') to bits ($0 x 17$) high_en_x, (0x17) high_en_y, and (0x17) high_en_z, respectively. The high-g threshold is set through the (0x26) high_th register. The meaning of an LSB of (0x26) high_th depends on the selected grange: it corresponds to 7.81 mg in 2 g -range, 15.63 mg in 4 g -range, 31.25 mg in 8 g -range, and 62.5 mg in 16 g -range (i.e. increment depends from g-range setting).

A hysteresis can be selected by setting the (0x24) high_hy bits. Analogously to (0x26) high_th, the meaning of an LSB of (0x24) high_hy is g-range dependent: It corresponds to an acceleration difference of 125 mg in 2 g -range, 250 mg in 4 g -range, 500 mg in 8 g -range, and 1000 mg in 16 g -range (as well, increment depends from g-range setting).

The high-g interrupt is generated if the absolute value of the acceleration of at least one of the enabled axes ('or' relation) is higher than the threshold for at least the time defined by the (0×25) high_dur register. The interrupt is reset if the absolute value of the acceleration of all enabled axes ('and' relation) is lower than the threshold minus the hysteresis for at least the time defined by the (0x25) high_dur register. In bit (0x09) high_int the interrupt status is stored. The relation between the content of (0x25) high_dur and the actual delay of the interrupt generation is delay $[\mathrm{ms}]=[(0 \times 22)$ low_dur +1$] \cdot 2 \mathrm{~ms}$. Therefore, possible delay times range from 2 ms to 512 ms . The interrupt will be cleared immediately once acceleration is lower than threshold.

4.7.10.1 Axis and sign information of high-g interrupt

The axis which triggered the interrupt is indicated by bits ($0 x 0 \mathrm{C}$) high_first_x, ($0 \times 0 \mathrm{C}$) high_first_y, and ($0 x 0 C$) high_first_z. The bit corresponding to the triggering axis contains a ' 1 ' while the other bits hold a ' 0 '. These bits are cleared together with clearing the interrupt status. The sign of the triggering acceleration is stored in bit ($0 \times 0 \mathrm{C}$) high_sign. If ($0 \times 0 \mathrm{C}$) high_sign = ' 0 ' ('1'), the sign is positive (negative).

$((1)$ BOSCH	BMA250E Data sheet	Page 42

4.7.11 No-motion / slow motion detection

The slow-motion/no-motion interrupt engine can be configured in two modes.
In slow-motion mode an interrupt is triggered when the measured slope of at least one enabled axis exceeds the programmable slope threshold for a programmable number of samples. Hence the engine behaves similar to the any-motion interrupt, but with a different set of parameters. In order to suppress false triggers, the interrupt is only generated (cleared) if a certain number N of consecutive slope data points is larger (smaller) than the slope threshold given by (0×27) slo_no_mot_dur<1:0>. The number is $N=(0 \times 27)$ slo_no_mot_dur<1:0> +1 .

In no-motion mode an interrupt is generated if the slope on all selected axes remains smaller than a programmable threshold for a programmable delay time. Figure 11 shows the timing diagram for the no-motion interrupt. The scaling of the threshold value is identical to that of the slow-motion interrupt. However, in no-motion mode register (0x27) slo_no_mot_dur defines the delay time before the no-motion interrupt is triggered. Table 19 lists the delay times adjustable with register (0×27) slo_no_mot_dur. The timer tick period is 1 second. Hence using short delay times can result in considerable timing uncertainty.

If bit ($0 x 18$) slo_no_mot_sel is set to ' 1 ' (' 0 ') the no-motion/slow-motion interrupt engine is configured in the no-motion (slow-motion) mode. Common to both modes, the engine monitors the slopes of the axes that have been enabled with bits (0x18) slo_no_mot_en_x, (0x18) slo_no_mot_en_y, and (0x18) slo_no_mot_en_z for the x-axis, y-axis and z-axis, respectively. The measured slope values are continuously compared against the threshold value defined in register (0×29) slo_no_mot_th. The scaling is such that 1 LSB of (0×29) slo_no_mot_th corresponds to 3.91 mg in $2 \overline{\mathrm{~g}}$-range (7.81 mg in 4 g -range, 15.6 mg in 8 g -range and 31.3 mg in 16 g -range). Therefore the maximum value is 996 mg in 2 g -range (1.99 g in 4 g -range, 3.98 g in 8 g -range and 7.97 g in 16 g -range). The time difference between the successive acceleration samples depends on the selected bandwidth and equates to $1 /(2$ * bw $)$.

Table 19: No-motion time-out periods

(0x27) slo_no_mot_dur	Delay time	(0x27) slo_no_mot_dur	Delay time	(0x27) slo_no_mot_dur	Delay Time
0	1 s	16	40 s	32	88 s
1	2 s	17	48 s	33	96 s
2	3 s	18	56 s	34	104 s
\ldots	\ldots	19	64 s	\ldots	\ldots
14	15 s	20	72 s	62	328 s
15	16 s	21	80 s	63	336 s

Note: slo_no_mot_dur values 22 to 31 are not specified

(\mapsto) BOSCH	BMA250E Data sheet	Page 43

Figure 11: Timing of No-motion interrupt

$($ (A) BOSCH	BMA250E Data sheet	Page 44

4.8 Softreset

A softreset causes all user configuration settings to be overwritten with their default value and the sensor to enter normal mode.

A softreset is initiated by means of writing value $0 \times B 6$ to register (0×14) softreset. Subsequently a waiting time of $\mathrm{t}_{\mathrm{w}, \text { up1 }}$ (max.) is required prior to accessing any configuration registers.

(A) BOSCH	BMA250E Data sheet	Page 45

5. FIFO Operation

5.1 FIFO Operating Modes

The BMA250E features an integrated FIFO memory capable of storing up to 32 frames. Conceptually each frame consists of three 16 bit words corresponding to the x, y and z - axis, which are sampled at the same point in time. At the core of the FIFO is a buffer memory, which can be configured to operate in the following modes:

- FIFO Mode: In FIFO mode the acceleration data of the selected axes are stored in the buffer memory. If enabled, a watermark interrupt is triggered when the buffer has filled up to a configurable level. The buffer will be continuously filled until the fill level reaches 32 frames. When it is full the data collection is stopped, and all additional samples are ignored. Once the buffer is full, a FIFO-full interrupt is generated if it has been enabled.
- STREAM Mode: In STREAM mode the acceleration data of the selected axes are stored in the buffer until it is full. The buffer has a depth of 31 frames. When the buffer is full the data collection continues and oldest entry is discarded. If enabled, a watermark interrupt is triggered when the buffer is filled to a configurable level. Once the buffer is full, a FIFO-full interrupt is generated if it has been enabled.
- BYPASS Mode: In bypass mode, only the current sensor data can be read out from the FIFO address. Essentially, the FIFO behaves like the STREAM mode with a depth of 1. Compared to reading the data from the normal data registers, the advantage to the user is that the packages $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are from the same timestamp, while the data registers are updated sequentially and hence mixing of data from different axes can occur.

The primary FIFO operating mode is selected with register (0x3E) fifo_mode according to '00b' for BYPASS mode, '01b' for FIFO mode, and '10b' for STREAM mode. Writing to register ($0 \times 3 E$) clears the buffer content and resets the FIFO-full and watermark interrupts. When reading register ($0 \times 3 E$) fifo_mode always contains the current operating mode.

$(H) B O S C H$	BMA250E Data sheet	Page 46

5.2 FIFO Data Readout

The FIFO stores the data that are also available at the acceleration read-out registers (0x02) to (0×07). Thus, all configuration settings apply to the FIFO data as well as the acceleration data readout registers. The FIFO read out is possible through register ($0 \times 3 F$). The readout can be performed using burst mode since the read address counter is no longer incremented, when it has reached address ($0 \times 3 F$). This implies that the trapping also occurs when the burst read access starts below address ($0 \times 3 F$). A single burst can read out one or more frames at a time. Register ($0 \times 3 E$) fifo_data_select controls the acceleration data of which axes are stored in the FIFO. Possible settings for register ($0 x 3 E$) fifo_data_select are '00b' for x, y - and z-axis, '01b' for x-axis only, '10b' for y-axis, '11b' for z-axis only. The depth of the FIFO is independent of whether all or a single axis have been selected. Writing to register ($0 x 3 E$) clears the buffer content and resets the FIFO-full and watermark interrupts.

If all axes are enabled, the format of the data read-out from register ($0 \times 3 F$) is as follows:

Frame 1

If only one axis is enabled, the format of the data read-out from register ($0 \times 3 F$) is as follows (example shown: y -axis only, other axes are equivalent).

If a frame is not completely read due to an incomplete read operation, the remaining part of the frame is discarded. In this case the FIFO aligns to the next frame during the next read operation. In order for the discarding mechanism to operate correctly, there must be a delay of at least 1.5 us between the last data bit of the partially read frame and the first address bit of the next FIFO read access. Otherwise frames must not be read out partially.

If the FIFO is read beyond the FIFO fill level zeroes (0) will be read. If the FIFO is read beyond the FIFO fill level the read or burst read access time must not exceed the sampling time $t_{\text {SAMPLE }}$. Otherwise frames may be lost.

5.3 FIFO Frame Counter and Overrun Flag

Register ($0 \times 0 E$) fifo_frame_counter reflects the current fill level of the buffer. If additional frames are written to the buffer although the FIFO is full, the ($0 \times 0 E$) fifo_overrun bit is set to ' 1 '. The FIFO buffer is cleared, the FIFO fill level indicated in register ($0 \times 0 \bar{E}$) fifo_frame_counter and the ($0 x 0 E$) fifo_overrun bit are both set to ' 0 ' each time one a write access to one of the FIFO configuration registers ($0 \times 3 E$) or (0×30) occurs. The ($0 \times 0 E$) fifo_overrun bit is not reset when the FIFO fill level ($0 x 0 E$) fifo_frame_counter has decremented to ' 0 ' due to reading from register (0×3F).

$(円)$ BOSCH	BMA250E Data sheet	Page 47

5.4 FIFO Interrupts

The FIFO controller can generate two different interrupt events, a FIFO-full and a watermark event. The FIFO-full and watermark interrupts are functional in all FIFO operating modes. The watermark interrupt is asserted when the fill level in the buffer has reached the frame count defined by register (0×30) fifo_water_mark_trigger_retain. In order to enable (disable) the watermark interrupt, the (0×17) int_fwm_en bit must be set to ' 1 ' (' 0 '). To map the watermark interrupt signal to INT1 pin (INT2 pin), ($0 \times 1 A$) int1_fwm ((0x1A) int2_fwm) bit must be set to ' 1 '. The status of the watermark interrupt may be read back through the ($0 \times 0 \mathrm{~A}$) fifo_wm_int bit. Writing to register (0×30) fifo_water_mark_trigger_retain clears the FIFO buffer.
The FIFO-full interrupt is triggered when the buffer has been completely filled. In FIFO mode this occurs 32, in STREAM mode 31 samples, and in BYPASS mode 1 sample after the buffer has been cleared. In order to enable the FIFO-full interrupt, bit (0x17) int_ffull_en as well as one or both of bits ($0 \times 1 A$) int1_fful or ($0 \times 1 A$) int2_fful must also be set to ' 1 '. The status of the FIFOfull interrupt may be read back through bit (0x0A) fifo_full_int.

$(円)$ BOSCH	BMA250E Data sheet	Page 48

6. Register description

6.1 General remarks

The entire communication with the device is performed by reading from and writing to registers. Registers have a width of 8 bits; they are mapped to a common space of 64 addresses from (0×00) up to ($0 \times 3 F$). Within the used range there are several registers which are either completely or partially marked as 'reserved'. Any reserved bit is ignored when it is written and no specific value is guaranteed when read. It is recommended not to use registers at all which are completely marked as 'reserved'. Furthermore it is recommended to mask out (logical and with zero) reserved bits of registers which are partially marked as reserved.

Registers with addresses from (0×00) up to ($0 \times 0 E$) are read-only. Any attempt to write to these registers is ignored. There are bits within some registers that trigger internal sequences. These bits are configured for write-only access, e. g. (0x21) reset_int or the entire (0x14) softreset register, and read as value ' 0 '.

6.2 Register map

[^0]Figure 12: Register map

(M) BOSCH	BMA250E Data sheet	Page 50

Register 0x00 (BGW_CHIPID)

The register contains the chip identification code.

Name	0x00	BGW_CHIPID	4	
Bit	7	6	5	R
Read/Write	R	R	R	n / a
Reset Value	n / a	n / a	n / a	
Content	chip_id<7:4>			

Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	n / a	n / a	n / a	n / a
Content	chip_id<3:0>			

chip_id<7:0>: Fixed value b'1111'1001

Register 0x02 (ACCD_X_LSB)

The register contains the least-significant bits of the X-channel acceleration readout value. When reading out X-channel acceleration values, data consistency is guaranteed if the ACCD_X_LSB is read out before the ACCD_X_MSB and shadow_dis='0'. In this case, after the ACCD_X_LSB has been read, the value in the ACCD_X_MS \bar{B} register is locked until the ACCD_X_MSB has been read. This condition is inherently fulfilled if a burst-mode read access is performed. Acceleration data may be read from register ACCD_X_LSB at any time except during power-up and in DEEP_SUSPEND mode.

