

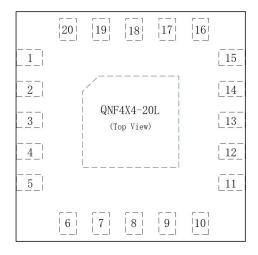
Features

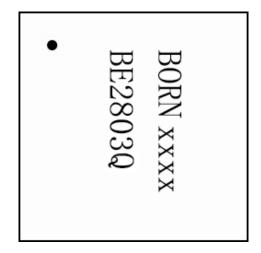
- 500-mA-Rated Collector Current(single output)
- High-Voltage Outputs: 50V
- · Inputs Compatible With Various Types of Logic
- · Output Clamp Diodes
- · Relay-Driver Applications


Package

General Description

The ULN2803QN is high-voltage high-current Darlington transistor arrays each containing seven open collector common emitter pairs. Each pair is rated at 500mA. Suppression diodes are included for inductive load driving, the inputs and outputs are pinned in opposition to simplify board layout. These devices are capable of driving a wide range of loads including solenoids, relays, DC motors, LED displays, filament lamps, thermal print-heads and high-power buffers.

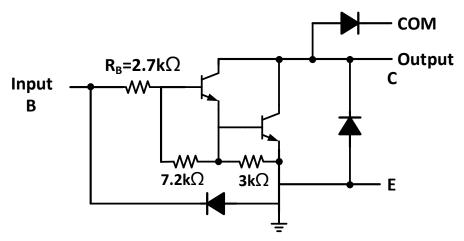

Connection Diagram



Pin Description

QFN4X4-20L

Top Marking


Pin Number	Name	Function	Pin Number	Name	Function
1	3B	Input pair3	11	7C	Output pair7
2	4B	Input pair4	12	6C	Output pair6
3	5B	Input pair5	13	5C	Output pair5
4	6B	Input pair6	14	4C	Output pair4
5	7B	Input pair7	15	3C	Output pair3
6	8B	Input pair8	16	2C	Output pair2
7	NC	NC	17	1C	Output pair1
8	E	CE(ground)	18	NC	NC
9	СОМ	CC Diodes	19	1B	Input pair1
10	8C	Output pair8	20	2B	Input pair2

Revision: 2022-Jan-1

Functional Block Diagram

Note: All resistor values shown are nominal.

The collentor-emitter diode is a parasitic structure and should not be used to conduct current. If the collector(s) go below ground an external Schoottky diode should be added to clamp negative undershoots.

Absolute Maximum Ratings (At 25°C free-air temperature unless otherwise noted)(1)

Symbol	Parameter	Min	Max	Units
V _{CC}	Collector to emitter voltage	-0.5	50	V
V _{COM}	voltage of Pin COM		50	V
Vı	Input voltage	-0.5	30	V
I _{CP}	Peak collector current (See typical characteristics)		500	mA/ch
I _{OK}	Output clamp current		500	mA
I _{TE}	I _{TE} Total emitter-terminal current		-2.5	Α
T _J Operating virtual junction temperature			150	°C
T _{STG}	T _{STG} Storage temperature range		150	°C
P _D	Power consumption		1.3	W

- (1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) All voltage values are with respect to the emitter/substrate terminal E, unless otherwise noted.
- (3) Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allow able ambient temperature is PD = $(T_J(max)-T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
- (4) Maximum pow er dissipation is a function of $T_J(max)$, θ_{JC} , and T_A . The maximum allow able pow er dissipation at any allow able ambient temperature is PD = $(T_J(max)-T_A)/\theta_{JC}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

Typical Characteristics

Symbol Parameter		Min	Max	Units	
V _{CE}	Collector to emitter voltage	-	50	V	
T _A	Operating Ambient Temperature	-40	+105	°C	

Electrical Characteristics (T_A=+25°C, unless otherwise specified)

Parameter		Test	Test Conditions		BE2803Q			Unit
		Figure			MIN	TYP	MAX	Unit
	On-state input voltage	Figure 6	V _{CE} = 2 V	I _C = 200 mA	_	_	2.4	V
$V_{I(on)}$				I _C = 250 mA	_	_	2.7	
				I _C = 300 mA	-	_	3	
			Ι _ι = 250 μΑ	I _C = 100 mA	_	0.9	1.1	
$V_{CE(sat)}$	Collector-emitter saturation voltage	Figure 5	Ι _ι = 350 μΑ	I _C = 200 mA	_	1	1.3	V
			Ι _Ι = 500 μΑ	I _C = 350 mA	_	1.2	1.6	
	Collector cutoff current	Figure 1	V _{CE} = 50 V,	I ₁ = 0	_	_	50	
I _{CEX}		Figure 2	V _{CE} = 50 V;	I ₁ = 0			100	— μ A
		Figure 2	T _A = +105°C	1 - 0	_	_	100	
V _F	Clamp forw ard voltage	Figure 8	I _F = 350 mA		_	1.7	2	V
I _{I(off)}	Off-state input current	Figure 3	V _{CE} = 50 V,I _C = 500 μA		50	65	_	μA
	V _I = 3.85 V		3.85 V	_	0.93	1.35		
I _I	Input current	Figure 4	V _I = 5 V		_	mA		
					_	_	_	1
I _R		Fig 7)/ - F0.)/	T _A = 25°C	_	_	50	
	Clamp reverse current	Figure 7	V _R = 50 V	T _A = 70°C	_	_	100	μA
Ci	Input capacitance		V _I = 0, f = 1 MHz		_	15	25	pF