Name	0x02	ACCD_X_LSB		
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a
Content	acc_x_lsb<1:0>			

Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a
Content	undefined	undefined	undefined	new_data_x

acc_x_Isb<1:0>: Least significant 2 bits of acceleration read-back value; (two's-complement format)
undefined: random data; to be ignored.
new_data_x: , 0^{\prime} : acceleration value has not been updated since it has been read out last ,1': acceleration value has been updated since it has been read out last

$((1)$ BOSCH	BMA250E Data sheet	Page 51

Register 0x03 (ACCD_X_MSB)

The register contains the most-significant bits of the X-channel acceleration readout value. When reading out X -channel acceleration values, data consistency is guaranteed if the ACCD_X_LSB is read out before the ACCD_X_MSB and shadow_dis=' 0 '. In this case, after the ACCD_X_LSB has been read, the value in the ACCD_X_MSB register is locked until the ACCD_X_MSB has been read. This condition is inherently fulfilled if a burst-mode read access is performed. Acceleration data may be read from register ACCD_X_MSB at any time except during power-up and in DEEP_SUSPEND mode.

Name	0x02	ACCD_X_MSB	5	4
Bit	7	6	R	R
Read/Write	R	n / a	n / a	n / a
Reset Value	n / a			
Content	acc_x_msb<9:6>			

Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n / a
Content	acc_x_msb<5:2>			

acc_x_msb<9:2>: Most significant 8 bits of acceleration read-back value (two's-complement format)

(\oplus) BOSCH	BMA250E Data sheet	Page 52

Register 0x04 (ACCD_Y_LSB)

The register contains the least-significant bits of the Y -channel acceleration readout value. When reading out Y -channel acceleration values, data consistency is guaranteed if the ACCD_Y_LSB is read out before the ACCD_Y_MSB and shadow_dis=' 0 '. In this case, after the $A C C D-Y$ _LSB has been read, the value in the $A C C D D_{-} Y$ MS \bar{B} register is locked until the ACCD_Y_MSB has been read. This condition is inherently fulfilled if a burst-mode read access is performed. Acceleration data may be read from register ACCD_Y_LSB at any time except during power-up and in DEEP_SUSPEND mode.

Name	$\mathbf{0 x 0 4}$	ACCD_Y_LSB	4	
Bit	7	6	5	R
Read/Write	R	R	R	n/a
Reset Value	n / a	n / a	n / a	undefined
Content	acc_y_Isb<1:0>			

Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	n / a	n / a	n / a	n / a
Content	undefined	undefined	undefined	new_data_y

acc_y_lsb<1:0>: Least significant 2 bits of acceleration read-back value; (two's-complement format)
undefined: random data; to be ignored
new_data_y: ,0': acceleration value has not been updated since it has been read out last ,1': acceleration value has been updated since it has been read out last

$((1)$ BOSCH	BMA250E Data sheet	Page 53

Register 0x05 (ACCD_Y_MSB)

The register contains the most-significant bits of the Y -channel acceleration readout value. When reading out Y -channel acceleration values, data consistency is guaranteed if the ACCD_Y_LSB is read out before the ACCD_Y_MSB and shadow_dis=' 0 '. In this case, after the $A C C D-Y_{-}^{-}$LSB has been read, the value in the $A^{-} C C D D_{-} M S \bar{B}$ register is locked until the $\mathrm{ACCD}^{-} \mathrm{Y}^{-}$MSB has been read. This condition is inherently fülfilled if a burst-mode read access is performed. Acceleration data may be read from register ACCD_Y_MSB at any time except during power-up and in DEEP_SUSPEND mode.

Name	$\mathbf{0 x 0 5}$	ACCD_Y_MSB	5	4
Bit	7	6	R	R
Read/Write	R	R	n / a	n / a
Reset Value	n / a	a		
Content	acc_y_msb<9:6>			

Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	n / a	n / a	n / a	n / a
Content				

acc_y_msb<9:2>: Most significant 8 bits of acceleration read-back value (two's-complement format)

(\oplus) BOSCH	BMA250E Data sheet	Page 54

Register 0x06 (ACCD_Z_LSB)

The register contains the least-significant bits of the Z-channel acceleration readout value. When reading out Z-channel acceleration values, data consistency is guaranteed if the ACCD_Z_LSB is read out before the ACCD_Z_MSB and shadow_dis='0'. In this case, after the ACCD_Z_LSB has been read, the value in the ACCD_Z_MS \bar{B} register is locked until the ACCD_Z_MSB has been read. This condition is inherently fulfilled if a burst-mode read access is performed. Acceleration data may be read from register ACCD_Z_LSB at any time except during power-up and in DEEP_SUSPEND mode.

Name	$\mathbf{0 x 0 6}$	ACCD_Z_LSB		
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	n / a	n / a	n / a	n / a
Content	acc_z_Isb<1:0>			

Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	n / a	n / a	n / a	n / a
Content	undefined	undefined	undefined	new_data_z

Acc_z_Isb<1:0>: Least significant 2 bits of acceleration read-back value; (two's-complement format)
undefined: random data; to be ignored
new_data_z: ,0': acceleration value has not been updated since it has been read out last ,1': acceleration value has been updated since it has been read out last

(\oplus) BOSCH	BMA250E Data sheet	Page 55

Register 0x07 (ACCD_Z_MSB)

The register contains the most-significant bits of the Z-channel acceleration readout value. When reading out Z-channel acceleration values, data consistency is guaranteed if the ACCD_Z_LSB is read out before the ACCD_Z_MSB and shadow_dis=' 0 '. In this case, after the $A C C D Z_{-}^{-} L S B$ has been read, the value in the ACCD_Z_MS \bar{B} register is locked until the ACCD_- MSB has been read. This condition is inherently fúlfilled if a burst-mode read access is performed. Acceleration data may be read from register ACCD_Z_MSB at any time except during power-up and in DEEP_SUSPEND mode.

Name	0x07			
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a
Content	acc_z_msb<9:6>			

Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a
Content				

acc_z_msb<9:2>: Most significant 8 bits of acceleration read-back value (two's-complement format)

$(円)$ BOSCH	BMA250E Data sheet	Page 56

Register 0x08 (ACCD_TEMP)

The register contains the current chip temperature represented in two's complement format. A readout value of temp $<7: 0>=0 \times 00$ corresponds to a temperature of $23^{\circ} \mathrm{C}$.

Name	0x08	ACCD_TEMP		
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	n / a	n / a	n / a	
Content	temp<7:4>			

Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	n / a	n / a	n / a	n / a
Content	temp<3:0>			

temp<7:0>: Temperature value (two s-complement format)

(\oplus) BOSCH	BMA250E Data sheet	Page 57

Register 0x09 (INT_STATUS_0)

The register contains interrupt status flags. Each flag is associated with a specific interrupt function. It is set when the associated interrupt triggers. The setting of latch_int<3:0> controls if the interrupt signal and hence the respective interrupt flag will be permanently latched, temporarily latched or not latched. The interrupt function associated with a specific status flag must be enabled.

Name	0×09	INT_STATUS_0		
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a
Content	flat_int	orient_int	s_tap_int	d_tap_int

Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	n / a	n / a	n / a	n / a
Content	slo_no_mot_int	slope_int	high_int	low_int

flat_int: flat interrupt status: ' 0 ' \rightarrow inactive, ' 1 ' \rightarrow active
orient int: orientation interrupt status: ' 0 ' \rightarrow inactive, ' 1 ' \rightarrow active
s_tap_int: single tap interrupt status: '0' \rightarrow inactive, '1' \rightarrow active
d_tap_int double tap interrupt status: ' 0 ' \rightarrow inactive, ' 1 ' \rightarrow active
slo_not_mot_int: slow/no-motion interrupt status: '0' \rightarrow inactive, ' 1 ' \rightarrow active
slope_int: slope interrupt status: 0 ' \rightarrow inactive, ' 1 ' \rightarrow active
high_int: \quad high-g interrupt status: ' 0 ' \rightarrow inactive, ' 1 ' \rightarrow active
low_int: low-g interrupt status: ' 0 ' \rightarrow inactive, ' 1 ' \rightarrow active

$(円)$ BOSCH	BMA250E Data sheet	Page 58

Register 0x0A (INT_STATUS_1)

The register contains interrupt status flags. Each flag is associated with a specific interrupt function. It is set when the associated interrupt engine triggers. The setting of latch_int<3:0> controls if the interrupt signal and hence the respective interrupt flag will be permanently latched, temporarily latched or not latched. The interrupt function associated with a specific status flag must be enabled.

Name	0x0A	INT_STATUS_1		
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	n / a	n / a	n / a	n / a
Content	data_int	fifo_wm_int	fifo_full_int	reserved

Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	n / a	n / a	n / a	n / a
Content	reserved			

data_int: data ready interrupt status: ' 0 ' \rightarrow inactive, ' 1 ' \rightarrow active
fifo_wm_int: FIFO watermark interrupt status: '0' \rightarrow inactive, ' 1 ' \rightarrow active
fifo_full_int: FIFO full interrupt status: ' 0 ' \rightarrow inactive, ' 1 ' \rightarrow active
reserved: reserved, write to '0'

(\oplus) BOSCH	BMA250E Data sheet	Page 59

Register 0x0B (INT_STATUS_2)

The register contains interrupt status flags. Each flag is associated with a specific interrupt engine. It is set when the associated interrupt engine triggers. The setting of latch_int<3:0> controls if the interrupt signal and hence the respective interrupt flag will be permanently latched, temporarily latched or not latched. The interrupt function associated with a specific status flag must be enabled.

Name	Ox0B	INT_STATUS_2		
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	n / a	n / a	n / a	n / a
Content	tap_sign	tap_first_z	tap_first_y	tap_first_x

Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	n / a	n / a	n / a	n / a
Content	slope_sign	slope_first_z	slope_first_y	slope_first_x

tap_sign: sign of single/double tap triggering signal was ' 0 ' \rightarrow positive, or ' 1 ' \rightarrow negative tap_first_z: tap_first_y: tap_first_x: slope_sign: slope_first_z: slope_first_y: slope_first_x: single/double tap interrupt: ' 1 ' \rightarrow triggered by, or ' 0 ' \rightarrow not triggered by z-axis single/double tap interrupt: ' 1 ' \rightarrow triggered by, or ' 0 ' \rightarrow not triggered by y-axis single/double tap interrupt: ' 1 ' \rightarrow triggered by, or ' 0 ' \rightarrow not triggered by x -axis slope sign of slope tap triggering signal was ' 0 ' \rightarrow positive, or ' 1 ' \rightarrow negative slope interrupt: ' 1 ' \rightarrow triggered by, or ' 0 ' \rightarrow not triggered by z-axis slope interrupt: ' 1 ' \rightarrow triggered by, or ' 0 ' \rightarrow not triggered by y -axis slope interrupt: ' 1 ' \rightarrow triggered by, or ' 0 ' \rightarrow not triggered by x -axis

(\oplus) BOSCH	BMA250E Data sheet	Page 60

Register 0x0C (INT_STATUS_3)

The register contains interrupt status flags. Each flag is associated with a specific interrupt engine. It is set when the associated interrupt engine triggers. With the exception of orient<3:0> the setting of latch_int<3:0> controls if the interrupt signal and hence the respective interrupt flag will be permanently latched, temporarily latched or not latched. The interrupt function associated with a specific status flag must be enabled.

Name	0x0C	INT_STATUS_3		
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	n / a	n / a	n / a	n / a
Content	flat	orient<2:0>		

Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	n / a	n / a	n / a	n / a
Content	high_sign	high_first_z	high_first_y	high_first_x

flat:	device is in ' 1 ' \rightarrow flat, or ' 0 ' \rightarrow non flat position; only valid if (0×16) flat_en = ' 1 '
orient<2>:	Orientation value of z -axis: ' 0 ' \rightarrow upward looking, or ' 1 ' \rightarrow downward looking. The flag always reflect the current orientation status, independent of the setting of latch_int<3:0>. The flag is not updated as long as an orientation blocking condition is active.
orient<1:0>:	orientation value of x - y-plane:
	' 00 ' \rightarrow portrait upright; \quad ' 01 ' \rightarrow portrait upside down; ' 10 ' \rightarrow landscape left; \quad ' 11 ' \rightarrow landscape right;
	The flags always reflect the current orientation status, independent of the setting of latch_int<3:0>. The flag is not updated as long as an orientation blocking condition is active.
high_sign:	sign of acceleration signal that triggered high-g interrupt was ' 0 ' \rightarrow positive, ' 1 ' \rightarrow negative
high_first_z:	high-g interrupt: '1' \rightarrow triggered by, or ' 0 ' \rightarrow not triggered by z-axis
high_first_y:	high-g interrupt: ' 1 ' \rightarrow triggered by, or ' 0 ' \rightarrow not triggered by y -axis
high_first_x:	high-g interrupt: ' 1 ' \rightarrow triggered by, or ' 0 ' \rightarrow not triggered by x -axis

(\oplus) BOSCH	BMA250E Data sheet	Page 61

Register 0x0E (FIFO_STATUS)

The register contains FIFO status flags.

Name	0x0E	FIFO_STATUS		
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n / a	
Content	fifo_overrun	fifo_frame_counter<6:4>		

Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	n / a	n / a	n / a	n / a
Content	fifo_frame_counter<3:0>			

fifo_overrun: \quad FIFO overrun condition has ' 1 ' \rightarrow occurred, or ' 0 ' \rightarrow not occurred; flag can be cleared by writing to the FIFO configuration register FIFO_CONFIG_1 only fifo_frame_counter<6:4>: Current fill level of FIFO buffer. An empty FIFO corresponds to 0×00. The frame counter can be cleared by reading out all frames from the FIFO buffer or writing to the FIFO configuration register FIFO_CONFIG_1.

(\Leftrightarrow) BOSCH	BMA250E Data sheet	Page 62

Register 0x0F (PMU_RANGE)

The register allows the selection of the accelerometer g-range.

Name	0x0F	PMU_RANGE	5	4
Bit	7	6	R/W	R/W
Read/Write	R/W	R/W	0	0
Reset Value	0	0	1	0
Content	reserved	R/W		
Bit 3 2 1 1 Read/Write R/W R/W R/W Reset Value 0 0 Content range<3:0>				

range<3:0>: Selection of accelerometer g-range:
'0011b' $\rightarrow \pm 2 \mathrm{~g}$ range; \quad '0101b' $\rightarrow \pm 4 \mathrm{~g}$ range; '1000b' $\rightarrow \pm 8 \mathrm{~g}$ range; ' 1100 b ' $\rightarrow \pm 16 \mathrm{~g}$ range; all other settings \rightarrow reserved (do not use)
reserved: write ' 0 '

Register 0x10 (PMU_BW)

The register allows the selection of the acceleration data filter bandwidth.

Name	0x10	PMU_BW	4	
Bit	7	6	5	R/W
Read/Write	R/W	R/W	R/W	0
Reset Value	0	0	0	bw<4>
Content	reserved			

0

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	1	1	1	1
Content	bw<3:0>			

| $(⿴ 囗 十)$ |
| :--- | :--- | :--- | | BMA250E |
| :--- |
| Data sheet |\quad Page 63

Register 0x11（PMU＿LPW）

Selection of the main power modes and the low power sleep period．

Name	0x11	PMU＿LPW	4	
Bit	7	6	5	R／W
Read／Write	R／W	R／W	R／W	0
Reset Value	0	0	0	sleep＿dur＜3＞
Content	suspend	lowpower＿en	deep＿suspend	

Bit	3	2	1	0
Read／Write	R／W	R／W	R／W	R／W
Reset Value	0	0	0	0
Content	sleep＿dur＜2：0＞	reserved		

suspend，low＿power＿en，deep＿suspend：
Main power mode configuration setting \｛suspend；lowpower＿en；
deep＿suspend\}:
$\{0 ; 0 ; 0\} \rightarrow \quad$ NORMAL mode；
$\{0 ; 0 ; 1\} \rightarrow \quad$ DEEP＿SUSPEND mode；
$\{0 ; 1 ; 0\} \rightarrow \quad$ LOW＿POWER mode；
$\{1 ; 0 ; 0\} \rightarrow \quad$ SUSP̄END mode；
\｛all other\} $\rightarrow \quad$ illegal
Please note that only certain power mode transitions are permitted．
sleep＿dur＜3：0＞：Configures the sleep phase duration in LOW＿POWER mode：

0000b＇to＇0101b＇	$\rightarrow 0.5 \mathrm{~ms}$ ，	${ }^{\prime} 0110 \bar{b}^{\prime} \rightarrow 1 \mathrm{~ms}$ ，
0111b＇	$\rightarrow 2 \mathrm{~ms}$ ，	${ }^{\prime} 1000 b^{\prime} \rightarrow 4 \mathrm{~ms}$ ，
1001b＇	$\rightarrow 6 \mathrm{~ms}$ ，	＇1010b＇$\rightarrow 10 \mathrm{~ms}$ ，
1011b＇	$\rightarrow 25 \mathrm{~ms}$ ，	＇1100b＇$\rightarrow 50 \mathrm{~ms}$ ，
1101b＇	$\rightarrow 100 \mathrm{~ms}$ ，	＇1110b＇$\rightarrow 500 \mathrm{~ms}$ ，
1111b＇	$\rightarrow 1 \mathrm{~s}$	

Please note，that all application specific settings which are not equal to the default settings （refer to 6.2 register map），must be re－set to its designated values after DEEP＿SUSPEND．

(H) BOSCH	BMA250E Data sheet	Page 64

Register 0x12 (PMU_LOW_POWER)

Configuration settings for low power mode.

Name	$\mathbf{0 x 1 2}$	PMU_LOW_POWER			
Bit	7	6	5	4	
Read/Write	R/W	R/W	R/W	R/W	
Reset Value	0	0	0	0	
Content	reserved	lowpower_mode	sleeptimer_mode	reserved	

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	reserved			

lowpower_mode: select ' 0 ' \rightarrow LPM1, or ' 1 ' \rightarrow LPM2 configuration for SUSPEND and LOW_POWER mode. In the LPM1 configuration the power consumption in LOW_POWER mode and SUSPEND mode is significantly reduced when compared to LPM2 configuration, but the FIFO is not accessible and writing to registers must be slowed down. In the LPM2 configuration the power consumption in LOW_POWER mode is reduced compared to NORMAL mode, but the FIFO is fully accessible and registers can be written to at full speed.
sleeptimer_mode: when in LOW_POWER mode ' 0 ' \rightarrow use event-driven time-base mode (compatible with BMA250), or ' 1 ' \rightarrow use equidistant sampling time-base mode. Equidistant sampling of data into the FIFO is maintained in equidistant time-base mode only.
reserved: write ' 0 '

\oplus BOSCH	BMA250E Data sheet	Page 65

Register 0x13 (ACCD_HBW)

Acceleration data acquisition and data output format.

Name	0x13	ACCD_HBW	4	
Bit	7	6	5	R/W
Read/Write	R/W	R/W $\quad 1$ in 8-bit	0	0
Reset Value	0	$0 \quad$ mode) ma_dis	reserved	
Content	data_high_bw	shadow_dis		

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	reserved			

data_high_bw: select whether ' 1 ' \rightarrow unfiltered, or ' 0 ' \rightarrow filtered data may be read from the acceleration data registers.
shadow_dis: $\quad 1$ ' \rightarrow disable, or ' 0 ' \rightarrow the shadowing mechanism for the acceleration data output registers. When shadowing is enabled, the content of the acceleration data component in the MSB register is locked, when the component in the LSB is read, thereby ensuring the integrity of the acceleration data during read-out. The lock is removed when the MSB is read.
reserved: write ' 0 '

(丹) BOSCH	BMA250E Data sheet	Page 66

Register 0x14 (BGW_SOFTRESET)

Controls user triggered reset of the sensor.

Name	0x14	BGW_SOFTRESET		
Bit	7	6	5	4
Read/Write	W	W	W	W
Reset Value	0	0	0	0
Content	softreset			

Bit	3	2	1	0
Read/Write	W	W	W	W
Reset Value	0	0	0	0
Content				

softreset: $\quad 0 \times B 6 \rightarrow$ triggers a reset. Other values are ignored. Following a delay, all user configuration settings are overwritten with their default state or the setting stored in the NVM, wherever applicable. This register is functional in all operation modes. Please note that all application specific settings which are not equal to the default settings (refer to 6.2 register map), must be reconfigured to their designated values.

Register 0x16 (INT_EN_0)

Controls which interrupt engines in group 0 are enabled.

Name	0x16	INT_EN_0	4	
Bit	7	6	5	R/W
Read/Write	R/W	R/W	R/W	0
Reset Value	0	0	0	d_tap_en
Content	flat_en	orient_en	s_tap_en	0
Bit 3 2 1 R/W Read/Write R/W R/W R/W 0 Reset Value 0 0 0 slope_en_x				

flat_en: flat interrupt: ' 0 ' \rightarrow disabled, or ' 1 ' \rightarrow enabled
orient_en:
s_tap_en:
d_tap_en
reserved:
slope_en_z:
slope_en_y:
slope_en_x:
orientation interrupt: ' 0 ' \rightarrow disabled, or ' 1 ' \rightarrow enabled single tap interrupt: ' 0 ' \rightarrow disabled, or ' 1 ' \rightarrow enabled double tap interrupt: ' 0 ' \rightarrow disabled, or ' 1 ' \rightarrow enabled write ' 0 ' slope interrupt, z-axis component: ' 0 ' \rightarrow disabled, or ' 1 ' \rightarrow enabled slope interrupt, y -axis component: ' 0 ' \rightarrow disabled, or ' 1 ' \rightarrow enabled slope interrupt, x-axis component: ' 0 ' \rightarrow disabled, or ' 1 ' \rightarrow enabled

$(円)$ BOSCH	BMA250E Data sheet	Page 67

Register 0x17 (INT_EN_1)

Controls which interrupt engines in group 1 are enabled.

Name	0x17	INT_EN_1		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	reserved	int_fwm_en	int_ffull_en	data_en

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	low_en	high_en_z	high_en_y	high_en_x

reserved: write ' 0 '
int_fwm_en:
int_ffull_en:
data_en
low_en:
high_en_z:
high_en_y:
high_en_x:

FIFO watermark interrupt: '0' \rightarrow disabled, or ' 1 ' \rightarrow enabled
FIFO full interrupt: ‘ 0 ' \rightarrow disabled, or ' 1 ' \rightarrow enabled data ready interrupt: ' 0 ' \rightarrow disabled, or ' 1 ' \rightarrow enabled low-g interrupt: ' 0 ' \rightarrow disabled, or ' 1 ' \rightarrow enabled high-g interrupt, z-axis component: ' 0 ' \rightarrow disabled, or ' 1 ' \rightarrow enabled high-g interrupt, y -axis component: ' 0 ' \rightarrow disabled, or ' 1 ' \rightarrow enabled high-g interrupt, x-axis component: ' 0 ' \rightarrow disabled, or ' 1 ' \rightarrow enabled

\oplus BOSCH	BMA250E Data sheet	Page 68

Register 0x18 (INT_EN_2)

Controls which interrupt engines in group 2 are enabled.

Name	0x18	INT_EN_2		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	reserved			

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	slo_no_mot_sel	slo_no_mot_en_z	slo_no_mot_en_y	slo_no_mot_en_x

reserved: write ' 0 '
slo_no_mot_sel: select ' 0 ' \rightarrow slow-motion, ' 1 ' \rightarrow no-motion interrupt function
slo_no_mot_en_z: slow/n-motion interrupt, z-axis component: '0' \rightarrow disabled, or ' 1 ' \rightarrow enabled slo_no_mot_en_y: slow/n-motion interrupt, y-axis component: '0' \rightarrow disabled, or ' 1 ' \rightarrow enabled slo_no_mot_en_x: slow/n-motion interrupt, x-axis component: ' 0 ' \rightarrow disabled, or ' 1 ' \rightarrow enabled

| $(⿴ 囗 十)$ |
| :--- | :--- | :--- | | BMA250E |
| :--- |
| Data sheet |\quad Page 69

Register 0x19（INT＿MAP＿0）

Controls which interrupt signals are mapped to the INT1 pin．

Name	0x19	INT＿MAP＿0	4	
Bit	7	6	5	R／W
Read／Write	R／W	R／W	R／W	0
Reset Value	0	0	0	int1＿d＿tap
Content	int1＿flat	int1＿orient	int1＿s＿tap	

Bit	3	2	1	0
Read／Write	R／W	R／W	R／W	R／W
Reset Value	0	0	0	0
Content	int1＿slo＿no＿mot	int1＿slope	int1＿high	int1＿low

int1＿flat：map flat interrupt to INT1 pin：＇ 0 ＇\rightarrow disabled，or＇ 1 ＇\rightarrow enabled
int1＿orient：
int1＿s＿tap：
int1＿d＿tap：
int1＿slo＿no＿mot： int1 slope：
int1＿high：
int1＿low：
map orientation interrupt to INT1 pin：＇ 0 ＇\rightarrow disabled，or＇ 1 ＇\rightarrow enabled map single tap interrupt to INT1 pin：＇ 0 ＇\rightarrow disabled，or＇ 1 ＇\rightarrow enabled map double tap interrupt to INT1 pin：＇0＇\rightarrow disabled，or＇ 1 ＇\rightarrow enabled map slow／no－motion interrupt to INT1 pin：＇0＇\rightarrow disabled，or＇ 1 ＇\rightarrow enabled map slope interrupt to INT1 pin：‘ 0 ＇\rightarrow disabled，or＇ 1 ＇\rightarrow enabled map high－g to INT1 pin：＇ 0 ＇\rightarrow disabled，or＇ 1 ＇\rightarrow enabled map low－g to INT1 pin：＇0＇\rightarrow disabled，or＇ 1 ＇\rightarrow enabled

(Θ) BOSCH	BMA250E Data sheet	Page 70

Register 0x1A (INT_MAP_1)

Controls which interrupt signals are mapped to the INT1 and INT2 pins.