Switching Characteristics ($T_A = +25$ °C, unless otherwise specified)

Parameter		Test Conditions	E	3E2803Q		Unit
	Faranieter	rest Conditions	MIN	TYP	MAX	Unit
t _{PLH}	Propagation delay time,	Figure 9	-	0.25	1	μs
PLH	low - to high-level output	r iguic 3				
t	Propagation delay time,	Figure 9	_	0.25	1	ше
t _{PHL}	high- to low -level output	r iguie 9				μs
V _{OH}	High-level output voltage	V _S = 50 V, I _O = 300 mA	V _S -20			mV
VOH	after switching	Figure 9	V _S -20		_	IIIV

Parameter Measurement Information

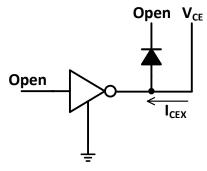


Fig.1 I_{CEX} Test Circuit

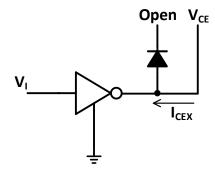


Fig.2 I_{CEX} Test Circuit

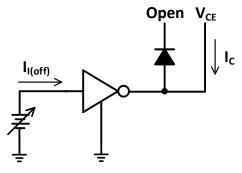


Fig.3 I_{I(off)} Test Circuit

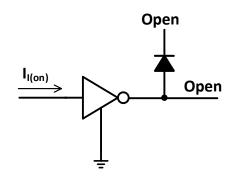


Fig.4 I₁ Test Circuit

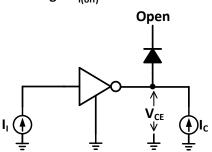


Fig. 5 h_{fe}, V_{CE(sat)} Test Circuit

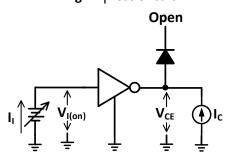


Fig.6 V_{I(on)} Test Circuit

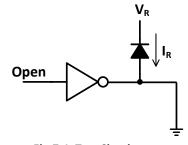


Fig.7 I_R Test Circuit

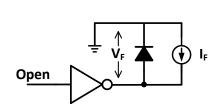


Fig.8 V_F Test Circuit

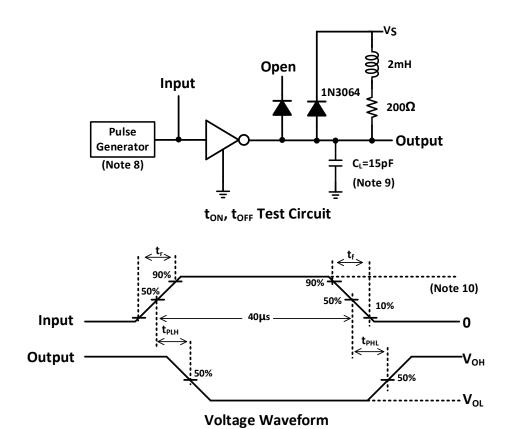
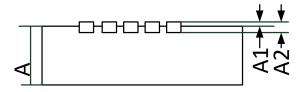
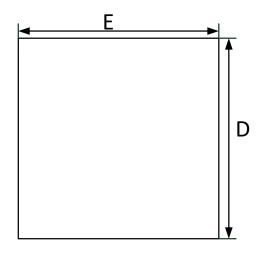


Fig.9 Latch-Up Test Circuit and Voltage Waveform

Revision: 2022-Jan-1

Notes:


- 8. The pulse generator has the follow ing characteristics: Pulse Width=12.5Hz, output impedance 50Ω , $t_f \le 5$ ns, $t_f \le 1$ 0ns.
- 9. C_L includes prove and jig capacitance.


10 V_{IH}=3V

QFN4X4-20L Package Specifications

SYMBOL	MIN	TYP	MAX
	0.400	0.450	0.500
Α	0.500	0.550	0.600
	0.700	0.700 0.750	
A 1	0.00	_	0.050
A2	0.195	0.203	0.211
D	3.900	4.00	4.100
E	3.900	4.000	4.100
D1	2.625 2.650		2.675
E1	2.625	2.650	2.675
k	0.150MIN.		
b	0.200	0.250	0.300
е	0.500TYP.		
L	0.300	0.400	0.500

Note: All dimensions shown are in millimeters (mm) and refer to JEDEC STANDARD MO-220 WHHD-4

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Darlington Transistors category:

Click to view products by Bourne manufacturer:

Other Similar products are found below:

BDV64B SBSP52T1G Jantx2N6058 LB1205-L-E 2N6053 MPSA63 2N6667 NTE256 TIP120 MJ11028 TIP127 Jantx2N6352

NJVBUB323ZT4G ULN2003 ULN2803QN GN2003B MJD127T4G-JSM KID65004AF-EL/P ULN2803 ULN2803CDWR HT62783ARTZ

ULN2803A GN2803A MC1413BM/TR ULN2003AN ULN2003LVM/TR HT1413ARZ ULN2803A ULN2003 ULN2803 IK62783N

IK62083N ULN2003AL MMBTA63 ULN2001D 2SB1560 2SB852KT146B 2SD2560 TIP112TU BCV27 MMBTA13-TP MMBTA14-TP

MMSTA28T146 BSP50H6327XTSA1 NTE2557 NJVNJD35N04T4G MPSA29-D26Z MJD127T4 FMMT38C BCV26E6327HTSA1