Name	0x1A	INT_MAP_1	4	
Bit	7	6	5	R/W
Read/Write	R/W	R/W	R/W	0
Reset Value	0	0	0	reserved
Content	int2_data	int2_fwm	int2_ffull	(

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	reserved	int1_ffull	int1_fwm	int1_data

int2_data: map data ready interrupt to INT2 pin: ‘0' \rightarrow disabled, or ' 1 ' \rightarrow enabled
int2_fwm:
int2_ffull: reserved: int1_ffull: int1_fwm:
int1_data: map FIFO watermark interrupt to INT2 pin: ' 0 ' \rightarrow disabled, or ' 1 ' \rightarrow enabled map FIFO full interrupt to INT2 pin: ' 0 ' \rightarrow disabled, or ' 1 ' \rightarrow enabled write '0'
map FIFO full interrupt to INT1 pin: '0' \rightarrow disabled, or ' 1 ' \rightarrow enabled map FIFO watermark interrupt to INT1 pin: ' 0 ' \rightarrow disabled, or ' 1 ' \rightarrow enabled map data ready interrupt to INT1 pin: ‘0' \rightarrow disabled, or ' 1 ' \rightarrow enabled

| $(⿴ 囗 十)$ |
| :--- | :--- | :--- | | BMA250E |
| :--- |
| Data sheet |\quad Page 71

Register 0x1B（INT＿MAP＿2）

Controls which interrupt signals are mapped to the INT2 pin．

Name	0x1B	INT＿MAP＿2	4	
Bit	7	6	5	R／W
Read／Write	R／W	R／W	0	0
Reset Value	0	0	0	int2＿d＿tap
Content	int2＿flat	int2＿orient	int2＿s＿tap	（tap

Bit	3	2	1	0
Read／Write	R／W	R／W	R／W	R／W
Reset Value	0	0	0	0
Content	int2＿slo＿no＿mot	int2＿slope	int2＿high	int2＿low

int2＿flat：map flat interrupt to INT2 pin：＇ 0 ＇\rightarrow disabled，or＇ 1 ＇\rightarrow enabled int2＿orient： int2＿s＿tap： map orientation interrupt to INT2 pin：＇0＇\rightarrow disabled，or＇ 1 ＇\rightarrow enabled map single tap interrupt to INT2 pin：＇ 0 ＇\rightarrow disabled，or＇ 1 ＇\rightarrow enabled int2＿d＿tap： map double tap interrupt to INT2 pin：＇0＇\rightarrow disabled，or＇ 1 ＇\rightarrow enabled int2＿slo＿no＿mot： int2 slope：
int2＿high： map slow／no－motion interrupt to INT2 pin：＇0＇\rightarrow disabled，or＇ 1 ＇\rightarrow enabled map slope interrupt to INT2 pin：＇ 0 ＇\rightarrow disabled，or＇ 1 ＇\rightarrow enabled int2＿low： map high－g to INT2 pin：＇ 0 ＇\rightarrow disabled，or＇ 1 ＇\rightarrow enabled map low－g to INT2 pin：＇ 0 ＇\rightarrow disabled，or＇ 1 ＇\rightarrow enabled

| $(⿴ 囗 十)$ |
| :--- | :--- | :--- | | BMA250E |
| :--- |
| Data sheet |\quad Page 72

Register 0x1E（INT＿SRC）

Contains the data source definition for interrupts with selectable data source．

Name	0x1E	INT＿SRC		
Bit	7	6	5	4
Read／Write	R／W	R／W	R／W	R／W
Reset Value	0	0	0	0
Content	reserved	int＿src＿data	int＿src＿tap	

Bit	3	2	1	0
Read／Write	R／W	R／W	R／W	R／W
Reset Value	0	0	0	0
Content	int＿Src＿slo＿no＿m ot	int＿Src＿slope	int＿src＿high	int＿src＿low

reserved：write＇ 0 ＇
int＿src＿data：select＇ 0 ＇\rightarrow filtered，or＇ 1 ＇\rightarrow unfiltered data for new data interrupt int＿src＿tap：select＇ 0 ＇\rightarrow filtered，or＇ 1 ＇\rightarrow unfiltered data for single－／double tap interrupt int＿src＿slo＿no＿mot：select＇ 0 ＇\rightarrow filtered，or＇ 1 ＇\rightarrow unfiltered data for slow／no－motion interrupt int＿src＿slope：select＇ 0 ＇\rightarrow filtered，or＇ 1 ＇\rightarrow unfiltered data for slope interrupt int＿src＿high：select＇ 0 ＇\rightarrow filtered，or＇ 1 ＇\rightarrow unfiltered data for high－g interrupt int＿src＿low：select＇0＇\rightarrow filtered，or＇ 1 ＇\rightarrow unfiltered data for low－g interrupt

$(円)$ BOSCH	BMA250E Data sheet	Page 73

Register 0x20 (INT_OUT_CTRL)

Contains the behavioural configuration (electrical behaviour) of the interrupt pins.

Name	$\mathbf{0 x 2 0}$	INT_OUT_CTRL		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	reserved			

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	1	0	1
Content	int2_od	int2_Ivl	int1_od	int1_Ivl

reserved: write ' 0 '
int2_od:
int2_Iv:
select ' 0 ' \rightarrow push-pull, or ' 1 ' \rightarrow open drain behavior for INT2 pin select ' 0 ' \rightarrow active low, or ' 1 ' \rightarrow active high level for INT2 pin
int1_od: select ' 0 ' \rightarrow push-pull, or ' 1 ' \rightarrow open drain behavior for INT1 pin int1_Ivl: \quad select 0 ' \rightarrow active low, or ' 1 ' \rightarrow active high level for INT1 pin

(丹) BOSCH	BMA250E Data sheet	Page 74

Register 0x21 (INT_RST_LATCH)

Contains the interrupt reset bit and the interrupt mode selection.

Name	0x21	INT_RST_LATCH		
Bit	7	6	5	4
Read/Write	W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	reset_int	Reserved		

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	latch_int $<3: 0>$			

reset_int:	write ' 1 ' \rightarrow clear any latched interrupts, or ' 0 ' \rightarrow keep latched interrupts active
reserved:	write ' 0 '
latch_int<3:0>:	'0000b' \rightarrow non-latched, \quad '0001b' \rightarrow temporary, 250 ms ,
	'0010b' \rightarrow temporary, 500 ms , '0011b' \rightarrow temporary, 1 s ,
	'0100b' \rightarrow temporary, $2 \mathrm{~s}, \quad$ '0101b' \rightarrow temporary, 4 s ,
	'0110b' \rightarrow temporary, $8 \mathrm{~s}, \quad$ '0111b' \rightarrow latched,
	'1000b' \rightarrow non-latched, \quad '1001b' \rightarrow temporary, $250 \mu \mathrm{~s}$,
	'1010b' \rightarrow temporary, $500 \mu \mathrm{~s}$, '1011b' \rightarrow temporary, 1 ms ,
	'1100b' \rightarrow temporary, 12.5 ms , '1101b' \rightarrow temporary, 25 ms ,
	'1110b' \rightarrow temporary, $50 \mathrm{~ms}, \quad$ '1111b' \rightarrow latched

Register 0x22 (INT_0)

Contains the delay time definition for the low-g interrupt.

Name	$\mathbf{0 x 2 2}$	INT_0		
Bit	7	6	5	4
Read/Write	W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	low_dur<7:4>			

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	1	0	0	1
Content	low_dur<3:0>			

low_dur<7:0>: low-g interrupt trigger delay according to [low_dur<7:0> + 1] $\cdot 2 \mathrm{~ms}$ in a range from 2 ms to 512 ms ; the default corresponds to a delay of 20 ms .

(®) BOSCH	BMA250E Data sheet	Page 75

Register 0x23 (INT_1)

Contains the threshold definition for the low-g interrupt.

Name	$\mathbf{0 x 2 3}$	INT_1		
Bit	7	6	5	4
Read/Write	W	R/W	R/W	R/W
Reset Value	0	0	1	1
Content	low_th<7:4>			

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	low_th<3:0>			

low_th<7:0>: low-g interrupt trigger threshold according to low_th<7:0> • 7.81 mg in a range from 0 g to 1.992 g ; the default value corresponds to an acceleration of 375 mg

Register 0x24 (INT_2)

Contains the low-g interrupt mode selection, the low-g interrupt hysteresis setting, and the highg interrupt hysteresis setting.

Name	0x24	INT_2		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	1	0	0	0
Content	high_hy<1:0>			

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	1
Content	reserved	low_mode	low_hy<1:0>	

high_hy<1:0>: hysteresis of high-g interrupt according to high_hy<1:0> $\cdot 125 \mathrm{mg}(2-\mathrm{g}$ range), high_hy<1:0> • 250 mg ($4-\mathrm{g}$ range), high_hy<1:0> $\cdot 500 \mathrm{mg}$ ($8-\mathrm{g}$ range), or high_hy<1:0> • 1000 mg ($16-\mathrm{g}$ range)
low_mode: select low-g interrupt ' 0 ' single-axis mode, or ' 1 ' axis-summing mode
low_hy<1:0>: hysteresis of low-g interrupt according to low_hy<1:0> $\cdot 125 \mathrm{mg}$ independent of the selected accelerometer g-range

(@) BOSCH	BMA250E Data sheet	Page 76

Register 0x25 (INT_3)

Contains the delay time definition for the high-g interrupt.

Name	$\mathbf{0 x 2 5}$	INT_3		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	high_dur<7:4>			

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	1	1	1	1
Content	high_dur<3:0>			

high_dur<7:0>: high-g interrupt trigger delay according to [high_dur<7:0> + 1] $\cdot 2 \mathrm{~ms}$ in a range from 2 ms to 512 ms ; the default corresponds to a delay of 32 ms .

Register 0x26 (INT_4)

Contains the threshold definition for the high-g interrupt.

Name	0x26	INT_4		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	1	1	0	0
Content	high_th<7:4>			

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	high_th<3:0>			

high_th<7:0>: threshold of high-g interrupt according to high_th<7:0> $\cdot 7.81 \mathrm{mg}$ ($2-\mathrm{g}$ range), high_th<7:0> $\cdot 15.63 \mathrm{mg}$ ($4-\mathrm{g}$ range), high_th<7:0> 31.25 mg ($8-\mathrm{g}$ range), or high_th<7:0> • 62.5 mg ($16-\mathrm{g}$ range)

(\oplus) BOSCH	BMA250E Data sheet	Page 77

Register 0x27 (INT_5)

Contains the definition of the number of samples to be evaluated for the slope interrupt (anymotion detection) and the slow/no-motion interrupt trigger delay.

Name	$\mathbf{0 x 2 7}$	INT_5		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	slo_no_mot_dur<5:2>			

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	slo_no_mot_dur<1:0>	slope_dur<1:0>		

slo_no_mot_dur<5:0>: Function depends on whether the slow-motion or no-motion interrupt function has been selected. If the slow-motion interrupt function has been enabled (slo_no_mot_sel = ' 0 ') then [slo_no_mot_dur<1:0>+1] consecutive slope data points must be above the slow/no-motion threshold (slo_no_mot_th) for the slow-/no-motion interrupt to trigger. If the no-motion interrupt function has been enabled (slo_no_mot_sel = '1') then slo_no_motion_dur<5:0> defines the time for which no slope data points must exceed the slow/no-motion threshold (slo_no_mot_th) for the slow/nomotion interrupt to trigger. The delay time in seconds may be calculated according with the following equation:
slo_no_mot_dur<5:4>='b00' \rightarrow [slo_no_mot_dur<3:0> + 1] slo_no_mot_dur $<5: 4>=$ 'b01' \rightarrow [slo_no_mot_dur<3:0> $\cdot 4+20$] slo_no_mot_dur<5>='1' \rightarrow [slo_no_mot_dur<4:0> $\cdot 8+88$]
slope_dur $<1: 0>$: slope interrupt triggers if [slope_dur $<1: 0>+1$] consecutive slope data points are above the slope interrupt threshold slope_th<7:0>

(@) BOSCH	BMA250E Data sheet	Page 78

Register 0x28 (INT_6)

Contains the threshold definition for the any-motion interrupt.

Name	0x28	INT_6	4	
Bit	7	6	5	R/W
Read/Write	R/W	R/W	R/W	1
Reset Value	0	0	0	
Content	slope_th<7:4>			

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	1	0	0
Content	slope_th<3:0>			

slope_th<7:0>: Threshold of the any-motion interrupt. It is range-dependent and defined as a sample-to-sample difference according to
slope_th<7:0> $\cdot 3.91 \mathrm{mg}$ ($2-\mathrm{g}$ range) /
slope_th<7:0> $\cdot 7.81 \mathrm{mg}$ ($4-\mathrm{g}$ range) /
slope_th $<7: 0>\cdot 15.63 \mathrm{mg}$ ($8-\mathrm{g}$ range) /
slope_th<7:0> $\cdot 31.25 \mathrm{mg}$ (16-g range)

Register 0x29 (INT_7)

Contains the threshold definition for the slow/no-motion interrupt.

Name	$\mathbf{0 x 2 9}$	INT_7		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	1
Content	slo_no_mot_th<7:4>			

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	1	0	0
Content	slo_no_mot_th<3:0>			

slo_no_mot_th<7:0>: Threshold of slow/no-motion interrupt. It is range-dependent and defined as a sample-to-sample difference according to
slo_no_mot_th<7:0> $\cdot 3 . .91 \mathrm{mg}$ ($2-\mathrm{g}$ range), slo_no_motth $<7: 0>\cdot 7.81 \mathrm{mg}$ ($4-\mathrm{g}$ range), slo_no_mot_th $<7: 0>\cdot 15.63 \mathrm{mg}$ ($8-\mathrm{g}$ range), slo_no_mot_th<7:0> $\cdot 31.25 \mathrm{mg}$ ($16-\mathrm{g}$ range)

$(円)$ BOSCH	BMA250E Data sheet	Page 79

Register 0x2A (INT_8)

Contains the timing definitions for the single tap and double tap interrupts.

Name	0x2A	INT_8		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	tap_quiet	tap_shock	reserved	reserved

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	1	0	0
Content	reserved	tap_dur<2:0>		

tap_quiet: selects a tap quiet duration of ' 0 ' $\rightarrow 30 \mathrm{~ms}$, ' 1 ' $\rightarrow 20 \mathrm{~ms}$
tap_shock: selects a tap shock duration of ' 0 ' $\rightarrow 50 \mathrm{~ms}, ~ ' 1$ ' $\rightarrow 75 \mathrm{~ms}$
reserved:
write ' 0 '
tap_dur<2:0>:
selects the length of the time window for the second shock event for double tap detection according to '000b' $\rightarrow 50 \mathrm{~ms},{ }^{\prime} 001 \mathrm{~b} ' \rightarrow 100 \mathrm{~ms}, ~ ' 010 \mathrm{~b}^{\prime} \rightarrow 150$ $\mathrm{ms},{ }^{\prime} 011 \mathrm{~b}$ ' $\rightarrow 200 \mathrm{~ms}$, '100b' $\rightarrow 250 \mathrm{~ms}$, '101b' $\rightarrow 375 \mathrm{~ms}, ~ ' 110 b^{\prime} \rightarrow 500$ ms , '111b' $\rightarrow 700 \mathrm{~ms}$.

(H) BOSCH	BMA250E Data sheet	Page 80

Register 0x2B (INT_9)

Contains the definition of the number of samples processed by the single / double-tap interrupt engine after wake-up in low-power mode. It also defines the threshold definition for the single and double tap interrupts.

Name	0x2B	INT_9		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	tap_samp<1:0>		reserved	tap_th<4>

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	1	0	1	0
Content	tap_th<3:0>			

tap_samp<1:0>: selects the number of samples that are processed after wake-up in the lowpower mode according to '00b' $\rightarrow 2$ samples, '01b' $\rightarrow 4$ samples, ' 10 b ' $\rightarrow 8$ samples, and '11b' $\rightarrow 16$ samples
reserved: write ' 0 '
tap_th<4:0>: threshold of the single/double-tap interrupt corresponding to an acceleration difference of tap_th<4:0> $\cdot 62.5 \mathrm{mg}$ (2 g -range), tap_th<4:0> $\cdot 125 \mathrm{mg}$ (4 g range), tap_th<4:0> $\cdot 250 \mathrm{mg}$ ($8 \mathrm{~g}-$ range), and tap_th<4:0> $\cdot 500 \mathrm{mg}$ ($16 \mathrm{~g}-$ range).

(\oplus) BOSCH	BMA250E Data sheet	Page 81

Register 0x2C (INT_A)

Contains the definition of hysteresis, blocking, and mode for the orientation interrupt

Name	0x2C	INT_A		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	1
Content	reserved	orient_hyst<2:0>		

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	1	0	0	0
Content	orient_blocking<1:0>	orient_mode<1:0>		

reserved: write ' 0 '
orient_hyst<2:0>: sets the hysteresis of the orientation interrupt; 1 LSB corresponds to 62.5 mg irrespective of the selected g-range
orient_blocking<1:0>:
selects the blocking mode that is used for the generation of the orientation interrupt. The following blocking modes are available:
'00b' \rightarrow no blocking,
'01b' \rightarrow theta blocking or acceleration in any axis $>1.5 \mathrm{~g}$,
'10b' \rightarrow,theta blocking or acceleration slope in any axis $>0.2 \mathrm{~g}$ or
acceleration in any axis $>1.5 \mathrm{~g}$
'11b' \rightarrow theta blocking or acceleration slope in any axis $>0.4 \mathrm{~g}$ or
acceleration in any axis $>1.5 \mathrm{~g}$ and value of orient is not stable for at least 100 ms
orient_mode<1:0>: sets the thresholds for switching between the different orientations. The settings: '00b' \rightarrow symmetrical, '01b' \rightarrow high-asymmetrical, '10b' \rightarrow lowasymmetrical, '11b' \rightarrow symmetrical.

(@) BOSCH	BMA250E Data sheet	Page 82

Register 0x2D (INT_B)

Contains the definition of the axis orientation, up/down masking, and the theta blocking angle for the orientation interrupt.

Name	0x2D	INT_B		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	n/a	1	0	0
Content	reserved	orient_ud_en	orient_theta<5:4>	

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	1	0	0	0
Content	orient_theta<3:0>			

orient_ud_en: change of up/down-bit ' 1 ' \rightarrow generates an orientation interrupt, ' 0 ' \rightarrow is ignored and will not generate an orientation interrupt
orient_theta<5:0>: defines a blocking angle between 0° and 44.8°

Register 0x2E (INT_C)

Contains the definition of the flat threshold angle for the flat interrupt.

Name	0x2E	INT_C		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	n/a	n/a	0	0
Content	reserved	flat_theta<5:4>		

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	1	0	0	0
Content	flat_theta<3:0>			

reserved: write ' 0 '

flat_theta<5:0>: defines threshold for detection of flat position in range from 0° to 44.8°.

\oplus BOSCH	BMA250E Data sheet	Page 83

Register 0x2F (INT_D)

Contains the definition of the flat interrupt hold time and flat interrupt hysteresis.

Name	0x2F	INT_D		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	1
Content	reserved	flat_hold_time<1:0>		

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	1
Content	reserved	flat_hy<2:0>		

reserved: write ' 0 '
flat_hold_time<1:0>: delay time for which the flat value must remain stable for the flat interrupt to be generated: '00b' $\rightarrow 0 \mathrm{~ms}$, '01b' $\rightarrow 512 \mathrm{~ms}$, ' $10 \mathrm{~b}^{\prime} \rightarrow 1024 \mathrm{~ms}$, ' $11 \mathrm{~b}^{\prime} \rightarrow 2048 \mathrm{~ms}$
flat_hy<2:0>: defines flat interrupt hysteresis; flat value must change by more than twice the value of flat interrupt hysteresis to detect a state change. For details see chapter 4.7.8.
'000b' \rightarrow hysteresis of the flat detection disabled

(\oplus) BOSCH	BMA250E Data sheet	Page 84

Register 0x30 (FIFO_CONFIG_0)

Contains the FIFO watermark level.

Name	$\mathbf{0 x 3 0}$	FIFO_CONFIG_0		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	n/a	n/a	0	lifo_water_mark_level_trigger_retain< $5: 4>$
Content	reserved			

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content				fifo_water_mark_level_trigger_retain<3:0>

reserved: write ' 0 '
fifo_water_mark_level_trigger_retain<5:0>:
fifo_water_mark_level_trigger_retain<5:0> defines the FIFO watermark level. An interrupt will be generated, when the number of entries in the FIFO is equal to fifo_water_mark_level_trigger_retain<5:0>;

\oplus BOSCH	BMA250E Data sheet	Page 85

Register 0x32 (PMU_SELF_TEST)

Contains the settings for the sensor self-test configuration and trigger.

Name	$\mathbf{0 x 3 2}$	PMU_SELF_TEST		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	reserved			

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	reserved_0	self_test_sign	self_test-axis<1:0>	

reserved:	write ' 0×0 '
reserved_0:	write ' 0×0 '
self_test_amp;	select amplitude of the selftest deflection ' 1 ' \rightarrow high, default value is low (' 0 ')
self_test_sign:	select sign of self-test excitation as ' 1 ' \rightarrow positive, or '0' \rightarrow negative
self_test_axis:	select axis to be self-tested: '00b' \rightarrow self-test disabled, '01b' \rightarrow x-axis, '10b' $\rightarrow y$-axis, or ' $11 b^{\prime} \rightarrow z$-axis; when a self-test is performed, only the acceleration data readout value of the selected axis is valid; after the selftest has been enabled a delay of a least 50 ms is necessary for the read-out value to settle

| $(⿴ 囗 十)$ |
| :--- | :--- | :--- | | BMA250E |
| :--- |
| Data sheet |\quad Page 86

Register 0x33（TRIM＿NVM＿CTRL）

Contains the control settings for the few－time programmable non－volatile memory（NVM）．

Name	0x33	TRIM＿NVM＿CTRL		
Bit	7	6	5	4
Read／Write	R	R	R	n
Reset Value	n / a	n / a	n / a	
Content	nvm＿remain＜3：0＞			

Bit	3	2	1	0
Read／Write	R／W	R	W	R／W
Reset Value	0	n／a	0	0
Content	nvm＿load	nvm＿rdy	nvm＿prog＿trig	nvm＿prog＿mode

nvm＿remain＜3：0＞：number of remaining write cycles permitted for NVM；the number is decremented each time a write to the NVM is triggered
nvm＿load：\quad＇ 1 ＇\rightarrow trigger，or＇ 0 ＇\rightarrow do not trigger an update of all configuration registers from NVM；the nvm＿rdy flag must be＇1＇prior to triggering the update nvm＿rdy：\quad status of NVM controller：＇ 0 ＇\rightarrow NVM write／NVM update operation is in progress，＇1＇\rightarrow NVM is ready to accept a new write or update trigger nvm＿prog＿trig：\quad＇ 1 ＇\rightarrow trigger，or＇ 0 ＇\rightarrow do not trigger an NVM write operation；the trigger is only accepted if the NVM was unlocked before and nvm＿remain＜3：0＞is greater than＇0＇；flag nvm＿rdy must be＇ 1 ＇prior to triggering the write cycle
nvm＿prog＿mode：＇ 1 ＇\rightarrow unlock，or＇ 0 ＇\rightarrow lock NVM write operation

\oplus BOSCH	BMA250E Data sheet	Page 87

Register 0x34 (BGW_SPI3_WDT)

Contains settings for the digital interfaces.

Name	$\mathbf{0 x 3 4}$	BGW_SPI3_WDT		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	reserved			

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	reserved	i2c_wdt_en	i2c_wdt_sel	spi3

reserved: write ' 0 '
i2c_wdt_en: if I'C interface mode is selected then ' 1 ' \rightarrow enable, or ' 0 ' \rightarrow disables the watchdog at the SDI pin (= SDA for ${ }^{12} \mathrm{C}$)
i2c_wdt_sel: select an $\mathrm{I}^{2} \mathrm{C}$ watchdog timer period of ' 0 ' $\rightarrow 1 \mathrm{~ms}$, or ' 1 ' $\rightarrow 50 \mathrm{~ms}$
spi3: \quad select ${ }^{\prime} 0$ ' $\rightarrow 4$-wire SPI, or ' 1 ' $\rightarrow 3$-wire SPI mode

(\oplus) BOSCH	BMA250E Data sheet	Page 88

Register 0x36 (OFC_CTRL)

Contains control signals and configuration settings for the fast and the slow offset compensation.

Name	0x36	OFC_CTRL		
Bit	7	6	5	4
Read/Write	W	W	W	R
Reset Value	0	0	0	0
Content	offset_reset	cal_trigger<1:0>	cal_rdy	

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	reserved	hp_z_en	hp_y_en	hp_x_en

offset_reset: \quad ' 1 ' \rightarrow set all offset compensation registers (0×38 to $0 \times 3 A$) to zero, or ' 0 ' \rightarrow keep their values
offset_trigger<1:0>: trigger fast compensation for ' $01 b^{\prime} \rightarrow x$-axis, ' $10 b^{\prime} \rightarrow y$-axis, or ' $11 b^{\prime} \rightarrow$ z-axis; ' $00 b^{\prime} \rightarrow$ do not trigger offset compensation; offset compensation must not be triggered when cal_rdy is ' 0 '
cal_rdy: indicates the state of the fast compensation: ' 0 ' \rightarrow offset compensation is in progress, or ' 1 ' \rightarrow offset compensation is ready to be retriggered
reserved: write ' 0 '
hp_z_en: ' 1 ' \rightarrow enable, or ' 0 ' \rightarrow disable slow offset compensation for the z-axis
hp_y_en: ' 1 ' \rightarrow enable, or ' 0 ' \rightarrow disable slow offset compensation for the y-axis
hp_x_en: \quad ' 1 ' \rightarrow enable, or ' 0 ' \rightarrow disable slow offset compensation for the x-axis

$(円)$ BOSCH	BMA250E Data sheet	Page 89

Register 0x37 (OFC_SETTING)

Contains configuration settings for the fast and the slow offset compensation.

Name	0x37	OFC_SETTING	5	4
Bit	7	6	R/W/W	0
Read/Write	R/W	0	0	offset_target_y<1 $>$
Reset Value	0	offset_target_z<1:0>		
Content	reserved			

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	offset_target_y<0 $>$	offset_target_x<1:0>	cut_off	

reserved: write ' 0 '
offset_target_z<1:0>: offset compensation target value for z -axis is ' 00 b ' $\rightarrow 0 \mathrm{~g},{ }^{\prime} 01 \mathrm{~b}$ ' $\rightarrow+1 \mathrm{~g}$, ' 10 b ' $\rightarrow-1 \mathrm{~g}$, or ' 11 b ' $\rightarrow 0 \mathrm{~g}$
offset_target_y<1:0>: offset compensation target value for y -axis is ' 00 b ' $\rightarrow 0 \mathrm{~g},{ }^{\prime} 01 \mathrm{~b}$ ' $\rightarrow+1 \mathrm{~g}$, '10b' $\rightarrow-1 \mathrm{~g}$, or ' 11 b ' $\rightarrow 0 \mathrm{~g}$
offset_target_x<1:0>: offset compensation target value for x -axis is ' 00 b ' $\rightarrow 0 \mathrm{~g},{ }^{\prime} 01 \mathrm{~b}$ ' $\rightarrow+1 \mathrm{~g}$, ' $10 \mathrm{~b}^{\prime} \rightarrow-1 \mathrm{~g}$, or ' $11 \mathrm{~b}^{\prime} \rightarrow 0 \mathrm{~g}$
cut_off:

(0x37) cut_off	high-pass filter bandwidth	Example bw $=500 \mathrm{~Hz}$
0b	$\frac{1 \mathrm{~Hz} \times b w *}{1000 \mathrm{~Hz}}$	$\frac{1 \mathrm{~Hz} \times 500 \mathrm{~Hz}}{1000 \mathrm{~Hz}}=0.5 \mathrm{~Hz}$
1b	$\frac{10 \mathrm{~Hz} \times b w *}{1000 \mathrm{~Hz}}$	$\frac{10 \mathrm{~Hz} \times 500 \mathrm{~Hz}}{1000 \mathrm{~Hz}}=5 \mathrm{~Hz}$

*bw: please insert selected decimal data bandwidth value [Hz] from table 4

(O) BOSCH	BMA250E Data sheet	Page 90

Register 0x38 (OFC_OFFSET_X)

Contains the offset compensation value for x -axis acceleration readout data.

Name	0x38	OFC_OFFSET_X		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	offset_x<7:4>			

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	offset_x<3:0>			

offset_x<7:0>: offset value, which is subtracted from the internal filtered and unfiltered x axis acceleration data; the offset value is represented with two's complement notation, with a mapping of $+127 \rightarrow+0.992 \mathrm{~g}, 0 \rightarrow 0 \mathrm{~g}$, and $-128 \rightarrow-1 \mathrm{~g}$; the scaling is independent of the selected g-range; the content of the offset_x<7:0> may be written to the NVM; it is automatically restored from the NVM after each power-on or softreset; offset_x<7:0> may be written directly by the user; it is generated automatically after triggering the fast offset compensation procedure for the x -axis

© BOSCH	BMA250E Data sheet	Page 91

Register 0x39 (OFC_OFFSET_Y)

Contains the offset compensation value for y-axis acceleration readout data.

Name	0x39	OFC_OFFSET_Y		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	offset_y<7:4>			

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	offset_y<3:0>			

offset_ $y<7: 0>$: offset value, which is subtracted from the internal filtered and unfiltered y axis acceleration data; the offset value is represented with two's complement notation, with a mapping of $+127 \rightarrow+0.992 \mathrm{~g}, 0 \rightarrow 0 \mathrm{~g}$, and $-128 \rightarrow-1 \mathrm{~g}$; the scaling is independent of the selected g-range; the content of the offset_y<7:0> may be written to the NVM; it is automatically restored from the NVM after each power-on or softreset; offset_y<7:0> may be written directly by the user; it is generated automatically after triggering the fast offset compensation procedure for the y-axis

(丹) BOSCH	BMA250E Data sheet	Page 92

Register 0x3A (OFC_OFFSET_Z)

Contains the offset compensation value for z-axis acceleration readout data.

Name	0x3A	OFC_OFFSET_Z		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	offset_z<7:4>			

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	offset_z<3:0>			

offset_ z<7:0>: offset value, which is subtracted from the internal filtered and unfiltered z axis acceleration data; the offset value is represented with two's complement notation, with a mapping of $+127 \rightarrow+0.992 \mathrm{~g}, 0 \rightarrow 0 \mathrm{~g}$, and $-128 \rightarrow-1 \mathrm{~g}$; the scaling is independent of the selected g-range; the content of the offset_z<7:0> may be written to the NVM; it is automatically restored from the NVM after each power-on or softreset; offset_z<7:0> may be written directly by the user; it is generated automatically after triggering the fast offset compensation procedure for the z-axis

Register 0x3B (TRIM_GP0)

Contains general purpose data register with NVM back-up.

Name	0x3B	TRIM_GP0	4	
Bit	7	6	5	R/W
Read/Write	R/W	R/W	0	0
Reset Value	0	0	0	
Content	GP0<7:4>			

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	GPO<3:0>			

GP0<7:0>: general purpose NVM image register not linked to any sensor-specific functionality; register may be written to NVM and is restored after each power-up or softreset

(\oplus) BOSCH	BMA250E Data sheet	Page 93

Register 0x3C (TRIM_GP1)

Contains general purpose data register with NVM back-up.

Name	0x3C	TRIM_GP1		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	GP1<7:4>			

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	GP1<3:0>			

GP1<7:0>: general purpose NVM image register not linked to any sensor-specific functionality; register may be written to NVM and is restored after each power-up or softreset

(H) BOSCH	BMA250E Data sheet	Page 94

Register 0x3E (FIFO_CONFIG_1)

Contains FIFO configuration settings. The FIFO buffer memory is cleared and the fifo-full flag is cleared when writing to FIFO_CONFIG_1 register.

Name	0x3E	FIFO_CONFIG_1		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	fifo_mode<1:0>		Reserved	

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	Reserved	fifo_data_select<1:0>		

fifo_mode<1:0>: selects the FIFO operating mode:
'00b' \rightarrow BYPASS (buffer depth of 1 frame; old data is discarded), '01b' \rightarrow FIFO (data collection stops when buffer is filled with 32 frames), '10b' \rightarrow STREAM (sampling continues when buffer is full; old is discarded), '11b' \rightarrow reserved, do not use
fifo_data_select $<1: 0>$: \quad selects whether ' $00 b^{\prime} \rightarrow X+Y+Z,{ }^{\prime} 01 b^{\prime} \rightarrow X$ only, ' $10 b^{\prime} \rightarrow Y$ only, '11b' \rightarrow Z only acceleration data are stored in the FIFO

(\oplus) BOSCH	BMA250E Data sheet	Page 95

Register 0x3F (FIFO_DATA)

FIFO data readout register. The format of the LSB and MSB components corresponds to that of the acceleration data readout registers. The new data flag is preserved. Read burst access may be used since the address counter will not increment when the read burst is started at the address of FIFO_DATA. The entire frame is discarded when a fame is only partially read out.

Name	0x3F	FIFO_DATA		
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	n / a	n / a	n / a	n / a
Content	fifo_data_output_register<7:4>			

Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	n / a	n / a	n / a	n / a
Content	fifo_data_output_register<3:0>			

fifo_data_output_register<7:0>: FIFO data readout; data format depends on the setting of register fifo_data_select<1:0>:
if $\mathrm{X}+\mathrm{Y}+\mathrm{Z}$ data are selected, the data of frame n is reading out in the order of X-lsb(n), X-msb(n), Y-Isb(n), Y-msb(n), Z-Isb(n), Z-msb(n); if X-only is selected, the data of frame n and $n+1$ are reading out in the order of $\mathrm{X}-\mathrm{Isb}(\mathrm{n}), \mathrm{X}-\mathrm{msb}(\mathrm{n}), \mathrm{X}-\mathrm{Isb}(\mathrm{n}+1), \mathrm{X}-\mathrm{msb}(\mathrm{n}+1)$; the Y -only and Z -only modes behave analogously

$((1)$ BOSCH	BMA250E Data sheet	Page 96

7. Digital interfaces

The BMA250E supports two serial digital interface protocols for communication as a slave with a host device (when operating in general mode): SPI and $I^{2} \mathrm{C}$. The active interface is selected by the state of the Pin\#11 (PS) 'protocol select' pin: ' 0 ' (' 1 ') selects SPI (${ }^{2} \mathrm{C}$). For details please refer to section 8).

By default, SPI operates in the standard 4-wire configuration. It can be re-configured by software to work in 3 -wire mode instead of standard 4 -wire mode.

Both interfaces share the same pins. The mapping for each interface is given in the following table:

Table 20: Mapping of the interface pins

Pin\#	Name	use w/ SPI	use w/ \mathbf{I}^{2} C	Description

The following table shows the electrical specifications of the interface pins:
Table 21: Electrical specification of the interface pins

Parameter	Symbol	Condition	Min	Typ	Max	Units
Pull-up Resistance, CSB pin	$\mathrm{R}_{\text {up }}$	Internal Pull-up Resistance to VDDIO	75	100	125	$\mathrm{k} \Omega$
Input Capacitance	$\mathrm{C}_{\text {in }}$			5	10	pF
1^{2} C Bus Load Capacitance (max. drive capability)	C L2C_Load				400	pF

$(円)$ BOSCH	BMA250E Data sheet	Page 97

7.1 Serial peripheral interface (SPI)

The timing specification for SPI of the BMA250E is given in the following table:

Table 22: SPI timing

Parameter	Symbol	Condition	Min	Max	Units
Clock Frequency	$\mathrm{f}_{\text {SPI }}$	$\begin{gathered} \text { Max. Load on SDI } \\ \text { or SDO }=25 \mathrm{pF}, \\ \mathrm{~V}_{\text {DoIo }} \geq 1.62 \mathrm{~V} \end{gathered}$		10	MHz
		$\mathrm{V}_{\text {DII }}<1.62 \mathrm{~V}$		7.5	MHz
SCK Low Pulse	$\mathrm{t}_{\text {ckı }}$		20		ns
SCK High Pulse	$\mathrm{t}_{\text {sckH }}$		20		ns
SDI Setup Time	$\mathrm{t}_{\text {sDI_setup }}$		20		ns
SDI Hold Time	$\mathrm{t}_{\text {SOI_hold }}$		20		ns
SDO Output Delay	$\mathrm{t}_{\text {SDO_OD }}$	$\begin{aligned} & \text { Load }=25 \mathrm{pF}, \\ & \mathrm{~V}_{\text {Dolo }} \geq 1.62 \mathrm{~V} \end{aligned}$		30	ns
		$\begin{aligned} & \text { Load }=25 \mathrm{pF}, \\ & \mathrm{~V}_{\text {Dolo }}<1.62 \mathrm{~V} \end{aligned}$		50	ns
		$\begin{gathered} \text { Load }=250 \mathrm{pF}, \\ V_{\text {DoII }}>2.4 \mathrm{~V} \end{gathered}$		40	ns
CSB Setup Time	$\mathrm{t}_{\text {cSB_setup }}$		20		ns
CSB Hold Time	$\mathrm{t}_{\text {cSB_hold }}$		40		ns
Idle time between write accesses, normal mode, standby mode, low-power mode 2	$\mathrm{t}_{\text {IDIE_wacc_nm }}$		2		$\mu \mathrm{s}$
Idle time between write accesses, suspend mode, lowpower mode 1	$t_{\text {IILE_ wacc_sum }}$		450		$\mu \mathrm{s}$

(H) BOSCH	BMA250E Data sheet	Page 98

The following figure shows the definition of the SPI timings given in the following figure:

Figure 13: SPI timing diagram

The SPI interface of the BMA250E is compatible with two modes, ' 00 ' and ' 11 '. The automatic selection between [CPOL = ' 0 ' and $\mathrm{CPHA}={ }^{\prime} 0$ '] and $[\mathrm{CPOL}=$ ' 1 ' and CPHA = ' 1 '] is controlled based on the value of SCK after a falling edge of CSB.

Two configurations of the SPI interface are supported by the BMA250E: 4-wire and 3-wire. The same protocol is used by both configurations. The device operates in 4 -wire configuration by default. It can be switched to 3 -wire configuration by writing ' 1 ' to (0×34) spi3. Pin SDI is used as the common data pin in 3-wire configuration.
For single byte read as well as write operations, 16 -bit protocols are used. The BMA250E also supports multiple-byte read operations.

In SPI 4-wire configuration CSB (chip select low active), SCK (serial clock), SDI (serial data input), and SDO (serial data output) pins are used. The communication starts when the CSB is pulled low by the SPI master and stops when CSB is pulled high. SCK is also controlled by SPI master. SDI and SDO are driven at the falling edge of SCK and should be captured at the rising edge of SCK.

$(円) B O S C H$	BMA250E Data sheet	Page 99

The basic write operation waveform for 4 -wire configuration is depicted in figure 14. During the entire write cycle SDO remains in high- impedance state.

Figure 14: 4-wire basic SPI write sequence (mode '11')

The basic read operation waveform for 4 -wire configuration is depicted in figure 15:

Figure 15: 4-wire basic SPI read sequence (mode '11')

$((1)$ BOSCH	BMA250E Data sheet	Page 100

The data bits are used as follows:
Bit0: Read/Write bit. When 0, the data SDI is written into the chip. When 1 , the data SDO from the chip is read.

Bit1-7: Address AD(6:0).
Bit8-15: when in write mode, these are the data SDI, which will be written into the address. When in read mode, these are the data SDO, which are read from the address.

Multiple read operations are possible by keeping CSB low and continuing the data transfer. Only the first register address has to be written. Addresses are automatically incremented after each read access as long as CSB stays active low.

The principle of multiple read is shown in figure 16:

	Control byte								Data byte								Data byte								Data byte								
Start	RW	Register adress (02h)							Data register - adress 02h								Data register - adress 03h								Data register - adress 04h								Stop
CSB	1	0	0	0	0	0	1	0	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X								CSB$=$1
=																										X	X	X	X	X	X	X	
0																																	

Figure 16: SPI multiple read

In SPI 3-wire configuration CSB (chip select low active), SCK (serial clock), and SDI (serial data input and output) pins are used. The communication starts when the CSB is pulled low by the SPI master and stops when CSB is pulled high. SCK is also controlled by SPI master. SDI is driven (when used as input of the device) at the falling edge of SCK and should be captured (when used as the output of the device) at the rising edge of SCK.

The protocol as such is the same in 3 -wire configuration as it is in 4 -wire configuration. The basic operation waveform (read or write access) for 3 -wire configuration is depicted in figure 17:

Figure 17: 3-wire basic SPI read or write sequence (mode '11')

$((1)$ BOSCH	BMA250E Data sheet	Page 101

7.2 Inter-Integrated Circuit (${ }^{2} \mathrm{C}$)

The $I^{2} \mathrm{C}$ bus uses SCL (= SCx pin, serial clock) and SDA (= SDx pin, serial data input and output) signal lines. Both lines are connected to $\mathrm{V}_{\text {DDIo }}$ externally via pull-up resistors so that they are pulled high when the bus is free.

The $I^{2} \mathrm{C}$ interface of the BMA250E is compatible with the $I^{2} \mathrm{C}$ Specification UM10204 Rev. 03 (19 June 2007), available at http://www.nxp.com. The BMA250E supports $I^{2} \mathrm{C}$ standard mode and fast mode, only 7 -bit address mode is supported.

The default $I^{2} \mathrm{C}$ address of the device is $0011000 \mathrm{~b}(0 \times 18)$. It is used if the SDO pin is pulled to 'GND'. The alternative address $0011001 \mathrm{~b}(0 \times 19)$ is selected by pulling the SDO pin to ' $\mathrm{V}_{\text {DDIO }}$ '.

The timing specification for $I^{2} \mathrm{C}$ of the BMA250E is given in Table 23:
Table 23: ${ }^{2} \mathrm{C}$ timings

Parameter	Symbol	Condition	Min	Max	Units
Clock Frequency	$\mathrm{f}_{\text {ScL }}$			400	kHz
SCL Low Period	tow		1.3		$\mu \mathrm{s}$
SCL High Period	$\mathrm{t}_{\text {HIGH }}$		0.6		
SDA Setup Time	$\mathrm{t}_{\text {Sudat }}$		0.1		
SDA Hold Time	$\mathrm{t}_{\text {HDDAT }}$		0.0		
Setup Time for a repeated Start Condition	$\mathrm{t}_{\text {SUSTA }}$		0.6		
Hold Time for a Start Condition	$\mathrm{t}_{\text {HDSTA }}$		0.6		
Setup Time for a Stop Condition	$\mathrm{t}_{\text {susto }}$		0.6		
Time before a new Transmission can start	$\mathrm{t}_{\text {BuF }}$		1.3		
Idle time between write accesses, normal mode, standby mode, low-power mode 2	tidLe wace n m		2		$\mu \mathrm{s}$
Idle time between write accesses, suspend mode, lowpower mode 1	tidLe wacc s um		450		$\mu \mathrm{s}$

$(円) B O S C H$	BMA250E Data sheet	Page 102

Figure 18 shows the definition of the $I^{2} \mathrm{C}$ timings given in Table 23:

Figure $18: I^{2} \mathrm{C}$ timing diagram

The $I^{2} \mathrm{C}$ protocol works as follows:
START: Data transmission on the bus begins with a high to low transition on the SDA line while SCL is held high (start condition (S) indicated by ${ }^{2} \mathrm{C}$ bus master). Once the START signal is transferred by the master, the bus is considered busy.

STOP: Each data transfer should be terminated by a Stop signal (P) generated by master. The STOP condition is a low to HIGH transition on SDA line while SCL is held high.

ACK: Each byte of data transferred must be acknowledged. It is indicated by an acknowledge bit sent by the receiver. The transmitter must release the SDA line (no pull down) during the acknowledge pulse while the receiver must then pull the SDA line low so that it remains stable low during the high period of the acknowledge clock cycle.

In the following diagrams these abbreviations are used:

S	Start
P	Stop
ACKS	Acknowledge by slave
ACKM	Acknowledge by master
NACKM	Not acknowledge by master
RW	Read / Write

A START immediately followed by a STOP (without SCK toggling from logic " 1 " to logic " 0 ") is not supported. If such a combination occurs, the STOP is not recognized by the device.

$(\oplus) \mathbf{B O S C H}$	BMA250E Data sheet	Page 103

${ }^{12} \mathrm{C}$ write access:

$1^{2} \mathrm{C}$ write access can be used to write a data byte in one sequence.
The sequence begins with start condition generated by the master, followed by 7 bits slave address and a write bit (RW = 0). The slave sends an acknowledge bit ($\mathrm{ACK}=0$) and releases the bus. Then the master sends the one byte register address. The slave again acknowledges the transmission and waits for the 8 bits of data which shall be written to the specified register address. After the slave acknowledges the data byte, the master generates a stop signal and terminates the writing protocol.

Example of an $\mathrm{I}^{2} \mathrm{C}$ write access:

Figure 19: ${ }^{12} \mathrm{C}$ write

${ }^{12} \mathrm{C}$ read access:

$1^{2} \mathrm{C}$ read access also can be used to read one or multiple data bytes in one sequence.
A read sequence consists of a one-byte $I^{2} \mathrm{C}$ write phase followed by the $I^{2} \mathrm{C}$ read phase. The two parts of the transmission must be separated by a repeated start condition (Sr). The $\mathrm{I}^{2} \mathrm{C}$ write phase addresses the slave and sends the register address to be read. After slave acknowledges the transmission, the master generates again a start condition and sends the slave address together with a read bit $(R W=1)$. Then the master releases the bus and waits for the data bytes to be read out from slave. After each data byte the master has to generate an acknowledge bit $(A C K=0)$ to enable further data transfer. A NACKM $(A C K=1)$ from the master stops the data being transferred from the slave. The slave releases the bus so that the master can generate a STOP condition and terminate the transmission.
The register address is automatically incremented and, therefore, more than one byte can be sequentially read out. Once a new data read transmission starts, the start address will be set to the register address specified in the latest $\mathrm{I}^{2} \mathrm{C}$ write command. By default the start address is set at 0×00. In this way repetitive multi-bytes reads from the same starting address are possible.

In order to prevent the $I^{2} \mathrm{C}$ slave of the device to lock-up the $I^{2} \mathrm{C}$ bus, a watchdog timer (WDT) is implemented. The WDT observes internal $I^{2} \mathrm{C}$ signals and resets the $I^{2} \mathrm{C}$ interface if the bus is locked-up by the BMA250E. The activity and the timer period of the WDT can be configured through the bits ($0 x 34$) i2c_wdt_en and (0x34) i2c_wdt_sel.

Writing ' 1 ' ('0') to (0×34) i2c_wdt_en activates (de-activates) the WDT. Writing ' 0 ' (' 1 ') to (0×34) i2c_wdt_se selects a timer period of $1 \mathrm{~ms}(50 \mathrm{~ms}$).

$((1)$ BOSCH	BMA250E Data sheet	Page 104

Example of an $\mathrm{I}^{2} \mathrm{C}$ read access:

Figure 20: ${ }^{12} \mathrm{C}$ multiple read

7.2.1 SPI and $\mathrm{I}^{2} \mathrm{C}$ Access Restrictions

In order to allow for the correct internal synchronisation of data written to the BMA250E, certain access restrictions apply for consecutive write accesses or a write/read sequence through the SPI as well as I2C interface. The required waiting period depends on whether the device is operating in normal mode (or standby mode, or low-power mode 2) or suspend mode (or lowpower mode 1).

As illustrated in figure 21, an interface idle time of at least 2μ s is required following a write operation when the device operates in normal mode (or standby mode, or low-power mode 2). In suspend mode (or low-power mode 1) an interface idle time of least $450 \mu \mathrm{~s}$ is required.

Figure 21: Post-Write Access Timing Constraints

$(0) \mathbf{B O S C H}$	BMA250E Data sheet	Page 105

8. Pin-out and connection diagram

8.1 Pin-out

Figure 22: Pin-out top view

Figure 23: Pin-out bottom view

Table 24: Pin description

Pin\#	Name	I/O Type	Description	Connect to		
				in SPI 4W	In SPI 3W	in $\mathrm{I}^{2} \mathrm{C}$
1	SDO	Digital out	Serial data output in SPI Address select in $\mathrm{I}^{2} \mathrm{C}$ mode see chapter 7.2	SDO	DNC (float)	GND for default addr.
2	SDx	Digital I/O	SDA serial data $/ / O$ in $1^{2} \mathrm{C}$ SDI serial data input in SPI 4 W SDA serial data $/ / O$ in SPI 3W	SDI	SDA	SDA
3	VDDIO	Supply	Digital I/O supply voltage (1.2V ... 3.6V)	$V_{\text {DIIO }}$	$V_{\text {DIIO }}$	$V_{\text {DIIO }}$
4	NC	--		GND	GND	GND
5	INT1	Digital out	Interrupt output 1*	INT1	INT1	INT1
6	INT2	Digital out	Interrupt output 2 *	INT2	INT2	INT2
7	VDD	Supply	Power supply for analog \& digital domain (1.62V ... 3.6V)	$V_{D D}$	V_{DD}	V_{DD}
8	GNDIO	Ground	Ground for I/O	GND	GND	GND
9	GND	Ground	Ground for digital \& analog	GND	GND	GND
10	CSB	Digital in	Chip select for SPI mode	CSB	CSB	DNC (float)
11	PS	Digital in	$\begin{gathered} \text { Protocol select (GND }=\text { SPI, } \\ \left.V_{\text {DDIO }}=I^{2} \mathrm{C}\right) \end{gathered}$	GND	GND	$V_{\text {DDIO }}$
12	SCx	Digital in	SCK for SPI serial clock SCL for ${ }^{12} \mathrm{C}$ serial clock	SCK	SCK	SCL

* If INT1 and/or INT2 are not used, please do not connect them (DNC).

$((1)$ BOSCH	BMA250E Data sheet	Page 106

8.2 Connection diagram 4-wire SPI

Figure 24: 4-wire SPI connection
Note: the recommended value for $\mathrm{C} 1, \mathrm{C} 2$ is 100 nF .

(A) BOSCH	BMA250E Data sheet	Page 107

8.3 Connection diagram 3-wire SPI

Figure 25: 3-wire SPI connection

Note: the recommended value for $\mathrm{C} 1, \mathrm{C} 2$ is 100 nF .

(A) BOSCH	BMA250E Data sheet	Page 108

8.4 Connection diagram $I^{2} \mathrm{C}$

Figure 26: ${ }^{2} \mathrm{C}$ connection

Note: the recommended value for $\mathrm{C}_{1}, \mathrm{C}_{2}$ is 100 nF .

$((1)$ BOSCH	BMA250E Data sheet	Page 109

9. Package

9.1 Outline dimensions

Figure 27: Package outline dimensions

(®) BOSCH	BMA250E Data sheet	Page 110

9.2 Sensing axes orientation

If the sensor is accelerated in the indicated directions, the corresponding channel will deliver a positive acceleration signal (dynamic acceleration). If the sensor is at rest and the force of gravity is acting along the indicated directions, the output of the corresponding channel will be negative (static acceleration).

Example: If the sensor is at rest or at uniform motion in a gravity field according to the figure given below, the output signals are:

- $\pm 0 \mathrm{~g}$ for the X channel
- $\quad \pm 0 \mathrm{~g}$ for the Y channel
- $\quad+1 \mathrm{~g}$ for the Z channel

Figure 28: Orientation of sensing axis

The following table lists all corresponding output signals on X, Y, and Z while the sensor is at rest or at uniform motion in a gravity field under assumption of a $\pm 2 \mathrm{~g}$ range setting and a top down gravity vector as shown above.

Table 25: Output signals depending on sensor orientation

Sensor Orientation (gravity vector \downarrow)			\bullet	\bullet	upright	148゙.!dn
Output Signal X	0g / OLSB	1g / 256LSB	0g / OLSB	-1g/-256LSB	0g / 0LSB	0g / 0LSB
Output Signal Y	-1g/-256LSB	0g / OLSB	1g / 256LSB	0g / OLSB	0g / OLSB	0g / OLSB
Output Signal Z	0g / OLSB	0g / OLSB	0g / OLSB	0g / OLSB	1g/256LSB	-1g/-256LSB

$(円)$ BOSCH	BMA250E Data sheet	Page 111

9.3 Landing Pattern Recommendation

For the design of the landing patterns, we recommend the following dimensioning:

Figure 29: Landing patterns; dimensions are in mm
Same tolerances as given for the outline dimensions (Chapter 9.1, Figure 27) should be assumed.
A wiring no-go area in the top layer of the PCB below the sensor is strongly recommended (e.g. no vias, wires or other metal structures).

$(円)$ BOSCH	BMA250E Data sheet	Page 112

9.4 Marking

9.4.1 Mass production devices

Table 26: Marking of mass production samples

Labeling	Name	Symbol	Remark
	Lot counter	CCC	3 alphanumeric digits, variable to generate mass production trace-code
CCC TL	Product number	T	1 alphanumeric digit, fixed to identify product type, $T=$ " "
	Sub-con ID	L	1 alphanumeric digit, variable to identify sub-con
	Pin 1 identifier	-	--

9.4.2 Engineering samples

Table 27: Marking of engineering samples

Labeling	Name	Symbol	Remark
$\begin{array}{r} \mathrm{XXN} \\ \mathrm{CC} \end{array}$	Eng. sample ID	N	1 alphanumeric digit, fixed to identify engineering sample, $N=$ "*" or "e" or " E "
	Sample ID	XX	2 alphanumeric digits, variable to generate trace-code
	Counter ID	CC	2 alphanumeric digits, variable to generate trace-code
	Pin 1 identifier	\bullet	--

$(円)$ BOSCH	BMA250E Data sheet	Page 113

9.5 Soldering guidelines

The moisture sensitivity level of the BMA250E sensors corresponds to JEDEC Level 1, see also

- IPC/JEDEC J-STD-020C "Joint Industry Standard: Moisture/Reflow Sensitivity Classification for non-hermetic Solid State Surface Mount Devices"
- IPC/JEDEC J-STD-033A "Joint Industry Standard: Handling, Packing, Shipping and Use of Moisture/Reflow Sensitive Surface Mount Devices"

The sensor fulfils the lead-free soldering requirements of the above-mentioned IPC/JEDEC standard, i.e. reflow soldering with a peak temperature up to $260^{\circ} \mathrm{C}$.

Profile Feature		Pb-Free Assembly
Average Ramp-Up Rate ($\mathrm{Ts}_{\text {max }}$ to Tp)		$3^{\circ} \mathrm{C} / \mathrm{sec}^{\text {cond max. }}$
Preheat - Temperature Min ($\mathrm{Ts}_{\text {minn }}$) - Temperature Max (Ts $\mathrm{m}_{\text {max }}$) - Time $\left(\mathrm{ts}_{\text {min }}\right.$ to $\left.\mathrm{t} \mathrm{s}_{\text {max }}\right)$		$\begin{gathered} 150^{\circ} \mathrm{C} \\ 200^{\circ} \mathrm{C} \\ 60-180 \text { seconds } \end{gathered}$
Time maintained above: - Temperature (T_{L}) - Time (it $^{\text {) }}$		$217^{\circ} \mathrm{C}$ $60-150$ seconds
Peak Classification Temperature ($\mathrm{T}_{\text {p }}$)		$260{ }^{\circ} \mathrm{C}$
Time within $5{ }^{\circ} \mathrm{C}$ of actual Peak Temperature (t)		20-40 seoconds
Ramp-Down Rate		$6{ }^{\circ} \mathrm{C}$ /second max
Time $25{ }^{\circ} \mathrm{C}$ to Peak Temperature		8 minutes max

Note 1; All temperatures reler to topside of the package, measured on the package body surtace

Figure 30: Soldering profile

(A) BOSCH	BMA250E Data sheet	Page 114

9.6 Handling instructions

Micromechanical sensors are designed to sense acceleration with high accuracy even at low amplitudes and contain highly sensitive structures inside the sensor element. The MEMS sensor can tolerate mechanical shocks up to several thousand g's. However, these limits might be exceeded in conditions with extreme shock loads such as e.g. hammer blow on or next to the sensor, dropping of the sensor onto hard surfaces etc.

We recommend to avoid g-forces beyond the specified limits during transport, handling and mounting of the sensors in a defined and qualified installation process.

This device has built-in protections against high electrostatic discharges or electric fields (e.g. 2kV HBM); however, anti-static precautions should be taken as for any other CMOS component. Unless otherwise specified, proper operation can only occur when all terminal voltages are kept within the supply voltage range. Unused inputs must always be tied to a defined logic voltage level.

$((1)$ BOSCH	BMA250E Data sheet	Page 115

9.7 Tape and reel specification

The BMA250E is shipped in a standard cardboard box.
The box dimension for 1 reel is: $\mathrm{L} \times \mathrm{W} \times \mathrm{H}=35 \mathrm{~cm} \times 35 \mathrm{~cm} \times 6 \mathrm{~cm}$.
BMA250E quantity: 10,000 pcs per reel, please handle with care.

SECTITN Y-Y

$A 0$	2,20	$+/-0,05$
B_{0}	2,20	$+/-0,05$
K_{0}	1,15	$+/-0,1$
F	5,50	$+/-0,1$
P_{1}	4,00	$+/-0,1$
W	12,00	$+/-0,3$

Figure 31: Tape and reel dimensions in mm

(A) BOSCH	BMA250E Data sheet	Page 116

9.7.1 Orientation within the reel

Figure 32: Orientation of the BMA250E devices relative to the tape

(A) BOSCH	BMA250E Data sheet	Page 117

9.8 Environmental safety

The BMA250E sensor meets the requirements of the EC restriction of hazardous substances (RoHS) directive, see also:

Directive 2002/95/EC of the European Parliament and of the Council of 8 September 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

9.8.1 Halogen content

The BMA250E is halogen-free. For more details on the corresponding analysis results please contact your Bosch Sensortec representative.

9.8.2 Internal package structure

Within the scope of Bosch Sensortec's ambition to improve its products and secure the mass product supply, Bosch Sensortec qualifies additional sources (e.g. $2^{\text {nd }}$ source) for the LGA package of the BMA250E.

While Bosch Sensortec took care that all of the technical packages parameters are described above are 100% identical for all sources, there can be differences in the chemical content and the internal structural between the different package sources.

However, as secured by the extensive product qualification process of Bosch Sensortec, this has no impact to the usage or to the quality of the BMA250E product.

(\circledast) BOSCH	BMA250E Data sheet	Page 118

10. Legal disclaimer

10.1 Engineering samples

Engineering Samples are marked with an asterisk (*) or (e) or (E). Samples may vary from the valid technical specifications of the product series contained in this data sheet. They are therefore not intended or fit for resale to third parties or for use in end products. Their sole purpose is internal client testing. The testing of an engineering sample may in no way replace the testing of a product series. Bosch Sensortec assumes no liability for the use of engineering samples. The Purchaser shall indemnify Bosch Sensortec from all claims arising from the use of engineering samples.

10.2 Product use

Bosch Sensortec products are developed for the consumer goods industry. They may only be used within the parameters of this product data sheet. They are not fit for use in life-sustaining or security sensitive systems. Security sensitive systems are those for which a malfunction is expected to lead to bodily harm or significant property damage. In addition, they are not fit for use in products which interact with motor vehicle systems.

The resale and/or use of products are at the purchaser's own risk and his own responsibility. The examination of fitness for the intended use is the sole responsibility of the Purchaser.

The purchaser shall indemnify Bosch Sensortec from all third party claims arising from any product use not covered by the parameters of this product data sheet or not approved by Bosch Sensortec and reimburse Bosch Sensortec for all costs in connection with such claims.

The purchaser must monitor the market for the purchased products, particularly with regard to product safety, and inform Bosch Sensortec without delay of all security relevant incidents.

10.3 Application examples and hints

With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Bosch Sensortec hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of noninfringement of intellectual property rights or copyrights of any third party. The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. They are provided for illustrative purposes only and no evaluation regarding infringement of intellectual property rights or copyrights or regarding functionality, performance or error has been made.

(M) BOSCH	BMA250E Data sheet	Page 119

11. Document history and modification

Rev. No	Chapter	Description of modification/changes	Date
0.1		Initial internal release	01 June 2012
0.2		Internal revision, not for release	
0.3		Internal revision, not for release	
0.4		Internal revision, not for release	
0.5	All	Initial external release	01 August 2012
0.6	$\begin{aligned} & \hline 1,4.1,4.2, \\ & 6.2,7.1, \\ & 9.3 \end{aligned}$	Update	24 Sep 2012
0.7	$\begin{aligned} & \text { 4.5.2, } \\ & \text { 4.7.8, } 6.2, \\ & 9.1,9.3 \end{aligned}$	Update	22 Oct 2012
1.0	$\begin{aligned} & \hline 1,4.2, \\ & 4.7 .3, \\ & 4.7 .7,6.2, \\ & 9.3,9.4 .1, \\ & 9.8 \end{aligned}$	Update	21 May 2013
1.1	4.7	Update Single tap; update high-g interrupt	12 Dec 2013
	6.2	Update 0x0F; update 0x2B; update 0x32	
1.2	4.2	sleeptimer_en->sleeptimer_mode, linguistic improvement: "... a wake-up time of at least ...	01 August 2014
	4.5.1	Slow compensation update (High-pass filter cut off frequency)	
	4.7.6	Tap sensing update (temporary latched interrupt)	
	6.2	0x37 cut_of update	
	7.2	$1^{2} \mathrm{C}$ description update	
1.3		Additional Technical Refernce Code added	28 April 2015

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Accelerometers category:
Click to view products by Bosch manufacturer:

Other Similar products are found below :
AD22372Z-RL7 ADXL313WACPZ-RL 805M1-0050-01 MXC6655XA MMA7455LT 805M1-0200-01 810M1-0025X AIS328DQTR 832M1-0050 805-0050 AD22301 BMA253 ADXL354BEZ SCA620-EF8H1A-1 MC3413 MXC6244AU 3038-0500 ACH-01-04/10 4692 ADXL372BCCZ-RL7 735T 787-500 787AM8 793-6 793L 997-M4 HV101 HV102 HV200 PC420AR-10 PC420VP-50 786A 786A-IS 787A 787A-IS HT786A HT787A PC420VP-10 AD22293Z-RL7 ADIS16003CCCZ ADIS16228CMLZ ADXL700WBRWZ-RL ADXL1003BCPZ ADXL103CE-REEL ADXL203CE-REEL ADXL206HDZ ADXL213AE ADXL288WBRDZ-RL ADXL295WBRDZ-RL ADXL312WACPZ

[^0]: \square common w/r registers: Application specific settings which are not equal to the default settings,
 must be re-set to its designated values after POR, soft-reset and wake up from deep suspend.
 user w/r registers: Initial default content $=0 \times 00$. Freely programmable by the user.
 Remains unchanged after POR, soft-reset and wake up from deep suspend.

